首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome (APECED) is an autosomal recessive disease due to mutations of the autoimmune regulator (AIRE) gene. Typical manifestations include candidiasis, Addison's disease, and hypoparathyroidism. Type 1 diabetes, alopecia, vitiligo, ectodermal dystrophy, celiac disease and other intestinal dysfunctions, chronic atrophic gastritis, chronic active hepatitis, autoimmune thyroid disorders, pernicious anemia and premature ovarian failure are other rare associated diseases although other conditions have been associated with APECED.

Case presentation

What follows is the clinical, endocrinological and molecular data of a female APECED patient coming from Lithuania. The patient was affected by chronic mucocutaneous candidiasis, hypoparathyroidism and pre-clinical Addison's disease. Using direct sequencing of all the 14 exons of the AIRE gene in the patient's DNA, we identified in exon 6 the known mutation c.769 C>T (p.Arg257X) in compound heterozygosity with the newly discovered mutation c.1214delC (p.Pro405fs) in exon 10. The novel mutation results in a frameshift that is predicted to alter the sequence of the protein starting from amino acid 405 as well as to cause its premature truncation, therefore a non-functional Aire protein.

Conclusions

A novel mutation has been described in a patient with APECED with classical clinical components, found in compound heterozygosity with the c.769 C>T variation. Expanded epidemiological investigations based on AIRE gene sequencing are necessary to verify the relevancy of the novel mutation to APECED etiopathogenesis in the Lithuanian population and to prove its diagnostic efficacy in association with clinical and immunological findings.  相似文献   

2.
Sequencing of the STA gene in a patient with Emery-Dreifuss muscular dystrophy showed a 1-bp deletion of C at nucleotide 672 or 673. This deletion causes a frameshift, changing the amino acid sequence (amino acids 206–235) and generating an early stop codon. Received: 21 September 1995  相似文献   

3.
Fukuyama-type congenital muscular dystrophy (FCMD, MIM#253800) is an autosomal recessive disorder characterized by severe muscular dystrophy associated with brain malformations. FCMD is the second most common form of muscular dystrophy after Duchenne muscular dystrophy and one of the most common autosomal recessive diseases among the Japanese population, and yet few patients outside of Japan had been reported with this disorder. We report the first known Egyptian patient with FCMD, established by clinical features of generalized weakness, pseudohypertrophy of calf muscles, progressive joint contractures, severe scoliosis, elevated serum creatine kinase level, myopathic electrodiagnostic changes, brain MRI with cobblestone complex, and mutation in the fukutin gene. In addition, our patient displayed primary microcephaly, not previously reported associated with fukutin mutations. Our results expand the geographic and clinical spectrum of fukutin mutations.  相似文献   

4.
5.
OBJECTIVE: The clinical and molecular data of a patient with triple A syndrome are reported. PATIENT: A 21-year-old male who was diagnosed for adrenal insufficiency at the age of 2 years after a severe attack of adrenal crisis. At the age of 4 years, achalasia and alacrima were diagnosed. Puberty started at the age of 17 years. At the same time, symptoms of central, peripheral, and autonomic nervous system dysfunction were noted. Later on, at the age of 20 years, a bone age delay of 6 years and severe osteoporosis was diagnosed. RESULTS: A compound heterozygous AAAS mutation consisting of two mutations was found: a C > T transition in exon 7 resulting in a change of arginine at amino acid position 194 into a stop codon (Arg194X) at one allele, and a C > T transition in exon 12 resulting in a change of glutamine at amino acid position 387 into a stop codon (Gln387X) on the other allele. CONCLUSION: The mutation in exon 7 (p.R194X) of the AAAS gene is a novel mutation which has not been found in any other family so far, whereas the second was already found in some other families. This case adds to the clinical and molecular spectrum of triple A syndrome and may provide a new insight into the functions of AAAS gene.  相似文献   

6.
A patient with hematuria was shown to have thymine-uraciluria. The dihydropyrimidine dehydrogenase (DPD) activity in peripheral blood mononuclear cells was 0.16 nmol/mg/h; controls: 9.9 +/- 2.8 nmol/mg/h. Analysis of DPYD showed that the patient was compound heterozygous for the novel mutations 237C > A (C79X) in exon 4 and 704G > A (R235Q) in exon 7. The nonsense mutation (C79X) leads to premature termination of translation and thus to a non-functional protein. Analysis of the crystal structure of pig DPD suggested that the R235Q mutation might interfere with the binding of FAD and the electron flow between the NADPH and the pyrimidine substrate site of DPD.  相似文献   

7.
Pseudohypoparathyroidism type 1b (PHP1b) is characterized by hypocalcemia, hyperphosphatemia, increased levels of circulating parathyroid hormone (PTH), and no skeletal or developmental abnormalities. The goal of this study was to perform a full characterization of a familial case of PHP1b with neurological involvement and to identify the genetic cause of disease. The initial laboratory profile of the proband showed severe hypocalcemia, hyperphosphatemia and normal levels of PTH, which was considered to be compatible with primary hypoparathyroidism. With disease progression the patient developed cognitive disturbance, PTH levels were found to be slightly elevated and a picture of PTH resistance syndrome seemed more probable. The diagnosis of PHP1b was established after the study of family members and blunted urinary cAMP results were obtained in a PTH stimulation test. Integration of whole genome genotyping and exome sequencing data supported this diagnosis by revealing a novel homozygous missense mutation in PTH1R (p.Arg186His) completely segregating with the disease. Here, we demonstrate segregation of a novel mutation in PTH1R with a phenotype of PHP1b presenting with neurological symptoms, but no bone defects. This case represents the extreme end of the spectrum of cognitive impairment in PTH dysfunction and defines a possible novel form of PHP1b resulting from the impaired interaction between PTH and PTH1R.  相似文献   

8.
A consanguineous Israeli Bedouin kindred presented with an autosomal-recessive nonlethal phenotype of severe psychomotor retardation and extrapyramidal signs, dystonia, athetosis and ataxia, mild axial hypotonia, and marked global dementia with defects in verbal and expressive communication skills. Metabolic workup was normal except for mildly elevated blood lactate levels. Brain magnetic resonance imaging (MRI) showed increased density in the putamen, with decreased density and size of the caudate and lentiform nuclei. Reduced activity specifically of mitochondrial complex III and variable decrease in complex I activity were evident in muscle biopsies. Homozygosity of affected individuals to UQCRB and to BCSIL, previously associated with isolated complex III deficiency, was ruled out. Genome-wide linkage analysis identified a homozygosity locus of approximately 9 cM on chromosome 5q31 that was further narrowed down to 2.14 cM, harboring 30 genes (logarithm of the odds [LOD] score 8.82 at theta = 0). All 30 genes were sequenced, revealing a single missense (p.Ser45Phe) mutation in UQCRQ (encoding ubiquinol-cytochrome c reductase, complex III subunit VII, 9.5 kDa), one of the ten nuclear genes encoding proteins of mitochondrial complex III.  相似文献   

9.
Summary An X;9;22 translocation was detected in bone marrow cells of a female patient with blastic crisis of CML. A dynamic study following 5-BrdU treatment showed that the inactive late-replicating X chromosome was the normal one. This pattern of X-chromosome replication appears to be superimposable on the most usual model found in congenital X/autosome translocations.It is suggested that preferential autosome translocation onto the active X chromosome could be the general rule in acquired X/autosome translocations associated with long survival.  相似文献   

10.
A romatase excess syndrome (AEXS) is a rare autosomal dominant disorder characterized by prepubertal gynecomastia, it responds well to medical treatment. In the absence of prompt suspicion, it can expose the patient to the risk of unnecessary surgical intervention. Up to our best knowledge, the association between AEXS and neurofibromatosis type 1 (NF1) was not reported before. Here, we describe a AEXS presenting with prepubertal gynecomastia in an Egyptian child with NF1 that improved with aromatase inhibitors.  相似文献   

11.
12.
A balanced de novo (X;9) translocation was observed in a patient with progressive muscular dystrophy of Duchenne's type (DMD), Turner's syndrome, epilepsy and mental retardation. The involvement of the paternal X is suggested. The assignment of the gene locus for DMD is confirmed on Xp21.  相似文献   

13.
Search for mutations in a cystic fibrosis patient, compound heterozygous for 1717–1G→A and another uncharacterized molecular defect, revealed the presence of a de novo R1066H mutation on the affected chromosome of paternal origin. Three additional rare mutations (R1066C, R1066S and R1066L), occurring at the CpG dinucleotide at position 3328–3329 of the cystic fibrosis transmembrane conductance regulator gene, have so far been reported. The identification of a R1066H de novo mutation further suggests that this dinucleotide may constitute a mutational hotspot. Received: 10 November 1995 / Revised: 18 January 1996  相似文献   

14.
Previous family studies revealed a large number of calpain 3 ( CAPN3 ) mutations that cause recessive forms of limb girdle muscular dystrophy (LGMD2A) with selective atrophy of the proximal limb muscles. Correlations between the nature and site of a particular mutation and its corresponding phenotype, however, can only be established from homozygous mutations, which are particularly rare in the alternatively spliced NS, IS1 and IS2 regions of CAPN3. Here we identified a sibling pair with LGMD2A-type muscular dystrophy caused by a homozygous Ser606Leu (S606L) substitution in the IS2 linker domain. Normal protein levels, unaltered myofibrillar targeting and conserved calcium-induced autocatalytic activity of the mutated protein could be demonstrated in muscle biopsies from one patient. Despite this inconspicuous modification of the IS2 linker between domains III and IV, both patients developed signs and symptoms of the disease within their second decade of life. The unexpected severity of the clinical manifestation points to the high relevance of the calpain 3-specific IS2 segment between domains III and IV. We conclude that the structural motif around the Ser606 residue represents an important functional site that may regulate the transient activation and limited proteolysis of calpain 3.  相似文献   

15.
Whatever the initiating factor of osteoarthritis (OA), the process ultimately unmasks the immunogenic determinants of chondrocytes, proteoglycans and collagens, which then triggers autoimmune reactions. Although the precise mechanism of the immune responses in the pathogenesis of OA requires further investigation, here I postulate that the presence of autoimmunity to cartilage components has an important role in the process of cartilage degradation in OA. Current studies strongly suggest that a immunoregulatory therapeutic strategy should be established.  相似文献   

16.
Whatever the initiating factor of osteoarthritis (OA), the process ultimately unmasks the immunogenic determinants of chondrocytes, proteoglycans and collagens, which then triggers autoimmune reactions. Although the precise mechanism of the immune responses in the pathogenesis of OA requires further investigation, here I postulate that the presence of autoimmunity to cartilage components has an important role in the process of cartilage degradation in OA. Current studies strongly suggest that a immunoregulatory therapeutic strategy should be established.  相似文献   

17.
Summary An abnormally large X chromosome was found in a girl with Turner's syndrome, and was identified as a X/X translocation (karyotype 45,X/46,X,-X,+t(XqXp)).Aided by contract No. 20. 122 F.W.G.O., Belgium.  相似文献   

18.
Summary We have identified 7 patients with Becker muscular dystrophy (BMD) in whom analysis of dystrophin by immunoblotting shows a full-sized molecule produced at reduced abundance compared with controls. They have no detectable deletion in their dystrophin cDNA. One patient presented atypically with unusually severe cramps as his only symptom for 25 years. These patients were investigated using the polymerase chain reaction (PCR) with 3 sets of primers within the promoter region of the dystrophin gene, followed by dot blot and restriction analysis. In the patient with the atypical history, one of the expected fragments on PCR failed to amplify. A large deletion was excluded by the finding of normally sized fragments on amplification with the other primer sets. The mutation was localised to the 3 end of the forward primer binding site by dot blot and restriction analysis. This result supports the hypothesis that, in patients with a full-sized dystrophin molecule produced at reduced abundance, the phenotype may result from a mutation in the promoter region of the dystrophin gene. The atypical history of the patient in whom this was detected adds to the variety of phenotypes now known to exist as BMD.  相似文献   

19.
In the diagnostic work-up of a newborn infant with a metabolic crisis, lethal multiorgan failure on day six of life, and increased excretion of 3-methylglutaconic acid, we found using whole genome sequencing a homozygous SERAC1 mutation indicating MEGDHEL syndrome (3-methylglutaconic aciduria with deafness-dystonia, hepatopathy, encephalopathy, and Leigh-like syndrome). The SERAC1 protein is located at the contact site between mitochondria and the endoplasmic reticulum (ER) and is crucial for cholesterol trafficking. Our aim was to investigate the effect of the homozygous truncating mutation on mitochondrial structure and function. In the patient fibroblasts, no SERAC1 protein was detected, the mitochondrial network was severely fragmented, and the cristae morphology was altered. Filipin staining showed uneven localization of unesterified cholesterol. The calcium buffer function between cytoplasm and mitochondria was deficient. In liver mitochondria, complexes I, III, and IV were clearly decreased. In transfected COS-1 cells the mutant protein with the a 45-amino acid C-terminal truncation was distributed throughout the cell, whereas wild-type SERAC1 partially colocalized with the mitochondrial marker MT-CO1. The structural and functional mitochondrial abnormalities, caused by the loss of SERAC1, suggest that the crucial disease mechanism is disrupted interplay between the ER and mitochondria leading to decreased influx of calcium to mitochondria and secondary respiratory chain deficiency.  相似文献   

20.
Alport syndrome (AS) is an inherited disorder characterized by glomerular basement membrane (GBM) abnormality and development of chronic kidney disease at an early age. The cause of AS is a genetic mutation in type IV collagen, and more than 80% of patients have X-linked AS (XLAS) with mutation in COL4A5. Although the causal gene has been identified, mechanisms of progression have not been elucidated, and no effective treatment has been developed. In this study, we generated a Col4a5 mutant mouse harboring a nonsense mutation (R471X) obtained from a patient with XLAS using clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated system. Col4a5 mRNA and protein expressions were not observed in the kidneys of hemizygous R471X male mice. R471X mice showed proteinuria and hematuria. Pathology revealed progression of glomerulosclerosis and interstitial fibrosis by age. Electron microscopy identified irregular thickening in GBM accompanied by irregular lamination. These observations were consistent with the clinical and pathological features of patients with AS and other established models. In addition, our mice models develop end-stage renal disease at the median age of 28 weeks, much later compared to previous models much more consistent with clinical course of human XLAS. Our models have advantages for future experiments in regard with treatment for human XLAS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号