首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【背景】三倍体毛白杨非常适合黄河区域生态经济发展,是我国林业推广项目的重要树种。内生细菌在三倍体毛白杨不同组织中广泛存在,对三倍体毛白杨具有防病、促生、固氮和生物修复等生物学作用。【目的】通过分析三倍体毛白杨不同组织内生细菌多样性,可以充分挖掘其蕴含的丰富微生物资源。【方法】以北京林业大学山东冠县毛白杨基地的三倍体毛白杨为材料,应用16S rRNA基因高通量测序技术对其根、茎、叶中内生细菌多样性进行了分析,阐述三倍体毛白杨不同组织内生细菌多样性的变化趋势和规律,为其内生细菌的进一步应用奠定理论基础。【结果】三倍体毛白杨根部内生细菌群落丰富度及多样性最高,叶片中最低。高通量测序结果显示,在全部样本中,假单胞菌门和放线菌门为优势门,伯克氏菌属(Burkholderia)、假诺卡氏菌属(Pseudonocardia)和食酸菌属(Acidovorax)为优势属,不同组织的内生细菌群落结构组成差异显著;16S rRNA基因功能预测结果显示,三倍体毛白杨内生细菌的功能主要涉及氨基酸代谢、维生素代谢、芳香族化合物降解和糖酵解等。通过分离培养共获得217株内生细菌,分属于23个属44个种,其中有4株1...  相似文献   

2.
[目的]茶叶内生细菌、根际土壤细菌在普洱茶的发酵中起着重要的作用,还可以促进茶树生长,诱导茶树抗病性.研究其群落结构组成及相互关系可为微生物资源开发利用提供理论依据.[方法]本研究以普洱地区茶树叶片和根际土壤为材料,采用高通量测序技术,对茶叶及根际土壤细菌的16S核糖体RNA基因(16S rRNA)进行测序,比较分析茶...  相似文献   

3.
The main goal of the study was to determine the structure of endophytic bacteria inhabiting different parts (endosperm, germ, roots, coleoptiles, and leaves) of two wheat species, Triticum aestivum L. (cv. ‘Hondia’) and Triticum spelta L. (cv. ‘Rokosz’), in order to provide new knowledge about the stability and/or changeability of the core microbiome in different plant organs. The endophytic core microbiome is associated with plants throughout their whole life cycle; however, plant organs can determine the actual endophytic community. Therefore, next generation sequencing with MiSeq Illumina technology was applied to identify the endophytic microbiome of T. aestivum and T. spelta. Bioinformatic analyses were performed with the use of the DADA2(1.8) package and R software (3.5.1).It was demonstrated that wheat, which is an important crop plant, was associated with beneficial endophytic bacteria inside the endosperms, germs, roots, leaves, and coleoptiles. Importantly, for the first time, biodiversity was recognized in the coleoptiles of the investigated wheat species. Flavobacterium, Pseudomonas and Janthinobacterium were shown to be common genera for both tested wheat cultivars. Among them, Pseudomonas was found to be the only endophytic genus accompanying both wheat species from the endosperm stage to the development of the leaf. Paenibacillus was recognized as a core genus for the ‘Hondia’ cv., whereas Pedobacter and Duganella constituted the core microbiome in the ‘Rokosz’ cv. In addition, the first insight into the unique and yet unrecognized endophytic microbiome of T. spelta is presented.  相似文献   

4.
Little is known about the bacterial communities associated with the rose plants inhabiting dry desert ecosystems. The aim of this study was to isolate and characterize endophytic bacteria from different organs of rose plant. Endophytic bacteria were observed in healthy roots, stems, leaves, and flowers of rose plant, with a significantly higher density in roots, followed by stems, leaves, and petals. A total of 38 bacterial endophytes were isolated and are closely related phylogenetically to Acetobacter, Acinetobacter, Methylococcus, Bacillus, Micrococcus, Planococcus by 16S rRNA sequence analysis. Six endophytic bacteria were found to produce IAA, solubilize Ca3(PO4)2 and produce siderophore. The six endophytic bacteria all had the capacity to produce hydrolytic enzyme such as cellulase, xylanase, pectinase, amylase, protease, lipase, and chitinase, but difference existed among these isolates.  相似文献   

5.
Bacteria were isolated from the rhizosphere and from inside the roots and stems of sugarcane plants grown in the field in Brazil. Endophytic bacteria were found in both the roots and the stems of sugarcane plants, with a significantly higher density in the roots. Many of the cultivated endophytic bacteria were shown to produce the plant growth hormone indoleacetic acid, and this trait was more frequently found among bacteria from the stem. 16S rRNA gene sequence analysis revealed that the selected isolates of the endophytic bacterial community of sugarcane belong to the genera of Burkholderia, Pantoea, Pseudomonas, and Microbacterium. Bacterial isolates belonging to the genus Burkholderia were the most predominant among the endophytic bacteria. Many of the Burkholderia isolates produced the antifungal metabolite pyrrolnitrin, and all were able to grow at 37°C. Phylogenetic analyses of the 16S rRNA gene and recA gene sequences indicated that the endophytic Burkholderia isolates from sugarcane are closely related to clinical isolates of the Burkholderia cepacia complex and clustered with B. cenocepacia (gv. III) isolates from cystic fibrosis patients. These results suggest that isolates of the B. cepacia complex are an integral part of the endophytic bacterial community of sugarcane in Brazil and reinforce the hypothesis that plant-associated environments may act as a niche for putative opportunistic human pathogenic bacteria.  相似文献   

6.
Azospirillum species are free-living nitrogen-fixing bacteria commonly found in soil and in association with roots of different plant species. For their capacity to stimulate growth they are known as plant growth-promoting bacteria (PGPB). In this work, we demonstrate the natural occurrence and colonization of different parts of strawberry plants by Azospirillum brasilense in the cropping area of Tucumán, Argentina. Although bacteria isolations were carried out from two strawberry cultivars, e.g., Camarosa and Pájaro, attempts were successful only with the cultivar Camarosa. Whereas different strains of Azospirillum were isolated from the root surface and inner tissues of roots and stolons of the cultivar Camarosa, we have not obtained Azospirillum isolates from the cultivar Pájaro. After microbiological and molecular characterization (ARDRA) we determined that the isolates belonged to the species A. brasilense. All isolates showed to have the capacity to fix nitrogen, to produce siderophores and indoles. Local isolates exhibited different yields of indoles production when growing in N-free NFb semisolid media supplemented or not with tryptophan (0.1 mg ml−1). This is the first report on the natural occurrence of A. brasilense in strawberry plants, especially colonizing inner tissues of stolons, as well as roots. The local isolates showed three important characteristics within the PGPB group: N2-fixation, siderophores, and indoles production.  相似文献   

7.
邹淑华  邓平香  龙新宪 《微生物学报》2019,59(12):2306-2322
重金属胁迫对植物内生细菌群落结构的影响在很大程度上是未知的,目前也很少有研究超积累植物内生细菌的群落结构与多样性对根际土壤中重金属的响应。【目的】探索在不同镉污染水平下,超积累(HE)和非超积累生态型(NHE)东南景天的根系、茎和叶片中内生细菌的群落结构与多样性的变化及其差异性,试图从植物-内生菌之间的相互关系的角度补充解释2种生态型东南景天对有效态镉忍耐和积累能力的差异。【方法】采用Illumina新一代测序方法分析了在不同Cd~(2+)浓度土壤上生长的2种生态型东南景天根、茎和叶中的内生细菌群落结构。【结果】高浓度Cd~(2+)抑制NHE东南景天的生长,内生细菌的丰富度和多样性也降低;然而,高浓度Cd~(2+)促进HE东南景天的生长,茎和根系内生细菌的丰富度增加。在3种土壤上,2种生态型东南景天叶片、茎和根系内生细菌均以变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)和放线菌门(Actinobacteria)占优势。随着土壤中Cd~(2+)浓度的增加,HE东南景天叶片中Gammaproteobacteria纲、Negativicutes纲和Clostridia纲的相对丰度显著增加,茎中Alphaproteobacteria纲的相对丰度显著增加,Clostridia纲的相对丰度显著减少;NHE东南景天叶片中Alphaproteobacteria纲、Gammaproteobacteria纲和Clostridia纲的相对丰度没有显著变化,茎中Negativicutes纲的相对丰度显著减少,根系中Betaproteobacteria纲和Clostridia纲的相对丰度显著减少,Negativicutes纲却显著增加。在高Cd~(2+)污染土壤(50mg/kg)上,HE东南景天叶片中Sphingomonas属和茎中Veillonella属的相对丰度均大于NHE,且HE东南景天根系内生细菌的第一、第二、第三优势菌Veillonella、Sphingomonas、Prevotella属细菌均没有出现在NHE东南景天根系。【结论】土壤Cd~(2+)污染水平对2种生态型东南景天叶、茎、根中的内生菌群落结构有显著影响。  相似文献   

8.
The plant growth promoting bacteria Herbaspirillum seropedicae SmR1 is an endophytic diazotroph found in several economically important crops. Considering that methods to monitor the plant–bacteria interaction are required, our objective was to develop a real-time PCR method for quantification of PGPB H. seropedicae in the rhizosphere of maize seedlings. Primer pairs were designed, and their specificity was verified using DNA from 12 different bacterial species. Ten standard curves of qPCR assay using HERBAS1 primers and tenfold serial dilutions of H. seropedicae SmR1 DNA were performed, and PCR efficiency of 91 % and correlation coefficient of 0.99 were obtained. H. seropedicae SmR1 limit of detection was 101 copies (corresponding to 60.3 fg of bacterial DNA). qPCR assay using HERBAS1 was used to detect and quantify H. seropedicae strain SmR1 in inoculated maize roots, cultivated in vitro and in pots, harvested 1, 4, 7, and 10 days after inoculation. The estimated bacterial DNA copy number per gram of root was in the range 107–109 for plants grown in vitro and it was around 106 for plants grown in pots. Primer pair HERBAS1 was able to quantify H. seropedicae SmR1, and this assay can be useful for monitoring plant–bacteria interaction.  相似文献   

9.
白及内生真菌多样性研究   总被引:1,自引:0,他引:1  
白及( Bletilla striata)是兰科地生型多年生植物,也是我国传统中药材之一。利用菌根技术进行白及的保护和人工栽培,需要获得白及可培养的内生真菌。该研究以广西野生的白及根和叶为材料,采用分离培养法分离内生真菌,并结合真菌形态特征,及其核糖体的转录间隔区( ITS)序列分析,确定内生真菌的分类地位。结果表明:从2株白及植物90块组织中分离获得37株内生真菌,鉴定为15个分类单元,由9个属组成,分属于2门4纲7目8科,包括锤舌菌纲( Leotiomycetes)、座囊菌纲( Dothideomycetes)和粪壳菌纲( Sordariomy-cetes),伞菌纲( Agaricomycetes)。从根中分离获得内生真菌12种,蜡壳菌属为优势属;从叶中分离获得内生真菌3种,刺盘孢属为优势属;刺盘孢菌属( Colletotrichum)和蜡壳菌属( Sebacina)真菌的相对多度值均达到20%;4株担子菌均分布于根中,叶组织中未有分布。根组织中内生真菌的多样性指数(H=1.863)高于叶组织(1.098)。该研究结果及其所分离培养的担子菌类真菌,为更好地利用菌根技术进行白及等兰科植物资源的保护与可持续利用奠定了基础。  相似文献   

10.
药用植物青蒿不同种类的内生菌抑菌活性分析   总被引:1,自引:0,他引:1  
李玲玲 《广西植物》2021,41(7):1112-1119
为了研究青蒿不同种类的内生菌抑制细菌和抑制真菌的活性,该研究采用组织块法和研磨法从青蒿的根、茎、叶中分离内生细菌、放线菌和真菌,以大肠埃希菌(Escherichia coli)(CICC 23657)、枯草芽孢杆菌(Bacillus subtilis)(CICC 10275)、金黄色葡萄球菌(Staphylococcu...  相似文献   

11.
Two field experiments were carried out at the UAPNPBS experimental station, Seropédica, with two sorghum and one rice cultivars. The establishment, and inoculation effects, ofAzospirillum spp. andHerbaspirillum strains marked with antibiotic resistance were investigated. One grain sorghum (BR 300) and one sugar sorghum (Br 505) cultivar were used.Azospirillum lipoferum strain S82 (isolated from surface sterilized roots of sorghum) established in both cultivars and comprised 40 to 80% of theAzospirillum spp. population in roots and stems 60 days after plant emergence (DAE).Azospirillum amazonense strain AmS91 (isolated from surface-sterilized roots of sorghum) reached only 50%. At 90 DAE, S82 almost disappeared (less than 30% of establishment) while the establishment of AmS91 remained constant in roots and stems. No establishment ofH. seropedicae strain H25 (isolated from surface-sterilized roots of sorghum) orA. lipoferum strain S65 (isolated from the root surface of sorghum) could be observed on inoculated roots. Inoculation with S82, AmS91 or S65 but not withH. seropedicae H25, increased plant dry weight of both cultivars and total N in grain of the grain sorghum. In rice,A. lipoferum Al 121 andA. brasilense Sp 245 (isolated from surface sterilized rice and wheat roots respectively) established in the roots but there was no increase inAzospirillum spp. numbers due to inoculation. None of the strains affected plant growth or rice grain yield.Azospirillum amazonense, A82 andH. seropedicae Z95, which did not establish in roots, significantly enhanced seed germination.  相似文献   

12.
Herbaspirillum seropedicae is a plant growth-promoting diazotrophic betaproteobacterium which associates with important crops, such as maize, wheat, rice and sugar-cane. We have previously reported that intact lipopolysaccharide (LPS) is required for H. seropedicae attachment and endophytic colonization of maize roots. In this study, we present evidence that the LPS biosynthesis gene waaL (codes for the O-antigen ligase) is induced during rhizosphere colonization by H. seropedicae. Furthermore a waaL mutant strain lacking the O-antigen portion of the LPS is severely impaired in colonization. Since N-acetyl glucosamine inhibits H. seropedicae attachment to maize roots, lectin-like proteins from maize roots (MRLs) were isolated and mass spectrometry (MS) analysis showed that MRL-1 and MRL-2 correspond to maize proteins with a jacalin-like lectin domain, while MRL-3 contains a B-chain lectin domain. These proteins showed agglutination activity against wild type H. seropedicae, but failed to agglutinate the waaL mutant strain. The agglutination reaction was severely diminished in the presence of N-acetyl glucosamine. Moreover addition of the MRL proteins as competitors in H. seropedicae attachment assays decreased 80-fold the adhesion of the wild type to maize roots. The results suggest that N-acetyl glucosamine residues of the LPS O-antigen bind to maize root lectins, an essential step for efficient bacterial attachment and colonization.  相似文献   

13.
The presence of latent bacteria is a serious problem in plant tissue cultures. While endophytes are generally beneficial to plants in situ, they may affect culture growth under the modified conditions in vitro. The present study was undertaken to identify and characterize endophytic bacteria associated with the medicinal plant Echinacea in tissue culture. Based on classical microbiological tests and 16S rRNA analyses, it was found that endophytic bacteria associated with aseptically micropropagated Echinacea plantlets are representatives of several genera, Acinetobacter, Bacillus, Pseudomonas, Wautersia (Ralstonia) and Stenotrophomonas. Based on TLC and HPLC analyses, we found that Pseudomonas stutzeri P3 strain produces plant hormone, auxin (indole-3-acetic acid, IAA). Antibiotic resistance was also assessed as a virulence factor. The majority of endophytic bacteria were resistant to the antibiotic kanamycin, but susceptible to chloramphenicol. Recommendations for propagating Echinacea in vitro cultures involve the addition of chloramphenicol, tetracycline, and ampicillin, antibiotics that cause no side effects on these plant species.  相似文献   

14.
The aim of this study was to isolate and characterize endophytic bacteria from roots, stems and leaves of Zn/Cd hyperaccumulator Sedum alfredii. Endophytic bacteria were observed in roots, stems and leave of S. alfredii, with a significantly higher density in roots, followed by leave and stems. A total of fourteen bacterial endophytes were isolated and are closely related phylogenetically to Pseudomonas, Bacillus, Stenotrophomonas, Acinetobacte by 16S rRNA sequence analysis. Most of the endophytic bacteria were found to exhibit high Zn and Cd resistance characteristics, but difference existed among this isolates. The fourteen endophytic bacteria all had the capacity to produce IAA. Moreover, strains VI8L1, VI8L2, VI8L4, VI8R2, VI8R3 and II2R3 could solubilize Ca3(PO4)2, strains VI8L2, II8L4 and VI8R2 could produce siderophore, and strains VI8L2 and VI8R3 had the capacity of nitrogen fixation. Both plate and broth assay proved that strain VI8L1, VI8L2, II8L4 and VI8R2 were able to effectively solubilize ZnCO3 and Zn3(PO4)2. The filtrate liquid media after growth of strains VI8L1, VI8L2, II8L4 and VI8R2 extracted much higher Zn from artificially ZnCO3 and Zn3(PO4)2 contaminated soils than those extracted by axenic SMS broth, and the filtrates of the culture media supporting growth of strains VI8L2, II8L4 and VI8R2 also extracted significantly greater quantities of Zn from the Dabaoshan contaminated soils. This Zn mobilizing, plant growth promoting and metal resistant endophytic bacteria may offer promise as inoculants to increase soil Zn bioavailability and improve growth and Zn accumulation by S. alfredii.  相似文献   

15.
【背景】植物内生菌长期与宿主共生,对宿主生长发育产生影响。葛根作为重要的药食两用作物,葛根内生菌的研究具有重要实践意义。【目的】对广西葛根根部内生细菌进行分离、鉴定及促植物生长特性分析,旨在了解该药食同源植物内生细菌种群结构及其促生特性,为分析内生菌群体在药食同源植物产量和品质形成的作用及其内生细菌资源的开发利用提供参考。【方法】采用6种不同的培养基从广西葛根的根瘤、根系和根愈伤组织分离内生细菌,16S rRNA基因测序和系统发育分析内生细菌的分布特征和遗传多样性,采用生理生化方法测定分离菌株的固氮活性、溶磷特性、产生嗜铁素、分泌吲哚乙酸(indole-3-aceticacid,IAA)等促生特性。【结果】从葛根根瘤、根系和根部愈伤组织中共分离得到223个菌株,16S rRNA基因测序鉴定这些菌株隶属于2门4纲10科19属,其中芽孢杆菌属、假单胞菌属、土壤杆菌属、肠杆菌属为葛根优势菌群;内生细菌数量和群落组成存在明显的组织特异性,其数量表现为根瘤>根系>根愈伤组织,但其种群多样性表现为根愈伤组织>根系>根瘤。不同培养基分离出的细菌种群丰富度有差异。从供试菌株中筛...  相似文献   

16.
Bacteria causing mottled stripe disease in sugar cane, known asPseudomonas rubrisubalbicans, were shown to be able to fix molecular N2 and to grow on it. The root associated diazotroph known asHerbaspirillum seropedicae, after artificial inoculation caused mottled stripe disease symptoms on sorghum and Napier grass but not on sugar cane. Both bacteria could be reisolated from leaves even 60 days after. Sugar cane leaves contained large numbers of these bacteria even in the uninoculated controls. Additional physiological characteristics of six strains ofP. rubrisubalbicans were compared with those of twoH. seropedicae strains and were shown to be very similar.  相似文献   

17.
Presence of endophytic diazotrophs in sugarcane juice   总被引:1,自引:0,他引:1  
Summary In this work we investigated the diazotrophs present in the juice of different varieties of sugarcane. Samples of the aerial part of sugarcane, between 3 and 5 months old, were assessed for the presence of diazotrophs. The isolated nitrogen-fixing microorganisms were identified as Gluconacetobacter diazotrophicus, Herbaspirillum seropedicae and Azospirillum brasilense. These microorganisms use organic acids found in the sugarcane juice as an energy source. They also use sugars, such as free glucose, that are present in all the organs of the aerial part. The distribution of endophytic microorganisms in sugarcane depends on the different organic acid and sugar concentrations present during development and growth. We concluded that in more mature regions of the sugarcane stem Gluconacetobacter diazotrophicus grows more abundantly than Herbaspirillum seropedicae or Azospirillum brasilense.  相似文献   

18.
In this study, 41 culturable endophytic bacteria were isolated from the roots and shoots of three wetland plants, Typha domingensis, Pistia stratiotes and Eichhornia crassipes, and identified by 16S rRNA gene sequencing. Textile effluent-degrading and plant growth-promoting activities of these endophytes were determined. The analysis of endophytic bacterial communities indicated that plant species had a pronounced effect on endophytic bacterial association and maximum endophytes (56.5%) were associated with T. domingensis. These endophytic bacteria mainly belonged to different species of the genera Bacillus (39%), Microbacterium (12%) and Halomonas (12%). Eight of the 41 strains showing maximum efficiency of textile effluent degradation also exhibited plant growth-promoting activities such as production of indole-3-acetic acid and siderophore, presence of 1-amino-cyclopropane-1-carboxylic acid deaminase, and solubilization of inorganic phosphorous. This is the first study describing the diversity and plant-beneficial characteristics of the textile effluent-degrading endophytic bacteria associated with wetland plants. T. domingensis showed better growth in textile effluent and also hosted maximum number of endophytic bacteria in roots and shoots. The interactions between T. domingensis and its associated endophytic bacteria could be exploited to enhance the efficiency of constructed wetlands during the remediation of industrial effluent.  相似文献   

19.
High densities of endophytic bacteria were found in plant material from poplar, larch and spruce that had been micropropagated for at least 5 years. The majority of these bacteria were assigned to the genus Paenibacillus based on the sequencing of the 16S rRNA genes. Other endophytic bacteria such as Methylobacterium, Stenotrophomonas or Bacillus could also be found but only in some tissue cultures. Certain species or strains of Paenibacillus, especially those with a close relationship to P. humicus, seemed to accumulate under in vitro conditions without visible negative influences on the plant’s development. Poplar microcuttings inoculated with the endophytic Paenibacillus isolate 22 showed significantly more roots per cutting and higher root length in comparison to the control plants after 3 weeks.  相似文献   

20.
Fifteen-day-old variety NA 56-79 sugar cane seedlings were inoculated with Azospirillum brasilense and Glomus intrarradix. This article aims at examining changes in sugar cane root seedlings inoculated with Glomus intrarradix and Azospirillum brasilense, the increase in microbial biomass and the acetylene reduction process as well. The internal root colonization was studied 20 days after inoculation using scanning and a transmission electron microscope. Both microorganisms entered the sugar cane root through the emergent lateral roots. The microorganisms were capable of coexisting both intra and intercellularly, producing changes in the cell wall, thus allowing colonization and interaction between the organisms. These changes increased the number of microorganisms inside the root as well as acetylene nitrogen reduction. Sugar cane plant biomass increased with joint-inoculation. The number of endophytic microorganisms and nitrogen fixing activity increased when they were colonized by Azospirillum and Glomus together.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号