首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A monoclonal antibody (45-2D9) produced after immunization of BALB/c mice with the c-Ha-ras NIH 3T3 tertiary transfectant (45-342) recognized a determinant expressed by the primary, three of three secondary, and one of three tertiary transfectants, but not by NIH 3T3 cells. The determinant was present on the cell surface and was distinct from murine leukemia virus gp70 by absorption studies. Biosynthetic labeling and immunoprecipitation studies with [35S]methionine and [3H]glucosamine demonstrated that 45-2D9 recognizes a 74,000 Mr glycoprotein with minor bands of 90,000 and 180,000 Mr on SDS-PAGE. Pulse chase studies demonstrated a 68,000 Mr precursor molecule that incorporated only [35S]methionine. The distribution of the epitope recognized by 45-2D9 was assessed by immunoperoxidase staining. The antigen was not detected on 10 primary and metastatic murine tumors or 11 transformed murine cell lines. However, a variety of surgically excised human tumors demonstrated intense staining, whereas staining of normal tissues was minimal or not detectable. Thus a human oncogene-transfected cell can express a new cell surface determinant apparently unrelated to the oncogene product, which is also selectively expressed by human tumors.  相似文献   

2.
Summary Malignant epithelial tumor cells were isolated and cultured from ten human mammary specimens of cancerous origin. The 260F9 monoclonal antibody (MAB) bound to frozen sections of all of the human breast tumors tested and to primary cultured cells from the tumors. Cultured cells from all ten breast tumors were sensitive to the clonal inhibitory effects of immunotoxin 260F9 MAB-recombinant ricin A chain. At an immunotoxin concentration of 200 ng/ml (about 1 nM), inhibition of colony formation was >99% for all ten tumors.  相似文献   

3.
Immunotoxins have the potential to be powerful tools for selective cell killing, but their lack of clinical success against solid tumors indicates a need to better understand factors which limit immunotoxin transport in three-dimensional systems. In this work, a previously developed model which related immunotoxin toxicity to cellular trafficking in a single cell was coupled with a term accounting for diffusive transport of immunotoxin in a solid tumor sphere. This created a mathematical model which is capable of simulating the biological response of multicell tumor spheroids (MTS) to immunotoxin treatment. The model was used to predict the kinetics of protein synthesis inhibition in MTS treated with transferrin receptor-targeted immunotoxins as a function of immunotoxin concentration and toxin choice. HeLa cells were grown as MTS and treated with immunotoxins constructed from the anti-transferrin receptor antibody OKT9 and the toxins gelonin or CRM107, and the average protein synthesis inhibition and growth rates were measured. With no fitted parameters, the mathematical model quantitatively predicted the experimental observations. Immunotoxins were generally less effective against MTS than monolayer cells at equivalent conditions; for OKT9-gelonin at high concentrations this decrease in efficacy was attributed primarily to heterogeneous receptor distribution in MTS whereas for OKT9-CRM107 the decrease was caused primarily by a large barrier to penetration of the immunotoxin into the spheroid. The experimentally verified model was used to define the conditions which lead to large penetration barriers. In general, transport barriers in MTS become more important as immunotoxins become more effective against cells grown as monolayers. The proposed model is unique in its ability to predict toxicity in MTS directly, and is an important step toward understanding immunotoxin effect on tumors in vivo.  相似文献   

4.
Summary Cultured prostate carcinoma cells incubated in the presence of a novel hybrid immunotoxin and ricin A chain exhibited synergy with the chemotherapeutic drugs vinblastine, methotrexate, and bleomycin. No cooperative effect was noted with adriamycin. Under conditions where individual components of immunotoxin or chemotherapeutic drug mixtures were nontoxic or minimally toxic the immunotoxin-drug mixture exhibited marked impact on 14C amino acid incorporation into prostate carcinoma cells. Analysis of drug-treated cells by flow cytometry indicated that cells exposed to vinblastine and bleomycin bound hybrid immunotoxin antibody to a greater extent than cells not exposed to these drugs. Adriamycin did not exhibit synergistic cytotoxicity with hybrid immunotoxin. Also, adriamycin did not enhance antibody binding as evaluated by flow cytometry. The fact that hybrid monoclonal antibody-ricin A chain (HIT-RAC) conjugates inhibited uptake of 14C amino acids 3 to 10-fold within 48 h of incubation with target cells and that this inhibition was further increased 2 to 3-fold in conjunction with three out of four chemotherapeutic drugs tested may be attributed to the unique cytotoxicity imposed by the hybrid immunotoxins. The RAC moiety is not chemically coupled to antibody but instead occupies one of the antigen-combining sites of the molecule. In this manner, RAC is closely juxtaposed to the cell membrane of the target cell and is anchored in this position via binding of the remaining antigen-combining site to p40 prostate restricted antigen.  相似文献   

5.
The ex vivo anti-leukemic efficacy and stem cell toxicity of two different T cell directed immunotoxins containing pokeweed antiviral protein (PAP) were studied by clonal assays. 5E9-11-PAP, an immunotoxin directed against human transferrin receptors, elicited a maximum leukemic cell kill of 3.9 logs. However, it was also toxic against normal pluripotent stem cells, and therefore is not a clinically useful purgative reagent. PAP conjugated to 3-A1, a monoclonal antibody directed against CD7 (T, p41), was more effective against leukemic T cells than 5E9-11-PAP and eliminated a maximum of 4.8 log of cells. 3A1-PAP was only slightly toxic to pluripotent stem cells: 13% of CFU-GEMM were lost after treatment with 3000 ng of 3A1-PAP/ml, a concentration that eliminated 99.96% of contaminating leukemic T cells from a 200-fold excess of normal bone marrow. Cryopreservation of treated cells by conventional methods did not affect the extreme selectivity and potency of 3A1-PAP. Incubation of 3A1-PAP with peripheral blood mononuclear cells resulted in the complete inhibition of phytohemagglutinin-induced mitogenic response, illustrating the possibility of using this immunotoxin as a potent anti-T cell reagent for prophylaxis against graft vs host disease in allogeneic BMT as well.  相似文献   

6.
Immunotoxins were prepared with a Ber-H2 (anti-CD30) monoclonal antibody and native or recombinant dianthin 30, a ribosome-inactivating protein fromDianthus caryophyllus (carnation). Both immunotoxins selectively inhibited protein synthesis by CD30+ cell lines D430B (lymphoblastoid, infected with Epstein-Barr virus). L428 and L540 (both from Hodgkin's lymphoma). IC50 values (concentrations, as dianthin, causing 50% inhibition) ranged from 324 pM to 479 pM (immunotoxin with native dianthin 30) or from 45 pM to 182 pM (immunotoxin with recombinant dianthin 30). The effect of either immunotoxin on protein synthesis by the CD30 cell line K562 (from a chronic myeloid leukaemia) was not different from that of free dianthin (IC50 higher than nM).  相似文献   

7.
The initial step in ricin A-chain (RTA)-immunotoxin-mediated cell cytotoxicity involves binding to the target cell Ag through the antibody moiety. One of the factors influencing this is the affinity of the antibody component for the target cell Ag. Multiple epitopes on carcinoembryonic Ag have been mapped providing a range of mAb of known specificity. These have been used to show that the cytotoxicity of an immunotoxin containing RTA conjugated to an anti-carcinoembryonic Ag mAb (228-RTA) is potentiated by mAb recognizing different epitopes. The potentiating antibodies also increased the level of target cell binding of antibody 228. Cross-linking of cell bound antibody was not involved because monovalent fragments of a potentiating antibody were effective. The potentiating antibodies modified the binding affinity of 228 antibody increasing the t1/2 of antibody at the tumor cell surface. This increased the dwell time of cell bound antibody and using conjugates of 228 linked to albumin-tetramethylrhodamine it was shown to enhance conjugate endocytosis. These investigations indicate that enhanced antibody affinity leads to increased endocytosis of bound immunoconjugate and potentiates cytotoxicity.  相似文献   

8.
An immunotoxin was synthesized with pokeweed antiviral protein and an IgG1 monoclonal antibody directed against human B and pre-B cells. The B43 murine monoclonal antibody does not react with normal human bone marrow precursor cells. The immunotoxin bound to all Burkitt's lymphoma cell lines that were tested but not to human peripheral blood T cells. The ability of antibody-toxin conjugate to inhibit human lymphoblast cell lines was checked in a clonogenic assay system. The immunotoxin in the presence of chloroquine elicited 5.8 logs of killing of Burkitt's lymphoma cells (B-ALL). The efficient inhibition of clonogenic growth of B-ALL cells was not affected by the presence of normal bone marrow cells. The immunotoxin was not very toxic to pluripotent stem cells; less than 50% of the stem cells were lost under conditions where 5.6 logs of clonogenic lymphoma cells were eliminated from a 100-fold excess of normal marrow cells. Further, when assayed by long-term human bone marrow cultures, immunotoxin treatment did not result in a significant loss of pluripotent precursor cells.  相似文献   

9.
Summary The biological properties of an immunotoxin composed of an anti-CD6 monoclonal antibody conjugated to whole ricin, which had been modified so that the galactose-binding sites of the B chain were blocked (blocked ricin), were examined. Treatment of peripheral blood lymphocytes with anti-CD6-blocked ricin for a 24-h period prevented T cell proliferation induced by phytohemagglutinin in a dose-dependent manner with concentrations causing 50% inhibition (IC50) ranging from 5 pM to 30 pM. In contrast, treatment with either blocked ricin alone or with a control immunotoxin prepared with a B-cell-lineage-restricted monoclonal antibody gave IC50 values of approximately 2 nM. Although shortening the duration of the anti-CD6-blocked ricin treatment to as little as 3 h had little significant effect on the observed inhibition, T cell viability experiments demonstrated that the magnitude of immunotoxin-induced killing after a given time period is significantly higher when the target cells become activated. Thus, from the initial concentration of cells treated with anti-CD6-blocked ricin placed in culture, 40%–45% viable cells remained after 2 days yet only 3%–9% remained if phorbol ester and Ca2+ ionophore were added; activation of T cells after mock treatment using blocked ricin plus nonconjugated anti-CD6 demonstrated that this effect was not the result of activation alone. The toxicity of anti-CD6-blocked ricin was also measured by inhibition of PHA-induced clonogenic growth of normal T cells. Continuous treatment of the cells using anti-CD6-blocked ricin at 0.1 nM resulted in a surviving fraction of about 3.5 × 10–3; when immunotoxin treatment was for 24 h or less, the surviving fraction was only about 10–1. As an indication of the unique specificity of anti-CD6-blocked ricin, immunotoxin pretreatment of potential responder cells prevented the generation of allogeneic cytolytic T lymphocytes in mixed lymphocyte cultures yet had little effect on the generation of interleukin-2-induced lymphokine-activated killer cell activity. We conclude that anti-CD6-blocked ricin demonstrates a cellular specificity and potency that make it a highly promising anti-T cell reagent.  相似文献   

10.
1,25-Dihydroxyvitamin D3 inhibits antigen-induced T cell activation   总被引:10,自引:0,他引:10  
The proliferative response of murine spleen and thymus cells to antigen but not to lectin was inhibited by the active metabolite of vitamin D3, 1,25-(OH)2D3. To directly examine the effect of 1,25-(OH)2D3 on T cell activation in the absence of other complicating interactions, we utilized a panel of cloned Ia-restricted T cell hybridomas that secrete IL 2 on activation by cloned Ia-bearing stimulator cells (TA3) or when stimulated by mitogen. Physiologic concentrations of 1,25-(OH)2D3 (0.01 to 0.1 nm) inhibited the antigen-induced secretion of IL 2 by several of these T cell hybridomas. This inhibition was dependent on the concentration of the free hormone and could be overcome by increasing the number of Ia-bearing stimulator cells used. Pretreatment of the T hybridoma but not the TA3 stimulator cell with 1,25-(OH)2D3 resulted in inhibition of activation. These results are consistent with the finding that specific 1,25-(OH)2D3 receptors are present on the T cell hybridomas but are lacking in TA3 cells. 1,25-(OH)2D3 failed, however, to inhibit the activation of the T cell hybridomas by lectin or by an anti-Thy-1 antibody. These findings suggest that 1,25-(OH)2D3 may be interfering with early events of antigen-induced T cell activation, perhaps by hindering T cell recognition of the relevant antigen on stimulator cell surfaces. This system should prove useful in studying the molecular mechanisms by which 1,25-(OH)2D3 acts to inhibit T cell activation and subsequent IL 2 production.  相似文献   

11.
Anti-CD3 immunotoxins, which induce profound but transient T-cell depletion in vivo by inhibiting eukaryotic protein synthesis in CD3+ cells, are effective reagents in large animal models of transplantation tolerance and autoimmune disease therapy. A diphtheria toxin based antiporcine CD3 recombinant immunotoxin was constructed by fusing the truncated diphtheria toxin DT390 with two identical tandem single chain variable fragments (scFv) derived from the antiporcine CD3 monoclonal antibody 898H2-6-15. The recombinant immunotoxin was expressed in a diphtheria-toxin resistant yeast Pichia pastoris strain under the control of the alcohol oxidase promoter. The secreted recombinant immunotoxin was purified sequentially with hydrophobic interaction chromatography (Butyl 650 M) followed by strong anion exchange (Poros 50 HQ). The purified antiporcine CD3 immunotoxin was tested in vivo in four animals; peripheral blood CD3+ T-cell numbers were reduced by 80% and lymph node T-cells decreased from 74% CD3+ cells pretreatment to 24% CD3+ cells remaining in the lymph node following 4 days of immunotoxin treatment. No clinical toxicity was observed in any of the experimental swine. We anticipate that this conjugate will provide an important tool for in vivo depletion of T-cells in swine transplantation models.  相似文献   

12.
Summary The antitumoral efficacy of various anti-CD5 immunotoxins, prepared with whole monoclonal antibody (mAb), F(ab)2 or Fab fragment linked to native ricin A-chain (RTA) or partially deglycosylated ricin A-chain (dRTA), was examined in vivo in ascitic nude mice bearing a large burden of Ichikawa human tumour cells. We first demonstrated that after systemic administration of IgG-RTA or F(ab)2-dRTA, the cytotoxic activity of immunotoxin molecules specifically bound to tumour cells was preserved. Secondly we showed, by using different immunotoxins with various targeting capacities, that their cytotoxic effect in vivo was related to the number of immunotoxin molecules bound per cell. However, even when antigen saturation was achieved after i.p. injection, the cytotoxic effect did not exceed 53% of the tumour burden. By contrast, when the immunotoxin was administered i.p. or i.v. with the enhancer monensin conjugated to human serum albumin and injected i.p., 90% of the tumour cells were killed. This potentiating effect was demonstrated even when the tumour localisation was as low as 5% of the saturation level. Such an effect could be completely prevented by addition of unconjugated monoclonal antibody, demonstrating the specificity of the immunotoxin-induced cytotoxicity in the presence of the enhancer. However this enhancement was demonstrated whatever the route of immunotoxin administration, i.p. or i.v., but was only observed when the enhancer was injected i.p. and not i.v.. These results emphasize the importance of optimizing the therapeutic course to improve the antitumoral efficacy of immunotoxins.  相似文献   

13.
The possibility of efficient directed elimination of human erythroblastoid cells by the conjugate of IgM-monoclonal antibody HAE9 directed against the erythroblast antigen and the A-chain of a plant toxin ricin has been demonstrated. The conjugate contained 2 molecules of A-chain per one antibody molecule. The efficiencies of the cytotoxic effect of native ricin and the conjugate were compared according to the number of binding sites on the surface of K562 cells as well as to the internalization rate of these molecules. As was shown, that the number of binding sites for the antibody approaches 2.7.10(4) molecules/cell, K a being equal to 1.7.10(8) M-1 while for ricin these indices constitute 2.4.10(5) and 4.6.10(8) M-1. Almost 100% of antibodies and 36% of ricin are internalized within 10 min at 37 degrees C. At a concentration 10(-11) of native ricin and 10(-10) of immunotoxin the 50% inhibition of growth of K562 cells carrying the erythroblast antigen on their surface is observed.  相似文献   

14.
Summary An immunotoxin consisting of ricin A chain linked to the monoclonal antibody M-T151, recognising the CD4 antigen, was weakly toxic to the human T-lymphoblastoid cell line CEM in tissue culture. The incorporation of [3H]leucine by CEM cells was inhibited by 50% at an M-T151-ricin-A-chain concentration (IC50) of 4.6 nM compared with an IC50 of 1.0 pM for ricin. In contrast, immunotoxins made by linking intact ricin to M-T151 in such a way that the galactose-binding sites of the B chain subunit were either blocked sterically by the antibody component or were left unblocked, were both powerfully cytotoxic with IC50 values of 20–30 pM. The addition of ricin B chain to CEM cells treated with M-T151—ricin-A-chain enhanced cytotoxicity by only eight-fold indicating that isolated B chain potentiated the action of the A chain less effectively than it did as an integral component of an intact ricin immunotoxin. Ricin B chain linked to goat anti-(mouse immunoglobulin) also potentiated weakly.Lactose completely inhibited the ability of isolated ricin B chain to potentiate the cytotoxicity of M-T151—ricin-A-chain and partially (3- to 4-fold) inhibited the cytotoxicity of the blocked and non-blocked ricin immunotoxins. Thus, in this system, the galactose-binding sites of the B chain contributed to cell killing regardless of whether isolated B chain was associated with the A chain immunotoxin or was present in blocked or non-blocked form as part of an intact ricin immunotoxin. The findings suggest that the blocked ricin immunotoxin may become unblocked after binding to the target antigen to re-expose the cryptic galactose-binding sites. However, the unblocking cannot be complete because the maximal inhibition of [3H]leucine incorporation by the blocked immunotoxin was only 80% compared with greater than 99% inhibition by the non-blocked immunotoxin.  相似文献   

15.
Immunotoxins comprised of a monoclonal antibody covalently coupled to recombinant ricin A chain or to a binding-defective form of diphtheria toxin were compared with respect to their rates of protein synthesis inhibition and efficiencies of killing target cells. Protein synthesis inhibition rates were established by measuring the incorporation of L-[14C]leucine in toxin-treated cells relative to untreated cells at several times after exposure of cells to an immunotoxin. Cell killing was assessed by a limiting dilution assay which measures the number of cells surviving toxin treatment relative to untreated cells. At equivalent protein concentrations, the diphtheria toxin immunotoxin inhibited protein synthesis significantly more rapidly than the ricin A immunotoxin but, contrary to previous predictions, achieved a significantly lower cell kill. Thus, the kinetics of protein synthesis inactivation do not necessarily correlate with killing efficiencies. Possible explanations for these results are that the effect of the diphtheria toxin immunotoxin on protein synthesis is partially reversible or that the diphtheria toxin immunotoxin enters the cytosol at a faster rate than the ricin A immunotoxin but also is degraded at a faster rate.  相似文献   

16.
Immunotoxins (ITs) containing plant or bacterial toxins have a dose-limiting toxicity of vascular leak syndrome (VLS) in humans. The active A chain of ricin toxin (RTA), other toxins, ribosome-inactivating proteins, and the VLS-inducing cytokine IL-2 contain the conserved sequence motif (x)D(y) where x = L, I, G, or V and y = V, L, or S. RTA-derived LDV-containing peptides attached to a monoclonal antibody, RFB4, induce endothelial cell (EC) damage in vitro and vascular leak in two animal models in vivo. We have now investigated the mechanism(s) by which this occurs and have found that (1) the exposed D75 in the LDV sequence in RTA and the C-terminal flanking threonine play critical roles in the ability of RFB4-conjugated RTA peptide to bind to and damage ECs and (2) the LDV sequence in RTA induces early manifestations of apoptosis in HUVECs by activating caspase-3. These data suggest that RTA-mediated inhibition of protein synthesis (due to its active site) and apoptosis (due to LDV) may be mediated by different portions of the RTA molecule. These results suggest that ITs prepared with RTA mutants containing alterations in LDVT may kill tumor cells in vivo in the absence of EC-mediated VLS.  相似文献   

17.
Recently, a bivalent recombinant anti-human CD3 diphtheria toxin (DT) based immunotoxin derived from the scFv of UCHT1 antibody has been made that shows enhanced bioactivity and is free from the side effects of Fc receptor interaction. In this case, the diminution of CD3 binding due to the placement of the scFv domain at the C-terminus of the truncated DT in single scFv immunotoxins was compensated by adding an additional scFv domain. However, this strategy was less successful for constructing an anti-rhesus recombinant immunotoxin derived from the scFv of FN18 antibody due to poor binding of the anti-rhesus bivalent immunotoxin. We report here that, by increasing the FN18 scFv affinity through random mutagenesis and selection with a dye-labeled monkey CD3epsilongamma recombinant heterodimer, we greatly improved the bioactivity of FN18 derived immunotoxin. The best mutant, C207, contained nine mutations, two of which were located in CDRs that changed the charge from negative to positive. Binding affinity of the C207 scFv to the monkey T cell line HSC-F increased 9.8-fold. The potency of the C207 bivalent immunotoxin assayed by inhibition of protein synthesis increased by 238-fold.  相似文献   

18.
We have examined the effect of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on mitogen-stimulated growth and on c-myc proto-oncogene expression in a keratinocyte model of tumor progression. A dose-dependent inhibition of cell growth by 1,25-(OH)2D3 was demonstrated in both established (HPK1A) and malignant (HPK1A-ras) cells. However, this inhibition was observed with the addition of 1,25-(OH)2D3 at a higher concentration in HPK1A-ras cells than in HPK1A cells. Cell cycle analysis revealed a blockage of the normal progression of the cell cycle from G0 to S phase in the presence of 1,25-(OH)2D3. A higher concentration of 1,25-(OH)2D3 was required in HPK1A-ras cells to overcome the mitogen-stimulated progression into S phase, when compared with HPK1A cells. Analysis of c-myc messenger RNA revealed a strong inhibition of its expression at early time points with higher concentrations of 1,25-(OH)2D3 being required to obtain an inhibition in HPK1A-ras cells similar to that obtained in HPK1A cells. 1,25-(OH)2D3 receptor characterization by sucrose gradient analysis and equilibrium binding demonstrated the presence of a single 3.7 S protein with similar receptor numbers and affinity in both cell lines. These observations therefore demonstrate that an alteration of the growth inhibitory response to 1,25-(OH)2D3 occurs when keratinocytes acquire the malignant phenotype and suggest that the alteration lies beyond the interaction of the ligand with its receptor. In addition, relative resistance to 1,25-(OH)2D3 was also observed in the expression of the cell-cycle associated oncogene c-myc. These studies may therefore have important implications in vivo in the development and growth of epithelial cell cancers.  相似文献   

19.
Heat-induced alterations in CHO-10B cell Hoechst 33342 (Ho342) permeability in vitro were analyzed by flow cytometry. Immediately after 45.5 degrees C heating, uptake was decreased in a dose-dependent manner with cytotoxicity. Kinetic analysis indicated that a treatment that reduced cell survival to approximately 10%, reduced the maximal velocity, Vmax, to 53% of control and increased the dissociation constant, Km, to 156% of control. Also, little change in Ho342 efflux was found to occur from control up to 90 min after heating. Upon incubation at 37 degrees C after the heat treatment from 1 to 24 hr (depending on the severity of the dose) diffuse heterogeneity of Ho342 staining developed which was not evident immediately after heating. The altered staining was not due to the presence of trypan blue staining cells. Membrane permeabilization and nuclei isolation studies indicated that the lesion responsible was most likely a plasma membrane event. Induction of the heterogenous staining was not inhibited by either actinomycin D or hydroxyurea but was inhibited by incubation at 4 degrees C. An inverse correlation existed between Ho342 permeability and clonogenicity, with nearly a 10-fold difference in survival between the high and low fluorescence intensity sorted cells. Also, larger fractions of heat-sensitive S and G2M-phase cells were found in the highly fluorescent sorted fractions. These results are discussed in terms of the putative molecular events that may be involved in hyperthermic modulation of Ho342 permeability.  相似文献   

20.
We have recently identified and validated the prostate cancer antigen Tomoregulin as a target for the radioimmunotherapy for prostate cancer. Here, we provide evidence that Tomoregulin is an internalizing antigen and a potential target for immunotoxins. First, the cell surface localization of Tomoregulin was confirmed by flow cytometry, and its expression levels were determined by whole-cell binding assays. Second, laser scanning confocal microscopy revealed Tomoregulin internalization into the cytoplasm on antibody binding at 37 degrees C. The internalized Tomoregulin was found to colocalize with acidic vesicles. Third, internalization kinetics assays using (125)I-labeled anti-Tomoregulin mouse monoclonal antibody 2H8 demonstrated that the amount of internalized antigen-antibody complexes increased with time and reached approximately 25% of the total surface antigen after 60 to 90 minutes. Because 2H8 is capable of binding to Tomoregulin on the cell surface and can be internalized, we finally evaluated 2H8 as a means of targeting toxic payloads to prostate cancer cells. 2H8 was coupled to the cytotoxin saporin through a secondary antibody (Mab-ZAP) in indirect immunotoxin assays. Cell killing occurred on Tomoregulin-positive cells (Clone69) at the immunotoxin concentrations not affecting the Tomoregulin-negative cells (PC-3). In contrast to 2H8, the control antibody (mouse anti-c-Myc antibody 9E10) had no effect on cells in the presence of Mab-ZAP. Thus, Tomoregulin internalization confers selective cytotoxicity of immunotoxins on prostate cancer cells, and Tomoregulin-mediated delivery of immunotoxin has potential as a prostate cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号