首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
The aim of this study is to follow the thermodynamic behaviour of Na+ ions, acting as natural counterions of DNA, in the presence of divalent metal ions, by using the23Na NMR technique. With the help of the23Na entropy of fluctuations concept introduced by Lenk, we propose the following decreasing sequence: Mg++, Zn++, Cd++, Mn++, and Cu++, for the magnitude of divalent metal ions interactions with DNA phosphate sites.  相似文献   

3.
4.
The purpose of the present study was to determine the effect of angiotensin II (A-II) on membrane expression of Na+/H+ exchange isoforms NHE3 and NHE2 in the rat renal cortex. A-II (500 ng/kg per min) was chronically infused into the Sprague-Dawley rats by miniosmotic pump for 7 days. Arterial pressure and circulating plasma A-II level were significantly increased in A-II rats as compared to control rats. pH-dependent uptake of 22Na+ study in the presence of 50 μM HOE-694 revealed that Na+ uptake mediated by NHE3 was increased ∼88% in the brush border membrane from renal cortex of A-II-treated rats. Western blotting showed that A-II increased NHE3 immunoreactive protein levels in the brush border membrane of the proximal tubules by 31%. Northern blotting revealed that A-II increased NHE3 mRNA abundance in the renal cortex by 42%. A-II treatment did not alter brush border NHE2 protein abundance in the renal proximal tubules. In conclusion, chronic A-II treatment increases NHE3-mediated Na+ uptake by stimulating NHE3 mRNA and protein content.  相似文献   

5.
Organellar and cytosolic pH homeostasis is central to most cellular processes, including vesicular trafficking, post-translational modification/processing of proteins, and receptor-ligand interactions. SLC9A7 (NHE7) was identified as a unique (Na+, K+)/H+ exchanger that dynamically cycles between the trans-Golgi network (TGN), endosomes and the plasma membrane. Here we have used mass spectrometry to explore the affinity-captured interactome of NHE7, leading to the identification of cytoskeletal proteins, cell adhesion molecules, membrane transporters, and signaling molecules. Among these binding proteins, calcium-calmodulin, but not apo-calmodulin, binds to NHE7 and regulates the organellar transporter activity. Vimentin was co-immunoprecipitated with endogenous NHE7 protein in human breast cancer MDA-MB-231 cells. A sizable population of NHE7 relocalized to focal complexes in migrating cells and showed colocalization with vimentin and actin in focal complexes. Among the NHE7-binding proteins identified, CD44, a cell surface glycoprotein receptor for hyaluronate and other ligands, showed regulated interaction with NHE7. Pretreatment of the cells with phorbol ester facilitated the NHE7-CD44 interaction and the lipid raft association of CD44. When lipid rafts were chemically disrupted, the NHE7-CD44 interaction was markedly reduced. These results suggest potential dual roles of NHE7 in intracellular compartments and subdomains of cell-surface membranes.  相似文献   

6.
Summary The rate of active K+ transport by the isolated lepidopteran midgut shows a rectangular hyperbolic relation to [K+] over the range 20 to 70mm K+ in the absence of any divalent cation. Addition of Ba++ to the hemolymph (K+ uptake) side introduces a linear component to the concentration dependence, such that active K transport is decreased at [K+] of 55mm or less, but increased transiently at higher [K+]. As [Ba++] is increased over the range 2 to 8mm the linear component increases and the saturating component decreases; in 8mm Ba++ the concentration dependence is dominated by the linear component. The effect of Ba++ cannot easily be accounted for by simple competition with K+ for basal membrane uptake sites. Similar effects might be exercised by other alkali earth cations, since the concentration dependence of active K+ transport possesses a substantial linear component in solutions containing 5mm Ca++ and 5mm Mg++ (the alkali earth metal concentrations of standard lepidopteran saline).  相似文献   

7.
We examined the molecular and functional characterization of choline uptake in human colon carcinomas using the cell line HT-29. Furthermore, we explored the possible correlation between choline uptake and cell proliferation. Choline uptake was saturable and mediated by a single transport system. Interestingly, removal of Na+ from the uptake buffer strongly enhanced choline uptake. This increase in component of choline uptake under Na+-free conditions was inhibited by a Na+/H+ exchanger 1 (NHE1) inhibitor. Collapse of the plasma-membrane H+ electrochemical gradient by a protonophore inhibited choline uptake. Choline uptake was inhibited by the choline analogue hemicholinium-3 (HC-3) and various organic cations, and was significantly decreased by acidification of the extracellular medium and by intracellular alkalinization. Real-time PCR revealed that choline transporter-like protein 1 (CTL1), CTL2, CTL4 and NHE1 mRNA are mainly expressed in HT-29 cells. Western blot and immunocytochemical analysis indicated that CTL1 protein was expressed in plasma membrane. The biochemical and pharmacological data indicated that CTL1 is functionally expressed in HT-29 cells and is responsible for choline uptake in these cells. We conclude that choline transporters, especially CTL1, use a directed H+ gradient as a driving force, and its transport functions in co-operation with NHE1. Finally, cell proliferation was inhibited by HC-3 and tetrahexylammonium chloride (THA), which strongly inhibits choline uptake. Identification of this novel CTL1-mediated choline uptake system provides a potential new target for therapeutic intervention.  相似文献   

8.
Homeostatic regulation of the plasma choline concentration depends on the effective functioning of a choline transporter in the kidney. However, the nature of the choline transport system in the kidney is poorly understood. In this study, we examined the molecular and functional characterization of choline uptake in the rat renal tubule epithelial cell line NRK-52E. Choline uptake was saturable and mediated by a single transport system, with an apparent Michaelis-Menten constant (Km) of 16.5 μM and a maximal velocity (Vmax) of 133.9 pmol/mg protein/min. The Vmax value of choline uptake was strongly enhanced in the absence of Na+ without any change in Km values. The increase in choline uptake under Na+-free conditions was inhibited by Na+/H+ exchanger (NHE) inhibitors. Choline uptake was inhibited by the choline uptake inhibitor hemicholinium-3 (HC-3) and organic cations, and was decreased by acidification of the extracellular medium and by intracellular alkalinization. Collapse of the plasma membrane H+ electrochemical gradient by a protonophore inhibited choline uptake. NRK-52E cells mainly express mRNA for choline transporter-like proteins (CTL1 and CTL2), and NHE1 and NHE8. CTL1 protein was recognized in both plasma membrane and mitochondria. CTL2 protein was mainly expressed in mitochondria. The biochemical and pharmacological data indicated that CTL1 is functionally expressed in NRK-52E cells and is responsible for choline uptake. This choline transport system uses a directed H+ gradient as a driving force, and its transport functions in co-operation with NHE8. Furthermore, the presence of CTL2 in mitochondria provides a potential site for the control of choline oxidation.  相似文献   

9.
The Na+/H+ exchanger isoform 1 (NHE1) is an integral membrane protein that regulates intracellular pH by extruding an intracellular H+ in exchange for one extracellular Na+. In this study we examined the effect of site-specific mutagenesis on the pore-lining amino acid Phe161 and effects of mutagenesis on the charged amino acids Asp159 and Asp172. There was no absolute requirement for a carboxyl side chain at amino acid Asp159 or Asp172. Mutation of Asp159 to Asn or Gln maintained or increased the activity of the protein. Similarly, for Asp172, substitution with a Gln residue maintained activity of the protein, even though substitution with an Asn residue was inhibitory. The Asp172Glu mutant possessed normal activity after correction for its aberrant expression and surface targeting. Replacement of Phe161 with a Leu demonstrated that it was not irreplaceable in NHE1 function. However, the mutation Phe161lys inhibited NHE1 function, while the Phe161Ala mutation caused altered NHE1 targeting and expression levels. Our results show that these three amino acids, while being important in NHE1 function, are not irreplaceable. This study demonstrates that multiple substitutions at a single amino acid residue may be necessary to get a clearer picture membrane protein function.  相似文献   

10.
11.
12.
The interaction between nucleic acids and Escherichia coli H-NS, an abundant 15 kDa histone-like protein, has been studied by affinity chromatography, nitrocellulose filtration and fluorescence spectroscopy. Intrinsic fluorescence studies showed that the single Trp residue of H-NS (position 108) has a restricted mobility and is located within an hydrophobic region inaccessible to both anionic and cationic quenchers. Binding of H-NS to nucleic acids, however, results in a change of the microenvironment of the Trp residue and fluorescence quenching; from the titration curves obtained with addition of increasing amounts of poly(dA)-poly(dT) and poly(dC)-poly(dG) it can be estimated that an H-NS dimer in 1.5 x SSC binds DNA with an apparent Ka approximately equal to 1.1 x 10(4) M-1.bp-1. H-NS binds to double-stranded DNA with a higher affinity than the more abundant histone-like protein NS(HU) and, unlike NS, prefers double-stranded to single-stranded DNA and DNA to RNA; both monovalent and divalent cations are required for optimal binding.  相似文献   

13.
Summary The binding of metals (Cu, Fe, Mn and Zn) commonly found in soil and decomposing plant material was studied in the saprophytic fungus,Pithomyces chartarum. Binding of metallic divalent cations was pH-dependent and temperature-independent; equilibrium occurred within 10 min in stirred suspensions of conidia, but mycelia had no detectable affinity for the metals. Germ tube emergence and elongation were stimulated by high concentrations of Mn++ and Zn++, byt not by Cu++ or Fe++. Metal binding did not obey a simple adsorption isotherm; Scatchard plot analysis indicated two classes of binding sites on the conidial surfaces, one class having association constants about 35-fold greater than those of the other. Calculations based on the conidial surface area as a smooth ellipsoid and the radii of the divalent cations indicated a multilayered coverage of the conidia by the metals at saturation concentrations. Binding sites were stable to boiling, dilute acid and base and lipid solvent extraction. The metals competed with the fungicide, thiabendazole, for binding sites on conidial surfaces.  相似文献   

14.
The binding site and the geometry of Co(III)meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (CoTMPyP) complexed with double helical poly(dA)·poly(dT) and poly(dG)·poly(dC), and with triple helical poly(dA)·[poly(dT)]2 and poly(dC)·poly(dG)·poly(dC)+ were investigated by circular and linear dichroism (CD and LD). The appearance of monomeric positive CD at a low [porphyrin]/[DNA] ratio and bisignate CD at a high ratio of the CoTMPyP-poly(dA)·poly(dT) complex is almost identical with its triplex counterpart. Similarity in the CD spectra was also observed for the CoTMPyP-poly(dG)·poly(dC) and -poly(dC)·poly(dG)·poly(dC)+ complex. This observation indicates that both monomeric binding and stacking of CoTMPyP to these polynucleotides occur at the minor groove. However, different binding geometry of CoTMPyP, when bind to AT- and GC-rich polynucleotide, was observed by LD spectrum. The difference in the binding geometry may be attributed to the difference in the interaction between polynucleotides and CoTMPyP: in the GC polynucleotide case, amine group protrude into the minor groove while it is not present in the AT polynucleotide.  相似文献   

15.
Abstract

Resonance Raman spectra excited at 257 nm are reported for the complexes of the Nickel, Cobalt and Zinc derivatives of Tetrakis(4-N-methylpyridyl)porphine with poly(dA.dT)2, poly(dA)poly(dT), poly(dG.dC)2 and poly(dG).poly(dC). These spectra are interpreted as evidence of multiple outside binding modes with poly(dA).poly(dT), and of evidence for an outside binding mode with Poly(dG.dC)2. Some results obtained for the zinc derivative with poly(dA).poly(dT) suggest a binding mode peculiar to this derivative.  相似文献   

16.
The equilibrium binding of the cytotoxic plant alkaloid berberine to various DNAs and energetics of the interaction have been studied. At low ratios of bound alkaloid to base pair, the binding exhibited cooperativity to natural DNAs having almost equal proportions of AT and GC sequences. In contrast, the binding was non-cooperative to DNAs with predominantly high AT or GC sequences. Among the synthetic DNAs, cooperative binding was observed with poly(dA).poly(dT) and poly(dG).poly(dC) while non-cooperative binding was seen with poly(dA–dT).poly(dA–dT) and poly(dG–dC).poly(dG–dC). Both cooperative and non-cooperative bindings were remarkably dependent on the salt concentration of the media. Linear plots of ln Ka versus [Na+] for poly(dA).poly(dT) and poly(dA–dT).poly(dA–dT) showed the release of 0.56 and 0.75 sodium ions respectively per bound alkaloid. Isothermal titration calorimetry results revealed the binding to be exothermic and favoured by both enthalpy and entropy changes in all DNAs except the two AT polymers and AT rich DNA, where the same was predominantly entropy driven. Heat capacity values (ΔCpo) of berberine binding to poly(dA).poly(dT), poly(dA–dT).poly(dA–dT), Clostridium perfringens and calf thymus DNA were − 98, − 140, − 120 and − 110 cal/mol K respectively. This study presents new insights into the binding dependent base pair heterogeneity in DNA conformation and the first complete thermodynamic profile of berberine binding to DNAs.  相似文献   

17.
IRBIT (also called AHCYL1) was originally identified as a binding protein of the intracellular Ca2 + channel inositol 1,4,5-trisphosphate (IP3) receptor and functions as an inhibitory regulator of this receptor. Unexpectedly, many functions have subsequently been identified for IRBIT including the activation of multiple ion channels and ion transporters, such as the Na+/HCO3 co-transporter NBCe1-B, the Na+/H+ exchanger NHE3, the Cl channel cystic fibrosis transmembrane conductance regulator (CFTR), and the Cl/HCO3 exchanger Slc26a6. The characteristic serine-rich region in IRBIT plays a critical role in the functions of this protein. In this review, we describe the evolution, domain structure, expression pattern, and physiological roles of IRBIT and discuss the potential molecular mechanisms underlying the coordinated regulation of these diverse ion channels/transporters through IRBIT. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

18.
The cloning of cDNA and an examination of the tissue distribution of Na+/H+ exchanger 3 (NHE3) were carried out in the Japanese black salamander, Hynobius nigrescens. The cellular localization of Hynobius NHE3 was examined by in situ hybridization and immunohistochemistry during ontogeny in the nephron of the pronephros and mesonephros of the salamander. The partial amino acid sequence of Hynobius NHE3 was 81% and 72% identical to rat NHE3 and stingray NHE3, respectively. Hynobius NHE3 mRNA and protein were exclusively expressed along the late portion of the distal tubule to the anterior part of the pronephric duct of premetamorphic larvae (IY stages 43–50). NHE3 mRNA was expressed in the pronephros but not in the external gills in the larvae at the digit differentiation stage (IY stage 50). In the adult, mRNA was strongly expressed in the mesonephros but not in the ventral and dorsal skin. In juvenile and adult specimens, NHE3 immunoreactivity was observed at the apical membrane of the initial parts of the distal tubules of the mesonephric kidney. Immunohistochemical and in situ hybridization studies suggested that Na+ absorption coupled with H+ secretion via NHE3 occurred in the distal nephron of the pronephros and mesonephros. This is the first study to indicate NHE3 expression during ontogeny in amphibians. This work was supported in part by a research grant (a priority project in Science Faculty) from the University of Toyama to M.U.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号