首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suspensions of rat liver cells were prepared by perfusion of the isolated liver with collagenase and hyaluronidase. By means of a novel dispersion assay, which measured swelling of the liver in a closed perfusion system, the time course of enzymatic dispersion could be followed. Ca2+ stimulated the enzymatic dispersion strongly, but a preliminary removal of Ca2+ with the chelator EGTA rendered the liver tissue more susceptible to the action of enzymes. The best result was thus obtained when the liver was first perfused 5 min with EGTA, then 5 min with enzymes and Ca2+. This sequential treatment converted the whole liver to a cellular suspension, in which about 95% of the cells were intact.  相似文献   

2.
Alloxan at millimolar concentrations slightly inhibited the velocity of Ca2+ uptake by isolated rat liver mitochondria irrespective of the free Ca2+ concentration between 1 and 10 µM and was an effective concentration-dependent stimulator of mitochondrial Ca2+ efflux. Ninhydrin also slightly inhibited the velocity of mitochondrial Ca2+ uptake but only at free Ca2+ concentrations above 5 µM. However, ninhydrin was a strong stimulator of mitochondrial Ca2+ efflux even at micromolar concentrations, 10–50 times more potent than alloxan. The mitochondrial membrane potential was reduced 10–20% at most by alloxan and ninhydrin. Alloxan and ninhydrin also stimulated Ca2+ efflux from isolated permeabilized liver cells. When isolated intact liver cells had been pre-incubated with alloxan or ninhydrin before permeabilization of the cells the ability of spermine to induce mitochondrial Ca2+ uptake was abolished. Glucose provided the typical protection against the effects of alloxan on mitochondrial Ca2+ transport only in experiments with intact cells but not in experiments with permeabilized cells or isolated mitochondria. Therefore glucose protection is apparently due to inhibition of alloxan uptake into the cell. Glucose provided no protection against effects of ninhydrin under any of the experimental conditions. Thus both alloxan and ninhydrin are potent stimulators of Ca2+ efflux by isolated mitochondria but very weak inhibitors of the velocity of mitochondrial Ca2+ uptake. The direct effects of ninhydrin on mitochondrial Ca2+ efflux may contribute to the cytotoxic action of this agent whereas the direct effects of alloxan on mitochondrial Ca2+ transport require concentrations which are too high to be of relevance for the induction of the typical pancreatic B-cell toxic effects of alloxan. However, the effects on mitochondrial Ca2+ transport during incubation of intact cells which may result from the generation of cytotoxic intermediates during alloxan xenobiotic metabolism may well contribute to the pancreatic B-cell toxic effect of alloxan. Mol Cell Biochem 118: 141–151, 1992)  相似文献   

3.
Summary Effects of the enzymes trypsin, papain, bromelains and ficin in bovine dental pulp tissue were studied. Minced or whole pulps were subjected to each enzyme at 17°, 20° and 37°C for set time intervals, after which aliquots of supernatant fluid were removed for cell counts and viability tests. Pooled samples were subsequently cultured as monolayers in Eagle’s MEM plus 10% calf serum. The dissociation characteristics were quite distinct for each enzyme, although quite similar between minced and whole pulp. A parallel histological study was made of the residual pulp tissue. Ficin was found to be the most suitable enzyme for future studies on the growth of isolated pulp cells from various layers of the bovine pulp, due to its even rate of cell removal, and the good initial viability and subsequent growth of the separated cells in monolayer culture. Further studies on ficin may show that it is more suitable for enzymatic separation of tissues generally than the more commonly used trypsin, a major advantage being its use in media containing Ca2+ and Mg2+. Supported in part by NIH Grant No. DE 02908 and by United Health Foundation Summer Fellowships to J.T.F. and J.F.C. Supported in part by N.I.H. Grant 5 R01-DE 02908 to W.A.M. and by United Health Foundation Summer Fellowships to J.T.F. and J.F.C.  相似文献   

4.
Rolf Borchert 《Planta》1985,165(3):301-310
For experimental induction of crystal cells (=crystal idioblasts) containing calcium-oxalate crystals, the lower epidermis was peeled from seedling leaflets of Gleditsia triacanthos L., exposing the crystal-free mesophyll and minor veins to the experimental solutions on which leaflets were floated for up to 10 d under continous light. On 0.3–2.0 mM Ca-acetate, increasing numbers of crystals, appearing 96 h after peeling, were induced. The pattern of crystal distribution changed with Ca2+-concentration ([Ca2+]): at low [Ca2+], crystals formed only in the non-green bundlesheath cells surrounding the veins, believed to have a relatively low Ca2+-extrusion capacity; at higher [Ca2+], crystals developed in up to 90% of the mesophyll cells, and at supraoptimal [Ca2+], large extracellular crystals formed on the tissue surface. By sequential treatments with solutions of different [Ca2+], the following three phases were identified in the induction of crystal cells: (1) during the initial 24-h period (adaptive aging), Ca2+ is not required and crystal induction is not possible; (2) during the following 48 h (induction period), exposure to 1–2 mM Ca-acetate induces the differentiation of mesophyll cells into crystal cells; (3) crystal growth begins 72 h after the start of induction. In intact leaflets of Albizia julibrissin Durazz., calcium-oxalate crystals are found exclusively in the bundle-sheath cells of the veins, but crystals were induced in the mesophyll of peeled leaflets floating on 1 mM Ca-acetate. Exposure to inductive [Ca2+] will thus trigger the differentiation of mature leaf cells into crystal cells; the spatial distribution of crystals is determined by the external [Ca2+] and by the structural and functional properties of the cells in the tissue.  相似文献   

5.
The enzymatic basis for the Ca2+ pump in human red cells is an ATPase with hysteretic properties. The Ca2+-ATPase shifts slowly between a ground state deficient in calmodulin and an active state saturated with calmodulin, and rate constants for the reversible shifts of state were recently determined at different Ca2+ concentrations (Scharff, O. and Foder, B. (1982) Biochim. Biophys. Acta 691, 133–143). In order to study whether the Ca2+ pump in intact red cells also exhibits hysteretic properties we have analysed transient increases of intracellular calcium concentrations (Cai), induced by the divalent cation ionophore A23187. The time-dependent changes of Cai were measured by use of radioactive calcium (45Ca2+) and analysed with the aid of a mathematical model, based partly on the Ca2+-dependent parameters obtained from Ca2+-ATPase experiments, partly on the A23187-induced Ca2+ fluxes determined in experiments with intact red cells. According to the model a delay in the activation of the Ca2+ pump is a prerequisite for the occurrence of A23187-induced calcium transients in the red cells, and we conclude that the Ca2+ pump in human red cells responds hysteretically. It is suggested that Ca2+ pumps in other types of cell also have hysteretic properties.  相似文献   

6.
Ca2+ functions as an intracellular signal to transfer hormonal messages to different cellular compartments, including mitochondria, where it activates intramitochondrial Ca2+-dependent enzymes. However, excessive mitochondrial Ca2+ uptake can promote the mitochondrial permeability transition (MPT), a process known to be associated with cell injury. The factors controlling mitochondrial Ca2+ uptake and release in intact cells are poorly understood. In this paper, we investigate mitochondrial Ca2+ accumulation in intact hepatocytes in response to the elevation of cytosolic Ca2+ levels ([Ca2+]c) induced either by a hormonal stimulus (vasopressin), or by thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+ pump. After stimulation, cells were rapidly permeabilized for the determination of the mitochondrial Ca2+ content (Ca2+_m) and to analyze the susceptibility of the mitochondria to undergo the MPT. Despite very similar levels of [Ca2+]c elevation, vasopressin and thapsigargin had markedly different effects on mitochondrial Ca2+ accumulation. Vasopressin caused a rapid (< 90 sec), but modest (< 2 fold) increase in Ca2+m that was not further increased during prolonged incubations, despite a sustained [Ca2+]c elevation. By contrast, thapsigargin induced a net Ca2+ accumulation in mitochondria that continued for up to 30 min and reached Ca2+_m levels 10–20 fold over basal. Accumulation of mitochondrial Ca2+ was accompanied by a markedly increased susceptibility to undergo the MPT. Both mitochondrial Ca2+ accumulation and MPT activation were modulated by treatment of the cells with inhibitors of protein kineses and phosphatases. The results indicate that net mitochondrial Ca2+ uptake in response to hormonal stimulation is regulated by processes that depend on protein kinase activation. These controls are inoperative when the cytosol is flooded by Ca2+ through artificial means, enabling mitochondria to function as a Ca2+ sink under these conditions. (Mol Cell Biochem 174: 173–179, 1997)  相似文献   

7.
Summary Ca-dependent ATPase activity in the rat anterior pituitary was demonstrated in 50-m tissue slices of aldehyde-fixed tissue with the medium of Takano et al. (Cell Tissue Res. 243:91. 1986). — The outer surface of the plasma membrane of the parenchymal as well as the folliculo-stellate cells was lined with lead precipitate. The reaction deposit was particularly well localized in intercellular spaces both between two parenchymal cells, and between a parenchymal and a folliculo-stellate cell. A fine reaction deposit was also seen in the endoplasmic reticulum and Golgi apparatus of some parenchymal cells. Elimination of Ca2+ from the tissue and the substrate medium drastically reduced the amount of reaction product. If ATP was omitted or replaced by sodium -glycerophosphate, no reaction product was seen. Changing the Ca2+ concentration or addition of Mg2+ to the standard medium caused a decrease in reaction intensity. Substitution of Mg2+ for Ca2+ resulted again in well-localized lead deposition which we attribute to the activity of another enzyme. We suggest that the activity we described in the membrane of glandular cells may correspond to the enzyme involved in the long-term regulation of intracellular Ca2+ level.  相似文献   

8.
The effect of hydrocortisone and thyroxine, on the activities of Ca2+-and Mg2+-ATPase was studied in cultured neuronal (clone M1) and glial (clones NN and C6) cell lines. For M1 and NN cells an increase in Ca2+-and Mg2+-ecto-ATPase activity was found when the cells were cultured during 4–6 days in presence of hydrocortisone or together with thyroxine. In the same conditions, a decrease in Ca2+-and Mg2+-ecto-ATPase activity was found for the C6 cells. In C6 cells the effect of hormones was more pronounced for the Mg2+-than for the Ca2+-ecto-ATPase activity. The observed decrease may be related to the tumoral origin of the C6 cells. The activity of (Na+, K+)-ATPase in all three cell lines increased in presence of hydrocortisone or together with thyroxine when the cells were cultured during 4–6 days, in presence of the hormones, whereas the total Mg2+-ATPase activity increased only after 6 days of treatment. Thyroxine alone has very few effect either on Ca2+-and Mg2+-ecto-ATPase, or on (Na+, K+)-and total Mg2+-ATPase activity. These observations are interpreted to indicate that hormones may modulate or induce enzymatic activities involved in active transport phenomena in nervous tissue.  相似文献   

9.
Previous studies suggested that Chinese hamster V79 cells possess two mechanisms for their mutual adhesion, Ca2+-dependent and Ca2+-independent ones. We could prepare cells with only the Ca2+-dependent mechanism intact by dispersing cell monolayers with trypsin (0.01%) containing Ca2+. In the present study, we found that cells dispersed with a very low concentration of trypsin (0.0001%) in the absence of Ca2+ retain only the Ca2+-independent mechanism intact. Fab fragments of antibodies directed against surface antigens of V79 cells inhibited the aggregation of V79 cells by the Ca2+-independent mechanism, but did not inhibit the aggregation of these cells by the Ca2+-dependent mechanism. These results suggest that the two mechanisms of cell adhesion are based on different cellular components. Molecules responsible for the Ca2+-independent adhesion mechanism are probably cell surface components, because they were released from cells by the treatment with 0.01% trypsin without losing their specific antigenicity. The presence of adhesion mechanisms similar to those in V79 cells was shown in neural retinal cells of chick embryos. It was assumed, therefore, that these mechanisms of cell adhesion are generally present among a variety of cell types.  相似文献   

10.
Tetramethylpyrazine (TMP) is a compound purified from herb. Its effect on Ca2+ concentrations ([Ca2+]i) in renal cells is unclear. This study examined whether TMP altered Ca2+ signaling in Madin‐Darby canine kidney (MDCK) cells. TMP at 100–800 μM induced [Ca2+]i rises, which were reduced by Ca2+ removal. TMP induced Mn2+ influx implicating Ca2+ entry. TMP‐induced Ca2+ entry was inhibited by 30% by modulators of protein kinase C (PKC) and store‐operated Ca2+ channels. Treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5‐di‐tert‐butylhydroquinone (BHQ) inhibited 93% of TMP‐evoked [Ca2+]i rises. Treatment with TMP abolished BHQ‐evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) abolished TMP‐induced responses. TMP at 200–1000 μM decreased viability, which was not reversed by pretreatment with the Ca2+ chelator 1,2‐bis(2‐aminophenoxy)ethane‐N,N,N′,N′‐tetraacetic acid‐acetoxymethyl ester. Together, in MDCK cells, TMP induced [Ca2+]i rises by evoking PLC‐dependent Ca2+ release from endoplasmic reticulum and Ca2+ entry via PKC‐sensitive store‐operated Ca2+ entry. TMP also caused Ca2+‐independent cell death.  相似文献   

11.
The effects of econazole, an antifungal drug applied for treatment of keratitis and mycotic corneal ulcer, on cytosolic-free Ca2+ concentrations ([Ca2+]i) and viability of corneal cells was examined by using SIRC rabbit corneal epithelial cells as model. [Ca2+]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Econazole at concentrations ≥ 1 µM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. The econazole-induced Ca(2+) influx was insensitive to L-type Ca2+ channel blockers and protein kinase C modulators. In Ca2+-free medium, after pretreatment with 20 µM econazole, [Ca2+]i rises induced by 1 µM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) were abolished. Conversely, thapsigargin pretreatment also abolished econazole-induced [Ca2+]i rises. Inhibition of phospholipase C with 2 µM U73122 did not change econazole-induced [Ca2+]i rises. At concentrations between 10 and 80 µM, econazole killed cells in a concentration-dependent manner. The cytotoxic effect of 20 µM econazole was not reversed by prechelating cytosolic Ca2+ with BAPTA. This shows that in SIRC cells econazole induces [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum and Ca2+ influx from unknown pathways. Econazole-caused cytotoxicity was independent from a preceding [Ca2+]i rise.  相似文献   

12.
Ca 2+ -specific removal of Z lines from rabbit skeletal muscle   总被引:15,自引:6,他引:9  
Removal of rabbit psoas strips immediately after death and incubation in a saline solution containing 1 mM Ca2+ and 5 nM Mg2+ for 9 hr at 37°C and pH 7.1 causes complete Z-line removal but has no ultrastructurally detectable effect on other parts of the myofibril. Z lines remain ultrastructurally intact if 1 mM 1,2-bis-(2-dicarboxymethylaminoethoxy)-ethane (EGTA) is substituted for 1 mM Ca2+ and the other conditions remain unchanged. Z lines are broadened and amorphous but are still present after incubation for 9 hr at 37°C if 1 mM ethylenediaminetetraacetate (EDTA) is substituted for 1 mM Ca2+ and 5 mM Mg2+ in the saline solution. A protein fraction that causes Z-line removal from myofibrils in the presence of Ca2+ at pH 7.0 can be isolated by extraction of ground muscle with 4 mM EDTA at pH 7.0–7.6 followed by isoelectric precipitation and fractionation between 0 and 40% ammonium sulfate saturation. Z-line removal by this protein fraction requires Ca2+ levels higher than 0.1 mM, but Z lines are removed without causing any other ultrastructurally detectable degradation of the myofibril. This is the first report of a protein endogenous to muscle that is able to catalyze degradation of the myofibril. The very low level of unbound Ca2+ in muscle cells in vivo may regulate activity of this protein fraction, or alternatively, this protein fraction may be localized in lysosomes.  相似文献   

13.
Brain hypoxia or ischemia causes acidosis and the intracellular accumulation of Ca2+ in neuron. The aims of the present study were to elucidate the interaction between intracellular pH and Ca2+ during transient acidosis and its effects on the viability of neuronal and glial cells. Intracellular Ca2+ and pH were measured using the fluorescence of fura-2 and 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester in neuroblastoma (IMR-32), glioblastoma (T98G), and astrocytoma (CCF-STTG1) cell lines. The administration of 5 mM propionate caused intracellular acidification in IMR-32 and T98G cells but not in CCF-STTG1 cells. After the removal of propionate, the intracellular pH recovered to the resting level. The intracellular Ca2+ transiently increased upon the removal of propionate in IMR-32 and T98G cells but not in CCF-STTG1 cells. The transient Ca2+ increase caused by the withdrawal of intracellular acidification was abolished by the removal of external Ca2+, diminished by a reduction of external Na+, and inhibited by benzamil. Transient acidosis caused cell death, whereas the cells were more viable in the absence of external Ca2+. Benzamil alleviated cell death caused by transient acidosis in IMR-32 and T98G cells but not in CCF-STTG1 cells. These results suggest that recovery from intracellular acidosis causes a transient increase in cytosolic Ca2+ due to reversal of Ca2+ transport via Na+/Ca2+ exchanger coactivated with Na+/H+ exchanger, which can cause cell death.  相似文献   

14.
Human promyelocytic leukemia HL-60 cells were pre-exposed to non-ionizing 900 MHz radiofrequency fields (RF) at 12 µW/cm2 power density for 1 hour/day for 3 days and then treated with a chemotherapeutic drug, doxorubicin (DOX, 0.125 mg/L). Several end-points related to toxicity, viz., viability, apoptosis, mitochondrial membrane potential (MMP), intracellular free calcium (Ca2+) and Ca2+-Mg2+ -ATPase activity were measured. The results obtained in un-exposed and sham-exposed control cells were compared with those exposed to RF alone, DOX alone and RF+DOX. The results indicated no significant differences between un-exposed, sham-exposed control cells and those exposed to RF alone while treatment with DOX alone showed a significant decrease in viability, increased apoptosis, decreased MMP, increased Ca2+ and decreased Ca2+-Mg2+-ATPase activity. When the latter results were compared with cells exposed RF+DOX, the data showed increased cell proliferation, decreased apoptosis, increased MMP, decreased Ca2+ and increased Ca2+-Mg2+-ATPase activity. Thus, RF pre-exposure appear to protect the HL-60 cells from the toxic effects of subsequent treatment with DOX. These observations were similar to our earlier data which suggested that pre-exposure of mice to 900 MHz RF at 120 µW/cm2 power density for 1 hours/day for 14 days had a protective effect in hematopoietic tissue damage induced by subsequent gamma-irradiation.  相似文献   

15.
R. Borchert 《Planta》1986,168(4):571-578
During treatment of isolated, peeled leaflets of Gleditsia triacanthos with 0.5–2 mM [45Ca]acetate, saturation of the cell-wall free space with Ca2+ occurred within 10 min and was followed by a period of 6–10 h during which there was no significant Ca-uptake into the protoplast, but apoplastic Ca2+ was periodically released into the medium. Later, Ca2+ was absorbed for 3–4 d at rates of up to 2.2 mol Ca2+·h-1·(g FW)-1 to final concentrations of 350 mol Ca2+· (g FW)-1. The distribution of absorbed Ca2+ between cell wall, vacuole and Ca-oxalate crystals was determined during Ca-uptake. Wheras intact, cut leaflets deposited absorbed Ca2+ as Ca-oxalate in the crystal cells, peeled leaflets lacking crystal cells accumulated at least 40–50 mol·(g FW)-1 soluble Ca2+ before the absorbed Ca2+ was precipitated as Ca-oxalate. These observations indicate that the mechanisms for the continuous uptake of Ca2+, the synthesis of oxalate and the precipitation of Ca2+ as Ca-oxalate are operational in the crystal cells of intact leaflets, but not in the mesophyll cells of peeled leaflets where they must be induced by exposure to Ca2+. The precipitation of absorbed Ca2+ as Ca-oxalate by the crystal cells of isolated Gleditsia leaflets illustrates the role of these cells in the excretion of surplus Ca2+ which enters normal, attached leaves with the transpiration stream.In addition to acetate, only Ca-lactate and Ca-carbonate lead to Ca-uptake, but at rates well below those observed with Ca-acetate. Other small organic anions (citrate, glycolate, glyoxalate, malate) and inorganic anions (chloride, nitrate, sulfate) did not permit Ca-uptake. Acetate-14C was rapidly absorbed during Ca-uptake, but less than 20% was incorporated into Ca-oxalate; the rest remained mostly in the soluble fraction or was metabolized to CO2. Acetate, as a permeable weak acid, may enable rapid Ca-uptake by stimulating proton extrusion at the plasmalemma and by serving as a counterion during Ca-accumulation in the vacuole, but is unlikely to function as the principal substrate for oxalate synthesis.  相似文献   

16.
The accumulation of 45Ca2+ by intact mouse mastocytoma cells was examined before and after treatment of the cells with N6,O2′-dibutyryladenosine 3′,5′, cyclic monophosphate and theophylline to inhibit growth. In the presence of phosphate either glycolysis, respiration or ATP supported 45Ca2+ uptake by the cells and in each case the accumulated 45Ca2+ appeared to be retained by mitochondria. Inhibition of growth by drug treatment for 20h increased subsequent 45Ca2+ accumulation when cells were incubated with 45CaCl2, succinate and phosphate. Since prior drug treatment did not increase 45Ca2+ accumulation with glucose, ATP or malate the drugs appeared to increase 45Ca2+ accumulation by affecting succinate metabolism.  相似文献   

17.
D.E. Knight  E. Koh 《Cell calcium》1984,5(4):401-418
Enzyme digestion of rat pancreatic tissue yielded a preparation of isolated acinar cells, over 90% of which excluded trypan blue. These isolated cells responded to a variety of secretagogues, the responses being sensitive to the removal of extracellular calcium, increasing extracellular magnesium, and by trifluoperazine, an antagonist of Ca-dependent processes. When exposed to intense electric fields, isolated acinar cells became permeable to CaEGTA and MgATP, these markers gaining access to over 60% of the intracellular mileu within minutes. The accessability to these markers seemed independent of the ionised Ca2+ level. Less than 0.5% of the cellular amylase was released when cells were rendered leaky in a medium containing about 10?9 M Ca2+, but typically 4% was released when the Ca2+ level was subsequently raised to 10?5M levels, the EC50 for Ca2+ being 2 μM. This amount of amylase released was comparable to the amounts secreted from intact cells in response to a variety of agonists. The cytosolic marker lactate dehydrogenase was also released from leaky cells, but the extent was independent of Ca2+ concentration. No amylase was released at 10?7M Ca2+ when permeable cells were exposed to cyclic 3′,5′-AMP or cyclic 3′,5′-GMP. The calcium activation curve for amylase release seemed to be independent of cyclic nucleotides, but was markedly increased in both the extent of release and apparent affinity for Ca2+ in the presence of the phorbol ester 12-O-tetradecanoyl phorbol 13 acetate. These results suggest that when “functionally normal” isolated acinar cells are rendered permeable, Ca2+ — but not cyclic nucleotides — acts as a second messenger for amylase secretion, and furthermore that protein kinase C may be involved in the secretory process.  相似文献   

18.
The effect of celecoxib on renal tubular cells is largely unexplored. In Madin Darby canine kidney (MDCK) cells, the effect of celecoxib on intracellular Ca2 + concentration ([Ca2 +]i) and proliferation was examined by using the Ca2 +-sensitive fluorescent dye fura-2 and the viability detecting fluorescent dye tetrazolium, respectively. Celecoxib (≥1 μ M) caused an increase of [Ca2 +]i in a concentration-dependent manner. Celecoxib-induced [Ca2 +]i increase was partly reduced by removal of extracellular Ca2 +. Celecoxib-induced Ca2 + influx was independently suggested by Mn2 + influx-induced fura-2 fluorescence quench. In Ca2 +-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2 +-ATPase, caused a monophasic [Ca2 +]i increase, after which celecoxib only induced a tiny [Ca2 +]iincrease; conversely, pretreatment with celecoxib completely inhibited thapsigargin-induced [Ca2 +]i increases. U73122, an inhibitor of phospholipase C, abolished ATP (but not celecoxib)-induced [Ca2 +]i increases. Overnight incubation with 1 or 10 μ M celecoxib decreased cell viability by 80% and 100%, respectively. These data indicate that celecoxib evokes a [Ca2 +]i increase in renal tubular cells by stimulating both extracellular Ca2 + influx and intracellular Ca2 + release and is highly toxic to renal tubular cells in vitro.  相似文献   

19.
Stimulation of hamster lymph node cells by optimal concentrations of ZnCl2 (10 μM) was found to be enhanced by addition of 1–25 mM LiCl to the serum-free cultures. Maximal enhancement occurred at 10 mM Li+. Similar concentrations of either KCl or NaCl did not potentiate stimulation. Addition of 1 mM CaCl2, but not 1–25 mM MgCl2, also potentiated Zn2+ stimulation of lymph node cells. When the cultures were supplemented with 1 mM Ca2+ + 10 mM Li+, a synergistic potentiation of Zn2+ stimulation occurred. In addition, the dose response curve for Zn2+ was shifted such that maximal stimulation occurred at 100–250 μM Zn2+, a concentration of Zn2+ which was toxic for the unsupplemented cultures. In Ca2+ + Li+ supplemented cultures, Zn2+ stimulated [3H]thymidine incorporation to levels comparable to those obtained when hamster lymphoid cells were stimulated with lectins. In addition to Zn2+ stimulation, Ca2+ + Li+ supplemented medium also enhanced Hg2+ stimulation of hamster lymph node cells but did not change the dose response curve for Hg2+. Therefore, the observed ionic effects on Zn2+ stimulation of lymphocytes were unique to this mitogen, when compared to either Hg2+ stimulation or previously reported lectin stimulation of hamster lymphoid cells.  相似文献   

20.
Modulation of L-type Ca2+ channels by tonic elevation of cytoplasmic Ca2+ was investigated in intact cells and inside-out patches from human umbilical vein smooth muscle. Ba2+ was used as charge carrier, and run down of Ca2+ channel activity in inside-out patches was prevented with calpastatin plus ATP. Increasing cytoplasmic Ca2+ in intact cells by elevation of extracellular Ca2+ in the presence of the ionophore A23187 inhibited the activity of L-type Ca2+ channels in cell-attached patches. Measurement of the actual level of intracellular free Ca2+ with fura-2 revealed a 50% inhibitory concentration (IC50) of 260 nM and a Hill coefficient close to 4 for Ca2+- dependent inhibition. Ca2+-induced inhibition of Ca2+ channel activity in intact cells was due to a reduction of channel open probability and availability. Ca2+-induced inhibition was not affected by the protein kinase inhibitor H-7 (10 μM) or the cytoskeleton disruptive agent cytochalasin B (20 μM), but prevented by cyclosporin A (1 μg/ ml), an inhibitor of protein phosphatase 2B (calcineurin). Elevation of Ca2+ at the cytoplasmic side of inside-out patches inhibited Ca2+ channels with an IC50 of 2 μM and a Hill coefficient close to unity. Direct Ca2+-dependent inhibition in cell-free patches was due to a reduction of open probability, whereas availability was barely affected. Application of purified protein phosphatase 2B (12 U/ml) to the cytoplasmic side of inside-out patches at a free Ca2+ concentration of 1 μM inhibited Ca2+ channel open probability and availability. Elevation of cytoplasmic Ca2+ in the presence of PP2B, suppressed channel activity in inside-out patches with an IC50 of ∼380 nM and a Hill coefficient of ∼3; i.e., characteristics reminiscent of the Ca2+ sensitivity of Ca2+ channels in intact cells. Our results suggest that L-type Ca2+ channels of smooth muscle are controlled by two Ca2+-dependent negative feedback mechanisms. These mechanisms are based on (a) a protein phosphatase 2B-mediated dephosphorylation process, and (b) the interaction of intracellular Ca2+ with a single membrane-associated site that may reside on the channel protein itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号