首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD39 modulates IL-1 release from activated endothelial cells   总被引:6,自引:0,他引:6  
The activation of endothelial cells (EC) and monocyte-macrophages (Mφ) by lipopolysaccharide (LPS) is considered an important element of the vascular injury observed in endotoxemia. Interleukin-1 (IL-1) beta release from Mφ in response to LPS, appears to be mediated by the autocrine/paracrine release of ATP via P2X7 receptor activation. In EC, similar nucleotide-mediated signaling pathways may be influenced by high levels of expression of CD39, the vascular nucleoside triphosphate diphosphohydrolase (NTPDase; ENTPD I). To determine whether CD39 modulates ATP-mediated release of IL-1 from EC, we stimulated human EC with LPS and measured levels of ATP secretion and IL-1 release. LPS triggered ATP secretion from EC that was soon followed by IL-1alpha release. Overexpression of CD39 following infection with recombinant CD39 adenoviral vectors (AdCD39) abrogated the initial phase of ATP secretion and inhibited IL-1alpha release; comparable results were obtained with soluble NTPDase. These data demonstrate that CD39/NTPDase modulates IL-1alpha release from LPS stimulated human EC.  相似文献   

2.
Nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39) is the dominant ecto-nucleotidase of vascular and placental trophoblastic tissues and appears to modulate the functional expression of type-2 purinergic (P2) G-protein coupled receptors (GPCRs). Hence, this ectoenzyme could regulate nucleotide-mediated signalling events in placental tissue. This immunohistochemical and immuno-electron microscopic study demonstrates the expression of NTPDase1/CD39, P2Y1 and P2Y2 receptors in different cell types of human placenta. Specifically P2Y1 has an exclusive vascular distribution whereas P2Y2 is localized on trophoblastic villi. Co-localization of P2Y1 and NTPDase1/CD39 are observed in caveolae, membrane microdomains of endothelial cells. The differential localization of these P2 receptors might indicate their unique roles in the regulation of extracellular nucleotide concentrations in human placental tissues and consequent effects on vascular tone and blood fluidity.  相似文献   

3.
CD39, the endothelial ecto-nucleoside triphosphate diphosphohydrolase (NTPDase), regulates vascular inflammation and thrombosis by hydrolyzing ATP and ADP. Although ecto-NTPDase activities have been used as a marker of epidermal dendritic cells (DCs) known as Langerhans cells, the identity and function of these activities remain unknown. Here we report that Langerhans cells in CD39-/- mice express no detectable ecto-NTPDase activity. Irritant chemicals triggered rapid ATP and ADP release from keratinocytes and caused exacerbated skin inflammation in CD39-/- mice. Paradoxically, T cell-mediated allergic contact hypersensitivity was severely attenuated in CD39-/- mice. As to mechanisms, T cells increased pericellular ATP concentrations upon activation, and CD39-/- DCs showed ATP unresponsiveness (secondary to P2-receptor desensitization) and impaired antigen-presenting capacity. Our results show opposing outcomes of CD39 deficiency in irritant versus allergic contact dermatitis, reflecting its diverse roles in regulating extracellular nucleotide-mediated signaling in inflammatory responses to environmental insults and DC-T cell communication in antigen presentation.  相似文献   

4.
The extracellular hydrolysis of adenine nucleotides by intact rat blood platelets occurs by the action of a cascade of enzymes constituted by an NTPDase 3 (CD39, EC 3.6.1.5, apyrase) and a 5'-nucleotidase (CD73, EC 3.5.7.3), whose final product is adenosine. Ebselen is a seleno-organic compound that possesses low toxicity and exhibits antioxidant, anti-inflammatory, anti-atherosclerotic, and cytoprotective properties. The main objective of this study was to evaluate if the anti-inflammatory drug ebselen can modulate the extracellular adenine nucleotide hydrolysis by platelets from rats. Our results showed that ebselen, at final concentrations of 30 and 100 microM, inhibits in vitro ATP extracellular hydrolysis by 48 and 60%, respectively. Ebselen, at final concentrations of 100 and 130 microM, also inhibited the in vitro extracellular hydrolysis of ADP by 28 and 35%, respectively. However, this drug did not alter AMP hydrolysis by platelets in the appropriate assay conditions. Kinetic analysis showed that the inhibition of ADP and ATP hydrolysis by ebselen, in rat platelets, is of the uncompetitive type. The IC50 calculated from the results were 99 +/- 10 and 186 +/- 47 microM (mean +/- S.D., n = 3) for ATP and ADP hydrolysis, respectively.  相似文献   

5.
Human lymphocytes contain NTPDase (NTPDase-1; ecto-apyrase; ecto-diphosphohydrolase; CD39; EC 3.6.1.5), a cation-dependent enzyme that hydrolyzes ATP and ADP and also other di- and triphosphate nucleosides, acting at an optimum pH of 8.0. A significant inhibition of ATP and ADP hydrolysis (P<0.05) was observed in the presence of 20 mM sodium azide. NTPDase inhibitors, 20 mM sodium fluoride, 0.2 mM trifluoperazine and 0.3 mM suramin, significantly decreased ATP and ADP hydrolysis (P<0.05) and ADP hydrolysis was only inhibited by 0.5 mM orthovanadate (P<0.05). ATP and ADP hydrolysis was not inhibited in the presence of 0.01 mM Ap5A (P1,P5-di(adenosine-5')pentaphosphate), 0.1 mM ouabain, 1 mM levamisole, 2 microg/mL oligomycin, 0.1 mM N-ethylmaleimide (NEM), or 5 mM sodium azide. With respect to kinetic behavior, apparent K(m) values of 77.6+/-10.2 and 106.8+/-21.0 microM, and V(max) values of 68.9+/-8.1 and 99.4+/-8.5 (mean+/-S.E., n=3) nmol Pi/min/mg protein were obtained for ATP and ADP, respectively. A Chevilard plot demonstrated that only one enzymatic site is responsible for the hydrolysis of ATP and ADP. The presence of CD39 was determined by flow cytometry, showing a low density of 2.72+/-0.24% (mean+/-S.E.; n=30) in human peripheral lymphocytes. The study of NTPDase activity in human lymphocytes may be important to determine the immune response status against infectious agents related to ATP and ADP hydrolysis.  相似文献   

6.
Ectonucleotidases modulate purinergic signaling by hydrolyzing ATP to adenosine. Here we characterized the impact of the cellular distribution of hepatic ectonucleotidases, namely nucleoside triphosphate diphosphohydrolase (NTPDase)1/CD39, NTPDase2/CD39L1, NTPDase8, and ecto-5'-nucleotidase/CD73, and of their specific biochemical properties, on the levels of P1 and P2 receptor agonists, with an emphasis on adenosine-producing CD73. Immunostaining and enzyme histochemistry showed that the distribution of CD73 (protein and AMPase activity) overlaps partially with those of NTPDase1, -2, and -8 (protein levels and ATPase and ADPase activities) in normal rat liver. CD73 is expressed in fibroblastic cells located underneath vascular endothelial cells and smooth muscle cells, which both express NTPDase1, in portal spaces in a distinct fibroblast population next to NTPDase2-positive portal fibroblasts, and in bile canaliculi, together with NTPDase8. In fibrotic rat livers, CD73 protein expression and activity are redistributed but still overlap with the NTPDases mentioned. The ability of the observed combinations of ectonucleotidases to generate adenosine over time was evaluated by reverse-phase HPLC with the recombinant rat enzymes at high "inflammatory" (500 μM) and low "physiological" (1 μM) ATP concentrations. Overall, ATP was rapidly converted to adenosine by the NTPDase1+CD73 combination, but not by the NTPDase2+CD73 combination. In the presence of NTPDase8 and CD73, ATP was sequentially dephosphorylated to the CD73 inhibitor ADP, and then to AMP, thus resulting in a delayed formation of adenosine. In conclusion, the specific cellular cocompartmentalization of CD73 with hepatic NTPDases is not redundant and may lead to the differential activation of P1 and P2 receptors, under normal and fibrotic conditions.  相似文献   

7.
It has been reported that ATP inhibits or stimulates lymphoid cell proliferation depending on the cellular subset analyzed. In this study, we show that ATP exerts strikingly opposite effects on anti-CD3/CD28-activated and regulatory CD4(+) T cells (T(regs)), based on nucleotide concentration. We demonstrate that physiological concentrations of extracellular ATP (1-50 nM) do not affect activated CD4(+) T cells and T(regs). Conversely, higher ATP concentrations have a bimodal effect on activated CD4(+) T cells. Whereas 250 nM ATP stimulates proliferation, cytokine release, expression of adhesion molecules, and adhesion, 1 mM ATP induces apoptosis and inhibits activated CD4(+) T cell functions. The expression analysis and pharmacological profile of purinergic P2 receptors for extracellular nucleotides suggest that activated CD4(+) T cells are induced to apoptosis via the upregulation and engagement of P2X7R and P2X4R. On the contrary, 1 mM ATP enhances proliferation, adhesion, migration, via P2Y2R activation, and immunosuppressive ability of T(regs). Similar results were obtained when activated CD4(+) T cells and T(regs) were exposed to ATP released by necrotized leukemic cells. Taken together, our results show that different concentrations of extracellular ATP modulate CD4(+) T cells according to their activated/regulatory status. Because extracellular ATP concentration highly increases in fast-growing tumors or hyperinflamed tissues, the manipulation of purinergic signaling might represent a new therapeutic target to shift the balance between activated CD4(+) T cells and T(regs).  相似文献   

8.
Membrane-bound NTPDase2 is a member of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) enzyme family involved in the regulation of P2 receptor signaling. NTPDase2 has broad substrate specificity for extracellular nucleotides, but hydrolyses nucleoside 5'-triphosphates with high preference over nucleoside 5'-diphosphates. In this study, we have sought to determine how enzyme substrates acting on P2 receptors affect intracellular NTPDase2 trafficking. To achieve this, Chinese hamster ovary (CHO) cells were transiently transfected with rat-specific NTPDase2 cDNA tagged with green fluorescent protein (GFP), to allow direct visualisation of subcellular localisation and trafficking of NTPDase2. Cells were superfused with NTPDase2 substrates (ATP and UTP) and synthetic nucleotide analogues (ATPgammaS and ADPbetaS), and confocal image stacks were acquired at regular time intervals. NTPDase2 incorporation into the plasma membrane was determined by comparative analysis of fluorescence intensity in the cytosolic and membrane compartments. GFP-tagged NTPDase2 was fully functional and ATP and ATPgammaS induced membrane incorporation of GFP-NTPDase2 from putative intracellular stores, whilst UTP and ADPbetaS were ineffective. The increased ATP hydrolysis rate correlated with increased NTPDase2 trafficking to the plasma membrane. ATP-induced NTPDase2 trafficking was mediated by activation of endogenous P2X receptors involving Ca2+ entry rather than by P2Y receptor-induced release of Ca2+ from intracellular stores. Our results suggest that P2X receptor activation stimulates insertion of latent NTPDase2 into the plasma membrane. The increase in surface-located NTPDase2 may reflect a regulatory mechanism counteracting excessive stimulation and desensitisation of P2 receptors.  相似文献   

9.
The ectonucleotidase NTPDase1 (CD39) terminates P2 receptor activation by the hydrolysis of extracellular nucleotides (i.e., the P2 receptor ligands). In agreement with that role, exacerbated inflammation has been observed in NTPDase1-deficient mice. In this study, we extend these observations by showing that inhibition of NTPDase1 markedly increases IL-8 production by TLR-stimulated human neutrophils. First, immunolabeling of human blood neutrophils and neutrophil-like HL60 cells displayed the expression of NTPDase1 protein, which correlated with the hydrolysis of ATP at their surface. NTPDase1 inhibitors (e.g., NF279 and ARL 67156) as well as NTPDase1-specific small interfering RNAs markedly increased IL-8 production in neutrophils stimulated with LPS and Pam(3)CSK(4) (agonists of TLR4 and TLR1/2, respectively) but not with flagellin (TLR5) and gardiquimod (TLR7 and 8). This increase in IL-8 release was due to the synergy between TLRs and P2 receptors. Indeed, ATP was released from neutrophils constitutively and accumulated in the medium upon NTPDase1 inhibition by NF279. Likewise, both human blood neutrophils and neutrophil-like HL60 cells produced IL-8 in response to exogenous nucleotides, ATP being the most potent inducer. In agreement, P2Y(2) receptor knockdown in neutrophil-like HL60 cells markedly decreased LPS- and Pam(3)CSK(4)-induced IL-8 production. In line with these in vitro results, injection of LPS in the air pouches of NTPDase1-deficient mice triggered an increased production of the chemokines MIP-2 and keratinocyte-derived chemokine (i.e., the rodent counterparts of human IL-8) compared with that in wild-type mice. In summary, NTPDase1 controls IL-8 production by human neutrophils via the regulation of P2Y(2) activation.  相似文献   

10.
Keratinocytes are the major building blocks of the human epidermis. In many physiological and pathophysiological conditions, keratinocytes release adenosine triphosphate (ATP) as an autocrine/paracrine mediator that regulates cell proliferation, differentiation, and migration. ATP receptors have been identified in various epidermal cell types; therefore, extracellular ATP homeostasis likely determines its long-term, trophic effects on skin health. We investigated the possibility that human keratinocytes express surface-located enzymes that modulate ATP concentration, as well as the corresponding receptor activation, in the pericellular microenvironment. We observed that the human keratinocyte cell line HaCaT released ATP and hydrolyzed extracellular ATP. Interestingly, ATP hydrolysis resulted in adenosine diphosphate (ADP) accumulation in the extracellular space. Pharmacological inhibition by ARL 67156 or gene silencing of the endogenous ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) isoform 2 resulted in a 25% reduction in both ATP hydrolysis and ADP formation. Using intracellular calcium as a reporter, we found that although NTPDase2 hydrolyzed ATP and generated sustainable ADP levels, only ATP contributed to increased intracellular calcium via P2Y2 receptor activation. Furthermore, knocking down NTPDase2 potentiated the nanomolar ATP-induced intracellular calcium increase, suggesting that NTPDase2 globally attenuates nucleotide concentration in the pericellular microenvironment as well as locally shields receptors in the vicinity from being activated by extracellular ATP. Our findings reveal an important role of human keratinocyte NTPDase2 in modulating nucleotide signaling in the extracellular milieu of human epidermis.  相似文献   

11.
Ecto-nucleoside triphosphate diphosphohydrolases, NTPDase1 (CD39) and NTPDase3, are integral plasma membrane proteins that hydrolyze extracellular nucleotides, thereby modulating the function of purinergic receptors. During processing in the secretory pathway, the active sites of ecto-nucleotidases are located in the lumen of vesicular compartments, thus raising the question whether the ecto-nucleotidases affect the ATP-dependent processes in these compartments, including protein folding in the endoplasmic reticulum (ER). It has been reported (J. Biol. Chem. (2001) 276, 41518-41525) that CD39 is not active until it reaches the plasma membrane, suggesting that terminal glycosylation in Golgi is critical for its activity. To investigate the subcellular location and the mechanism of ecto-nucleotidase activation, we expressed human NTPDase3 in COS-1 cells and blocked the secretory transport with monensin or brefeldin A, or by targeting to ER with a signal peptide. Cell surface biotinylation, sensitivity to glycosidases, and fluorescence microscopy analyses suggest that, in contrast to the previous report on CD39, NTPDase3 becomes catalytically active in the ER or in the ER-Golgi intermediate compartment, and that terminal glycosylation in Golgi is not essential for activity. Moreover, ER-targeted NTPDase3, but not wild-type NTPDase3 or ER-targeted inactive G221A mutant, significantly diminished the folding efficiency and the transport to the plasma membrane of coexpressed CD39 used as a reporter protein. These data suggest that ER-targeted NTPDase3 significantly depletes ATP in ER, whereas wild-type NTPDase3 is likely to acquire ATPase activity in a post-ER, but pre-Golgi, compartment, thus avoiding unproductive ATP hydrolysis and interference with protein folding in the ER. ER-targeted NTPDase3 may be a useful experimental tool to study the effects of ER ATP depletion on ER function under normal and stress conditions.  相似文献   

12.
Vascular responses to adenine nucleotides in human corpora cavernosa from men with vasculogenic erectile dysfunction were investigated. We also evaluated the catabolism of extracellular adenine nucleotides to probe its relevance to vascular hemodynamics in impotent men. Human corpora cavernosa have high NTPDase1/CD39 activity, converting ATP directly into AMP, without significant ADP formation. Extracellular ATP hydrolysis is slower in impotent patients. Adenine nucleotides have dual roles on phenylephrine-contracted strips of corpora cavernosa operated by P2X-contractant and P2Y-relaxant receptors. Prolonged exposure to endogenous ATP related to decreased NTPDase1/CD39 activity leads to P2-purinoceptor desensitization in impotent men. Shutting down ATP signaling in vasculogenic impotent men may represent a defense mechanism for preventing purinergic overstimulation.  相似文献   

13.
Vascular responses to adenine nucleotides in human corpora cavernosa from men with vasculogenic erectile dysfunction were investigated. We also evaluated the catabolism of extracellular adenine nucleotides to probe its relevance to vascular hemodynamics in impotent men. Human corpora cavernosa have high NTPDase1/CD39 activity, converting ATP directly into AMP, without significant ADP formation. Extracellular ATP hydrolysis is slower in impotent patients. Adenine nucleotides have dual roles on phenylephrine-contracted strips of corpora cavernosa operated by P2X-contractant and P2Y-relaxant receptors. Prolonged exposure to endogenous ATP related to decreased NTPDase1/CD39 activity leads to P2-purinoceptor desensitization in impotent men. Shutting down ATP signaling in vasculogenic impotent men may represent a defense mechanism for preventing purinergic overstimulation.  相似文献   

14.
15.
Degradation of extracellular ATP by the retinal pigment epithelium   总被引:6,自引:0,他引:6  
Stimulation of ATP or adenosine receptors causes important physiological changes in retinal pigment epithelial (RPE) cells that may influence their relationship to the adjacent photoreceptors. While RPE cells have been shown to release ATP, the regulation of extracellular ATP levels and the production of dephosphorylated purines is not clear. This study examined the degradation of ATP by RPE cells and the physiological effects of the adenosine diphosphate (ADP) that result. ATP was readily broken down by both cultured human ARPE-19 cells and the apical membrane of fresh bovine RPE cells. The compounds ARL67156and -mATP inhibited this degradation in both cell types. RT-PCR analysis of ARPE-19 cells found mRNA message for multiple extracellular degradative enzymes; ectonucleotide pyrophosphatase/phosphodiesterase eNPP1, eNPP2, and eNPP3; the ectoATPase ectonucleoside triphosphate diphosphohydrolase NTPDase2, NTPDase3, and some message for NTPDase1. Considerable levels of ADP bathed RPE cells, consistent with a role for NTPDase2. ADP and ATP increased levels of intracellular Ca2+. Both responses were inhibited by thapsigargin and P2Y1 receptor inhibitor MRS 2179. Message for both P2Y1 and P2Y12 receptors was detected in ARPE-19 cells. These results suggest that extracellular degradation of ATP in subretinal space can result in the production of ADP. This ADP can stimulate P2Y receptors and augment Ca2+ signaling in the RPE. ectoapyrase; PC-1; CD39; CD39L1; P2Y1; P2Y12; ADP; ATP release; photoreceptors; retinal detachment  相似文献   

16.
17.
Trypanosoma evansi is the aetiological agent of trypanosomosis in domestic animals. In this pathology, an inflammatory response can be observed and, as a consequence, the increase of extracellular adenine nucleotides such as ATP. These nucleotide concentrations are regulated by ectoenzymes such as NTPDase (EC 3.6.1.5, CD39), which catalyses the hydrolysis of ATP and ADP into AMP. In this study, the activity of NTPDase in lymphocytes of rats experimentally infected with T. evansi was evaluated. The animals were inoculated with the parasite and monitored by blood smear on a daily basis. The animals were then were divided into 4 groups according to the degree of parasitaemia and period of infection. The blood collections for enzyme analysis and lymphocyte count were performed on the 3rd (beginning of infection), 5th (acute infection) and 15th (chronic infection) days post-infection (p.i.). The control group was composed of non-infected animals. In the infected group a decrease in ATP hydrolysis (36%) was observed on the 3rd day p.i. and a decrease in ADP hydrolysis (62%) was observed on the 5th day p.i. when compared to the control. On the 15th day p.i., an increase in ATP (94%) and ADP (50%) hydrolysis was observed in the infected group. Considering these data it is suggested that NTPDase activity is altered on the surface of lymphocytes of rats infected with T. evansi at different time-points of infection.  相似文献   

18.
19.
20.
The activities of the enzymes NTPDase (EC 3.6.1.5, apyrase, CD39) and 5'-nucleotidase (EC 3.1.3.5, CD73) were analyzed in platelets from rats submitted to demyelination by ethidium bromide (EB) and treated with interferon beta (IFN-beta). The following groups were studied: I - control (saline), II - (saline and IFN-beta), III - (EB) and IV - (EB and IFN-beta). After 7, 15 and 30 days, the animals (n=7) were sacrificed and the platelets were separated by the method of Lunkes et al. [Lunkes, G., Lunkes D., Morsch, V., Mazzanti, C., Morsch, A., Miron, V., Schetinger, M.R.C., 2004. NTPDase and 5'-nucleotidase in rats alloxan- induced diabetes. Diabetes Research and Clinical Practice 65, 1-6]. NTPDase activity for ATP and ADP substrates was significantly lower in groups II and III after seven days, when compared to control (p<0.001). At fifteen days, ATP hydrolysis was significantly lower in group III and IV and higher in group II (p<0.001), while there was an activation of ADP hydrolysis in group II (p<0.001), when compared with the control. 5'-nucleotidase activity was significantly higher in group IV (p<0.001) after seven days, and lower in the groups III and IV (p<0.001) after fifteen days in relation to the control. No significant differences were observed in NTPDase and 5'-nucleotidase activities after thirty days. In conclusion, our study demonstrated that the hydrolysis of adenine nucleotides is modified in platelets of rats demyelinated and treated with IFN-beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号