首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The advantages of open-pollinated (OP) family testing over controlled crossing (i.e., structured pedigree) are the potential to screen and rank a large number of parents and offspring with minimal cost and efforts; however, the method produces inflated genetic parameters as the actual sibling relatedness within OP families rarely meets the half-sib relatedness assumption. Here, we demonstrate the unsurpassed utility of OP testing after shifting the analytical mode from pedigree- (ABLUP) to genomic-based (GBLUP) relationship using phenotypic tree height (HT) and wood density (WD) and genotypic (30k SNPs) data for 1126 38-year-old Interior spruce (Picea glauca (Moench) Voss x P. engelmannii Parry ex Engelm.) trees, representing 25 OP families, growing on three sites in Interior British Columbia, Canada. The use of the genomic realized relationship permitted genetic variance decomposition to additive, dominance, and epistatic genetic variances, and their interactions with the environment, producing more accurate narrow-sense heritability and breeding value estimates as compared to the pedigree-based counterpart. The impact of retaining (random folding) vs. removing (family folding) genetic similarity between the training and validation populations on the predictive accuracy of genomic selection was illustrated and highlighted the former caveats and latter advantages. Moreover, GBLUP models allowed breeding value prediction for individuals from families that were not included in the developed models, which was not possible with the ABLUP. Response to selection differences between the ABLUP and GBLUP models indicated the presence of systematic genetic gain overestimation of 35 and 63% for HT and WD, respectively, mainly caused by the inflated estimates of additive genetic variance and individuals’ breeding values given by the ABLUP models. Extending the OP genomic-based models from single to multisite made the analysis applicable to existing OP testing programs.  相似文献   

2.
为选择适宜培育大径材的优良家系,以广东杉木(Cunninghamia lanceolata)第二代种子园半同胞子代(28个半同胞家系)和2个对照(第一代、第一代改良种子园混合种)为对象,对林龄4、9、11、16和21 a的杉木胸径进行持续测定。结果表明,相同林龄家系间的胸径差异极显著(P0.01),表型变异系数和遗传变异系数分别为4.43%~6.29%和2.95%~3.62%。家系胸径的遗传力较高(0.335 9~0.548 6),且随年龄的增长呈增大趋势,至林龄16 a时达到0.548 6,随后趋缓。林龄9 a的胸径与早期(4 a)、晚期(11、16和21 a)的胸径遗传相关性最为密切。基于多年度育种值和林龄21 a时家系各径级立木占比统计,共选择出F5、F9、F21等3个适于培育大径材的优良家系。  相似文献   

3.
Genetic gain and diversity of seed orchards’ crops are determined by the number of parents, their breeding values and relatedness, within-orchard pollination efficiency, and level of pollen contamination. These parameters can be manipulated at establishment by varying clonal representation (e.g., linear deployment), during orchard development by genetic thinning, or by selective harvesting. Since clonal fecundities are known to vary both within and among years, then each seed crop has a unique genetic composition and, therefore, crops should be treated on a yearly basis. Here we present an optimization protocol that maximizes crop’s genetic gain at any desired genetic diversity through the selection of a subset of the crop that meets both parameters. The genetic gain is maximized within the biological limit set by each clone’s seed-cone production and effective population size is used as a proxy to genetic diversity whereby any relationship among clones is considered. The optimization was illustrated using 3 years’ reproductive output data from a first-generation western larch seed orchard and was tested under various scenarios including actual male and female reproductive output and male reproductive output assumed to be either equal to that of female or a function of clonal representation. Furthermore, various levels of co-ancestry were assigned to the orchard’s clones in supplementary simulations. Following the optimization, all solutions were effective in creating custom seedlots with different gain and diversity levels and provided the means to estimate the genetic properties of composite seedlots encompassing the remaining “unused” seed from a number of years.  相似文献   

4.
Switchgrass (Panicum virgatum L.) is a candidate for cellulosic bioenergy feedstock development. Because biomass yield is the most important biological factor limiting the commercial development and deployment of switchgrass as a cellulosic bioenergy feedstock efforts must be undertaken to develop improved cultivars. The objectives of this study were (1) to conduct two cycles of within-family selection for increased biomass yield in WS4U switchgrass and (2) to simultaneously evaluate progress from selection relative to the mean of the original WS4U population. Each of the 150 WS4U families was subjected to phenotypic selection for vigor, seed production, and disease resistance. The mean of all families increased relative to the original WS4U population by 0.36 Mg ha?1 cycle?1 for biomass yield and 3.0% cycle?1 for ground cover. Gains were uniform across two diverse evaluation locations, indicating that selection gains were robust relative to some variation in Hardiness Zone and soil type. Two cycles of within-family selection led to a homogenization of the diverse families, creating novel recombinations and reducing the family genetic variance to near zero. It is hypothesized that selection and recombination has led to replication of favorable alleles across pedigrees with differing genetic backgrounds, increasing the likelihood of including these favorable alleles in the progeny of future selections. The rate of genetic progress is expected to increase in future cycles of selection with a combination of within-family phenotypic selection and half-sib progeny testing of selected families.  相似文献   

5.
Genetic variances and selection efficiencies for growth traits of white spruce (Picea glauca (Moench) Voss) were estimated from clonally replicated full-sib progeny tests established both in nursery and field environments in New Brunswick, Canada. The available data included heights at 4, 5, and 6 years in the nursery test; height at 9 years, height, DBH, and volume at 14 years in the field test. Estimated variance components were interpreted according to an additive-dominance-epistasis model. For heights in the nursery test, while both non-additive and additive variances were important sources of genetic variation, the former decreased but the latter increased with age; among the non-additive genetic variance, the epistatic variance was much more important than the dominance variance. Different from the nursery traits, for traits in the field test, additive variance accounted for an average of 81% of the total genetic variance, whereas dominance variance explained most of the remaining genetic variance. Genetic parameters and selection efficiencies for three vegetative deployment strategies: deploying half-sib families (VD_FAMHS), full-sib families (VD_FAMFS), and multi-varietal forestry (MVF), were compared. Heritability estimates were moderate for VD_FAMHS and VD_FAMFS (0.61–0.72), high for MVF (>0.82) for the nursery heights, and high (>0.79) for the field traits for all strategies. Genetic correlations of volume at age 14 in the field test, the target trait for improvement, were strong (>0.85) with other field traits. Genetic correlations of VOL14 with the nursery heights were also strong (>0.71) at the half-sib and full-sib family levels, but were only moderate (>0.59) for MVF. Overall, practicing MVF is the most effective deployment strategy, yielding the highest genetic gains, followed by VD_FAMFS and VD_FAMHS, regardless of traits and selection methods. Furthermore, early selections for HT9 or for HT4–HT6 were very encouraging, resulting in higher gain in volume at age 14 on a per year basis.  相似文献   

6.
Concerns over the reductionist nature of the domestication of forest-tree species focus on the possibility of potential genetic erosion during this process. To address these concerns, genetic diversity assessments in a breeding zone the Province of British Columbia “interior” spruce (Picea glauca×engelmanni) program was conducted using allozyme markers. Genetic-variation comparisons were made between natural and production (seed orchard) populations as well as seed and seedling crops produced from the same breeding zone’s seed orchard. The natural population sample consisted of a total of 360 trees representing three stands within each of three watersheds present in the Shuswap-Adams low-elevation zone of interior British Columbia. Small amounts of genetic differentiation were observed among the nine natural populations (4%) and this was attributable to extensive gene flow Consequently, the sum of these nine populations was considered as a baseline for the genetic variation present in the breeding zone. The comparisons between the seed orchard and the breeding zone produced a similar percentage of polymorphic loci while the expected hetrozygosity (0.207 vs 0.210) and the average number of alleles per locus (2.7 vs 2.4) were slightly lower in the seed orchard. A total of seven natural populations’ rare alleles were not present in the orchard population, while one allele was unique to the orchard. The %P increased to 70.6% in the seedlot, but dropped to the natural populations level (64.7%) in the plantation. The observed increase in %P was a result of pollen contamination in the orchard. It is suspected that the reduction in the plantation was caused by an unintentional selection in the nursery. Simulated roguing in the orchard did not drastically reduce even if up to 50% of the orchard’s clones were rogued. However, roguing was associated with a reduction in the average number of alleles per locus (i.e., sampling effect). Received: 2 January 1996 / Accepted: 24 May 1996  相似文献   

7.
Recurrent selection is a cyclic breeding procedure designed to improve the mean of a population for the trait(s) under selection. Starting from an F2 population of European flint maize (Zea mays L.) intermated for three generations, we conducted seven cycles of a modified recurrent full-sib (FS) selection scheme. The objectives of our study were to (1) monitor trends across selection cycles in the estimates of the population mean, additive and dominance variances, (2) compare predicted and realized selection responses, and (3) investigate the usefulness of best linear unbiased prediction (BLUP) of progeny performance under the recurrent FS selection scheme applied. Recurrent FS selection was conducted at three locations using a selection rate of 25% for a selection index, based on grain yield and grain moisture. Recombination was performed according to a pseudo-factorial mating scheme, where the selected FS families were divided into an upper-ranking group of parents mated to the lower-ranking group. Variance components were estimated with restricted maximum likelihood. Average grain yield increased 9.1% per cycle, average grain moisture decreased 1.1% per cycle, and the selection index increased 11.2% per cycle. For the three traits we observed, no significant changes in additive and dominance variances occurred, suggesting future selection response at or near current rates of progress. Predictions of FS family performance in Cn+1 based on mean performance of parental FS families in Cn were of equal or higher precision as those based on the mean additive genetic BLUP of their parents, and corresponding correlations were of moderate size only for grain moisture. The significant increase in grain yield combined with the decrease in grain moisture suggest that the F2 source population with use of a pseudo-factorial mating scheme is an appealing alternative to other types of source materials and random mating schemes commonly used in recurrent selection.  相似文献   

8.
研究以经过连续7代人工选育壳白长牡蛎品系为素材, 通过巢式设计, 成功构建了12个半同胞家系和29个全同胞家系, 同时以未经选育的个体子代为对照组, 评估了各家系和对照组幼体在不同日龄下的生长和存活差异。结果显示, 不同日龄, 壳白长牡蛎家系幼体生长和存活率均高于对照组, 壳高和存活率分别提高3.65%—14.58%和1.11%—19.26%; 生长和存活性状在不同壳白家系间差异显著(P<0.05), 其中G11、G15和G35家系在生长和存活率方面均有较大优势, 在19日龄, 与壳白家系平均值相比, 其壳高的累积生长量分别增加11.87%、17.03%和30.32%, 存活率分别提高38.35%、33.41%和51.07%; 与对照组相比, 其壳高的累积生长量分别增加34.09%、28.18%和49.31%, 存活率分别提高65.00%、59.11%和80.18%。同时对壳白长牡蛎幼体壳高和壳长的遗传参数进行了评估。壳白长牡蛎幼体壳高和壳长的遗传力变化范围分别为0.28—0.81、0.42—0.88, 均属于中高遗传力; 壳白长牡蛎幼体不同日龄壳高和壳长的遗传相关和表型相关均为正相关, 相关系数的范围分别为0.35—0.81、0.57—0.85。研究为培育生长性能优良和存活率高的壳白长牡蛎品系提供了基础资料。  相似文献   

9.
Development of switchgrass (Panicum virgatum L.) as a dedicated biomass crop for conversion to energy requires substantial increases in biomass yield. Most efforts to breed for increased biomass yield are based on some form of indirect selection. The objective of this paper is to evaluate and compare the expected efficiency of several indirect measures of breeding value for improving sward-plot biomass yield of switchgrass. Sward-plot biomass yield, row-plot biomass, and spaced-plant biomass were measured on 144 half-sib families or their maternal parents from the WS4U-C2 breeding population of upland switchgrass. Heading date was also scored on row plots and anthesis date was scored on spaced plants. Use of any of these indirect selection criteria was expected to be less efficient than direct selection for biomass yield measured on sward plots, when expressed as genetic gain per year. Combining any of these indirect selection criteria with half-sib family selection for biomass yield resulted in increases in efficiency of 14 to 36%, but this could only be achieved at a very large cost of measuring phenotype on literally thousands of plants that would eventually have no chance of being selected because they were derived from inferior families. Genomic prediction methods offered the best solution to increase breeding efficiency by reducing average cycle time, increasing selection intensity, and placing selection pressure on all additive genetic variance within the population. Use of genomic selection methods is expected to double or triple genetic gains over field-based half-sib family selection.  相似文献   

10.
Bulk seedlots of two unpedigreed multiprovenance seed production areas (SPAs) each of Eucalyptus camaldulensis and Eucalyptus tereticornis and one pedigreed seedling seed orchard (SSO) of E. tereticornis were planted in genetic gain trials at three southern Indian trial sites. At the time of seed collection, fewer than 30% trees flowered in these orchards, except in one E. camaldulensis SPA where 73% of the trees flowered, which had an estimated outcrossing rate of 86%. The E. tereticornis SSO was dominated by pollen from five highly fecund families of the Indian Mysore gum land race, which contributed 59% of the fruits produced. The SPA and SSO seedlots were compared with a bulked natural-provenance seedlot of E. camaldulensis (Morehead, Laura, and Kennedy Rivers, Queensland), another natural-provenance seedlot (Petford, Queensland), commercial eucalypt clones at two sites, and a Mysore gum seedlot at one site. At 3 years, progeny from all the four SPAs displayed good survival (79–93%) and performance similar to that of the natural provenances and the commercial clones. Progeny from the E. tereticornis SSO had significantly lower growth (at two sites) and lower survival at all three test sites. The Mysore gum seedlot displayed high fecundity and lower growth but better survival than the SSO progeny. Seed orchard genetic composition and flowering contributions thus affected progeny performance and the extent to which orchard genetic diversity was captured in the progeny. SPA progeny displayed greater fecundity than the natural provenances, indicating a response to selection for fertility.  相似文献   

11.
Water-use efficiency is thought to be related to plant performance and natural selection for plants in arid habitats, based on a general expectation that increased water-use efficiency is associated with decreased carbon gain and biomass accumulation. Using leaf carbon isotope discrimination Δ to determine integrated water-use efficiency, we estimated genetic variance for, and examined the relationships among Δ, biomass, and gas exchange characters for full-sibling families of the woody shrub, Chrysothamnus nauseosus, grown from seed collected at Tintic, Utah. In both well-watered greenhouse and common garden experiments, and water-limited common garden experiments, there were significant family differences for Δ, biomass, and morphological characters, indicating a potential for genetic change in response to selection. However, estimates of broad-sense heritabilities for Δ were low, indicating that the rate of change in response to selection would be relatively slow. This was consistent with the large amount of phenotypic plasticity observed for Δ as it differed with water treatment and year in the garden experiment. Phenotypically, aboveground biomass and Δ were negatively correlated within the well-watered treatments (i.e., more water-use efficient plants were larger), not correlated within the water-limited treatment, and positively correlated for combined well-watered and water-limited garden treatments, suggesting that variation in both photosynthetic capacity and stomatal limitation contribute to the variation in Δ. In contrast to the phenotypic correlations, genetic correlations for biomass and Δ were consistently negative within each treatment, and selection for higher water-use efficiency through low Δ for C. nauseosus plants in this population would tend to shift populations toward larger plants. For C. nauseosus, increased water-use efficiency is not necessarily associated with decreased carbon gain.  相似文献   

12.
It has been assumed that herbivores constitute a selective agent for the evolution of plant resistance. However, few studies have tested this hypothesis. In this study, we look at the annual weed Datura stramonium for evidence of current natural selection for resistance to herbivorous insects. Paternal half-sib families obtained through controlled crosses were exposed to herbivores under natural conditions. The plants were damaged by two folivorous insects: the tobacco flea beetle Epitrix parvula and the grasshopper Sphenarium purpurascens. Selection was estimated using a multiple-regression analysis of plant size and of damage by the two herbivores on plant fitness measured as fruit production for both individual phenotypes and family breeding values (genetic analysis). Directional phenotypic selection was detected for both larger plant size and lower resistance to the flea beetles, whereas stabilizing phenotypic selection was revealed for resistance to S. purpurascens. However, performing the same analyses on the breeding values of the characters revealed directional and stabilizing selection only for plant size. Thus, no agreement existed between the results of the two types of analyses, nor was there any detectable potential for genetic change in the studied population because of selection on herbivore resistance. The narrow-sense heritability of every trait studied was small (all <0.1) and not different from zero. The potential for evolutionary response to natural selection for higher resistance to herbivores in the studied population of D. stramonium is probably limited by lack of genetic variation. Natural selection acts on phenotypes, and the detection of phenotypic selection on resistance to herbivores confirms their ecological importance in determining plant fitness. However, evolutionary inferences based solely on phenotypic selection analyses must be interpreted with caution.  相似文献   

13.
Alternative models of the maintenance of genetic variability, theories of life-history evolution, and theories of sexual selection and mate choice can be tested by measuring additive and nonadditive genetic variances of components of fitness. A quantitative genetic breeding design was used to produce estimates of genetic variances for male life-history traits in Drosophila melanogaster. Additive genetic covariances and correlations between traits were also estimated. Flies from a large, outbred, laboratory population were assayed for age-specific competitive mating ability, age-specific survivorship, body mass, and fertility. Variance-component analysis then allowed the decomposition of phenotypic variation into components associated with additive genetic, nonadditive genetic, and environmental variability. A comparison of dominance and additive components of genetic variation provides little support for an important role for balancing selection in maintaining genetic variance in this suite of traits. The results provide support for the mutation-accumulation theory, but not the antagonistic-pleiotropy theory of senescence. No evidence is found for the positive genetic correlations between mating success and offspring quality or quantity that are predicted by “good genes” models of sexual selection. Additive genetic coefficients of variation for life-history characters are larger than those for body weight. Finally, this set of male life-history characters exhibits a very low correspondence between estimates of genetic and phenotypic correlations.  相似文献   

14.
Growth and form traits from a series of three provenance trials of Pinus radiata D. Don planted in New Zealand and Australia were analysed at age 9 years from planting. The trials included selections from three mainland California natural populations—A?o Nuevo, Monterey and Cambria. Monterey and Cambria performed better than A?o Nuevo at two New Zealand sites, but Monterey and A?o Nuevo were almost identical in growth, whereas Cambria grew less vigorously at the Australian site. We detected significant provenance differences for diameter at breast height (DBH) growth and stem straightness across countries (p < 0.001). Estimated heritability for DBH ranged from 0.19 to 0.26 within sites, while heritability estimates for stem straightness and branching frequency ranged from 0.10 to 0.24. Estimated type B genetic correlations for DBH were always higher between the two trials in New Zealand trials than between pairs of trials in New Zealand and the Australian site. The genetic coefficient of variation (CVA) for DBH was around 8–10% compared to ca. 5% for the current breeding population. These results suggested that there is appreciable genetic variation in the native populations, and infusion of these materials would increase the genetic variation in current breeding populations. Ten unrelated parents ranked above control seedlots from the older open-pollinated seed orchard stock for DBH growth and would be potential candidates for infusion. The promising performance of the Cambria material is an important result because the genetic base of the present Australian and New Zealand plantations is principally derived from A?o Nuevo and Monterey.  相似文献   

15.
Vertebrate embryos pass through a period of morphological similarity, the phylotypic period. Since Haeckel's biogenetic law of recapitulation, proximate and ultimate evolutionary causes of such similarity of embryos were discussed. We test predictions about changes in phenotypic and genetic variances that were derived from three hypotheses about the evolutionary origin of the phylotypic stage, i.e. random, epigenetic effects, and stabilizing selection. The random hypothesis predicts increasing values for phenotypic variances and stable or increasing values for genetic variances; the epigenetic effects hypothesis predicts declining values for phenotypic variances but stable or increasing values of genetic variances, and the stabilizing selection predicts stable phenotypic variances but decreasing genetic variances. We studied zebrafish as a model species, because it can be bred in large numbers as necessary for a quantitative genetics breeding design. A half-sib breeding scheme provided estimates of additive genetic variances from 11 embryonic characters from 12 through to 24 hr after fertilization, i.e. before, during (15-19 hr), and after the phylotypic period. Because additive genetic variances are size dependent, we calculated narrow-sense heritabilities as a size independent gauge of genetic contributions to the phenotype. The results show declining phenotypic variances and stable heritabilities. In conclusion, we reject the random and the stabilizing selection hypotheses and favor ideas about epigenetic effects that constrain the early embryonic development. Additive genetic variance during the phylotypic stage makes it accessible for evolution, thus explaining in a simple and straightforward way why the phylotypic period differs among vertebrates in timing, duration, and morphologies.  相似文献   

16.
Reproductive success and its determinants are difficult to infer for wild populations of species with no parental care where behavioural observations are difficult or impossible. In this study, we characterized the breeding system and provide estimates of individual reproductive success under natural conditions for an exhaustively sampled stream‐resident brown trout (Salmo trutta) population. We inferred parentage using a full probability Bayesian model that combines genetic (microsatellite) with phenotypic data. By augmenting the potential parents file with inferred parental genotypes from sib‐ship analysis in cases where large families had unsampled parents, we could make more precise inference on variance of family size. We observed both polygamous and monogamous matings and large reproductive skew for both sexes, particularly in males. Correspondingly, we found evidence for sexual selection on body size for both sexes. We show that the mating system of brown trout has the potential to be very flexible and we conjecture that environmental uncertainty could be driving the evolution and perhaps select for the maintenance of plasticity of the mating system in this species.  相似文献   

17.
Diverse crops are both outbred and clonally propagated. Breeders typically use truncation selection of parents and invest significant time, land, and money evaluating the progeny of crosses to find exceptional genotypes. We developed and tested genomic mate selection criteria suitable for organisms of arbitrary homozygosity level where the full-sibling progeny are of direct interest as future parents and/or cultivars. We extended cross variance and covariance variance prediction to include dominance effects and predicted the multivariate selection index genetic variance of crosses based on haplotypes of proposed parents, marker effects, and recombination frequencies. We combined the predicted mean and variance into usefulness criteria for parent and variety development. We present an empirical study of cassava (Manihot esculenta), a staple tropical root crop. We assessed the potential to predict the multivariate genetic distribution (means, variances, and trait covariances) of 462 cassava families in terms of additive and total value using cross-validation. Most variance (89%) and covariance (70%) prediction accuracy estimates were greater than zero. The usefulness of crosses was accurately predicted with good correspondence between the predicted and the actual mean performance of family members breeders selected for advancement as new parents and candidate varieties. We also used a directional dominance model to quantify significant inbreeding depression for most traits. We predicted 47,083 possible crosses of 306 parents and contrasted them to those previously tested to show how mate selection can reveal the new potential within the germplasm. We enable breeders to consider the potential of crosses to produce future parents (progeny with top breeding values) and varieties (progeny with top own performance).  相似文献   

18.
Adaptive ecological differentiation among sympatric populations is promoted by environmental heterogeneity, strong local selection and restricted gene flow. High gene flow, on the other hand, is expected to homogenize genetic variation among populations and therefore prevent local adaptation. Understanding how local adaptation can persist at the spatial scale at which gene flow occurs has remained an elusive goal, especially for wild vertebrate populations. Here, we explore the roles of natural selection and nonrandom gene flow (isolation by breeding time and habitat choice) in restricting effective migration among local populations and promoting generalized genetic barriers to neutral gene flow. We examined these processes in a network of 17 breeding ponds of the moor frog Rana arvalis, by combining environmental field data, a common garden experiment and data on variation in neutral microsatellite loci and in a thyroid hormone receptor (TRβ) gene putatively under selection. We illustrate the connection between genotype, phenotype and habitat variation and demonstrate that the strong differences in larval life history traits observed in the common garden experiment can result from adaptation to local pond characteristics. Remarkably, we found that haplotype variation in the TRβ gene contributes to variation in larval development time and growth rate, indicating that polymorphism in the TRβ gene is linked with the phenotypic variation among the environments. Genetic distance in neutral markers was correlated with differences in breeding time and environmental differences among the ponds, but not with geographical distance. These results demonstrate that while our study area did not exceed the scale of gene flow, ecological barriers constrained gene flow among contrasting habitats. Our results highlight the roles of strong selection and nonrandom gene flow created by phenological variation and, possibly, habitat preferences, which together maintain genetic and phenotypic divergence at a fine‐grained spatial scale.  相似文献   

19.
Natural selection should reduce phenotypic variation and increase integration of floral traits involved in placement of pollen grains on stigmas. In this study, we examine the role of pollinators and breeding system on the evolution of floral traits by comparing the patterns of floral phenotypic variances and covariances in 20 Ipomoea species that differ in their level of pollination specialization and pollinator dependence incorporating phylogenetic relatedness. Plants with specialized pollination (i.e., those pollinated by one functional group or by few morphospecies) displayed less phenotypic variation and greater floral integration than generalist plants. Self‐compatible species also displayed greater floral integration than self‐incompatible species. Floral traits involved in pollen placement and pick up showed less variation and greater integration than floral traits involved in pollinator attraction. Analytical models indicate that both breeding system and the number of morphospecies had significant effects on floral integration patterns although only differences in the former were significant after accounting for phylogeny. These results suggest that specialist/self‐compatible plants experience more consistent selection on floral traits than generalist/self‐incompatible plants. Furthermore, pollinators and breeding system promote integration of floral traits involved in pollen placement and pick up rather than integration of the whole flower.  相似文献   

20.
 Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, causes severe damage to soybean [Glycine max (L.) Merr] throughout North America and worldwide. Molecular markers associated with loci conferring SCN resistance would be useful in breeding programs using marker-assisted selection (MAS). In this study, 200 F2:3 families derived from two contrasting parents, SCN-resistant ‘Peking’ with relatively low protein and oil concentrations, and SCN-susceptible ‘Essex’ with high protein and oil concentrations, were used to determine loci underlying the SCN resistance and seed composition. Three different SCN Race isolates (1, 3, and 5) were used to screen both parents and F2:3 families. The parents were surveyed with 216 restriction fragment length polymorphism (RFLP) probes with five different restriction enzymes. Fifty-six were polymorphic and contrasted with trait data from bioassays to identify molecular markers associated with loci controlling resistance to SCN and seed composition. Five RFLP markers, A593 and T005 on linkage group (LG) B, A018 on LG E, and K014 and B072 on LG H, were significantly linked to resistance loci for Race 1 isolate, which jointly explained 57.7% of the total phenotypic variation. Three markers (B072 and K014, both on LG H; T005 on LG B) were associated with resistance to the Race 3 isolate and jointly explained 21.4% of the total phenotypic variation. Two markers (K011 on LG I, A963 on LG E) associated with resistance to the Race 5 isolate together explained 14.0% of the total phenotypic variation. In the same population we also identified two RFLP markers (B072 on LG H, B148 on LG F) associated with loci conferring protein concentration, which jointly explained 32.3% of the total phenotypic variation. Marker B072 was also linked to loci controlling the concentration of seed oil, which explained 21% of the total phenotypic variation. Clustering among quantitative trait loci (QTLs) conditioning resistance to different SCN Race isolates and seed protein and oil concentrations may exist in this population. We believe that markers located near these QTLs could be used to select for new SCN resistance and higher levels of seed protein and oil concentrations in breeding improved soybean cultivars. Received: 3 March 1998 / Accepted: 18 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号