首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silene latifolia is a dioecious plant in which sex is determined by heteromorphic sex chromosomes. In female plants, stamen development is arrested before microspore mother cells are formed. In this study, we isolated four cDNAs (SlSKP1-1 to 4) encoding ASK1-like protein as expression markers to reveal when expression levels are reduced in arrested stamens of female flowers. Expression patterns of the SlSKP1 genes were analyzed by in-situ hybridization. We use the flower development classification of Grant et al. (in Plant J 6:471–480, 1994). SlSKP1 genes were highly expressed in primary parietal cells and primary sporogenous cells that develop into microspore mother cells in male flowers. Expression levels started to be reduced in the external stamens of the female flowers when stamen development was arrested at stage 7. Although microspore mother cells could not be developed in female flowers and SlSKP1 expression may be unnecessary in arrested stamens, SlSKP1 genes were still expressed in sporogenous cells of degenerated stamens at stage 8. Parietal cells stopped differentiating earlier than sporogenous cells in arrested stamens. These results suggest that not all types of cell are arrested simultaneously at a particular stage of stamen development during stamen suppression of S. latifolia.  相似文献   

2.
Eucalypt MADS-Box Genes Expressed in Developing Flowers   总被引:10,自引:0,他引:10       下载免费PDF全文
Three MADS-box genes were identified from a cDNA library derived from young flowers of Eucalyptus grandis W. Hill ex Maiden. The three egm genes are single-copy genes and are expressed almost exclusively in flowers. The egm1 and egm3 genes shared strongest homology with other plant MADS-box genes, which mediate between the floral meristem and the organ-identity genes. The egm3 gene was also expressed strongly in the receptacle or floral tube, which surrounds the carpels in the eucalypt flower and bears the sepals, petals, and numerous stamens. There appeared to be a group of genes in eucalypts with strong homology with the 3′ region of the egm1 gene. The egm2 gene was expressed in eucalypt petals and stamens and was most homologous to MADS-box genes, which belong to the globosa group of genes, which regulate organogenesis of the second and third floral whorls. The possible role of these three genes in eucalypt floral development is discussed.  相似文献   

3.
B-function genes determine the identity of petals and stamens in the flowers of model plants such as Arabidopsis and Antirrhinum . Here, we show that a putative B-function gene BpMADS2 , a birch homolog for PISTILLATA , is expressed in stamens and carpels of birch inflorescences. We also present a novel birch gene BpMADS8 , a homolog for APETALA3 / DEFICIENS , which is expressed in stamens. Promoter-GUS analysis revealed that BpMADS2 promoter is active in the receptacle of Arabidopsis flower buds while BpMADS8 promoter is highly specific in mature stamens. BpMADS2 promoter:: BARNASE construct prevented floral organ development in Arabidopsis and tobacco. In birch, inflorescences with degenerated stamens and carpels were obtained. BpMADS8::BARNASE resulted in degeneration of stamens in Arabidopsis and birch causing male sterility. In tobacco, only sepals were developed instead of normal flowers. The results show that the BpMADS2::BARNASE construct can be used to specifically disrupt floral organ development in phylogenetically distant plant species. The stamen-specific promoter of BpMADS8 is a promising tool for biotechnological applications in inducing male sterility or targeting gene expression in the late stamen development.  相似文献   

4.
Gu HT  Wang DH  Li X  He CX  Xu ZH  Bai SN 《The New phytologist》2011,192(3):590-600
? Production of unisexual flowers is an important mechanism that promotes cross-pollination in angiosperms. We previously identified primordial anther-specific DNA damage and organ-specific ethylene perception responsible for the arrest of stamen development in female flowers, but little is known about how the two processes are linked. ? To identify potential links between the two processes, we performed suppression subtractive hybridization (SSH) on cucumber (Cucumis sativus L.) stamens of male and female flowers at stage 6, with stamens at stage 5 of bisexual flowers as a control. ? Among the differentially expressed genes, we identified an expressed sequence tag (EST) encoding a cucumber homolog to an Arabidopsis calcium-dependent nuclease (CAN), designated CsCaN. Full-length CsCaN cDNA and the respective genomic DNA sequence were cloned and characterized. The CsCaN protein exhibited calcium-dependent nuclease activity. CsCaN showed ubiquitous expression; however, increased gene expression was detected in the stamens of stage 6 female flowers compared with male flowers. As expected, CsCaN expression was ethylene inducible. It was of great interest that CsCaN was post-translationally modified. ? This study demonstrated that CsCaN is a novel cucumber nuclease gene, whose DNase activity is regulated at multiple levels, and which could be involved in the primordial anther-specific DNA damage of developing female cucumber flowers.  相似文献   

5.
B-class floral homeotic genes are required for the proper formation and identity of petals and stamens in dicot flowers. A partial cDNA clone encoding a B-class gene, BnAP3 (Brassica napus APETALA3), was isolated from a B. napus cDNA library derived from young inflorescence meristems. The 5' region of the cDNA was retrieved by RACE. The deduced amino acid sequence of the full-length clone exhibited high similarity to APETALA3 of Arabidopsis thaliana and functionally homologous proteins from other species. 5' RACE and Southern analysis suggests that BnAP3 has multiple alleles in B. napus. Expression analysis assayed by RT-PCR shows that BnAP3 is expressed in floral tissues, as well as non-floral tissues such as root and bract. Transformation of wild-type A. thaliana and B. napus plants with BnAP3 under the control of a promoter specific to reproductive organs converts carpels to stamens, while the expression of this construct in A. thaliana plants mutant for AP3 restores the development of third-whorl stamens in addition to directing a carpel to stamen conversion in the fourth whorl.  相似文献   

6.
7.
The function of stamen dimorphism in the breeding system of the alpine shrub Rhododendron ferrugineum was studied in two populations in the French Alps. This species has pentameric flowers with two whorls of stamens: an inner whorl of five long stamens and an outer whorl of short stamens. We studied the development of stamens from buds to mature flowers (measurement of the filament, anther, and style lengths at five successive phenological stages) and compared the size and position of reproductive organs at maturity in control and partially emasculated flowers (removal of long-level stamens) to determine whether the presence of long-level stamens constitutes a constraint for the development of the short-level ones. Stamen dimorphism can be observed early in stamen development, from the bud stage of the year prior to flowering. At this early stage, meiosis had already occurred. Emasculation of the long-level stamens induced the short-level ones to grow longer than in normal conditions. We also performed seven pollination treatments on ten randomly chosen individuals in each population, and the number of seeds following each treatment was recorded. Results from these treatments showed that R. ferrugineum produced spontaneous selfed seeds in the absence of pollinators. However, no seed was produced when short-level stamens were emasculated and pollinators excluded, suggesting that long-level stamens are not responsible for selfing in the absence of pollinators and that reproductive assurance is promoted by short-level stamens.  相似文献   

8.
Ectopic expression of OsYAB1causes extra stamens and carpels in rice   总被引:1,自引:0,他引:1  
  相似文献   

9.
SUPERMAN, a regulator of floral homeotic genes in Arabidopsis.   总被引:25,自引:0,他引:25  
We describe a locus, SUPERMAN, mutations in which result in extra stamens developing at the expense of the central carpels in the Arabidopsis thaliana flower. The development of superman flowers, from initial primordium to mature flower, is described by scanning electron microscopy. The development of doubly and triply mutant strains, constructed with superman alleles and previously identified homeotic mutations that cause alterations in floral organ identity, is also described. Essentially additive phenotypes are observed in superman agamous and superman apetala2 double mutants. The epistatic relationships observed between either apetala3 or pistillata and superman alleles suggest that the SUPERMAN gene product could be a regulator of these floral homeotic genes. To test this, the expression patterns of AGAMOUS and APETALA3 were examined in superman flowers. In wild-type flowers, APETALA3 expression is restricted to the second and third whorls where it is required for the specification of petals and stamens. In contrast, in superman flowers, APETALA3 expression expands to include most of the cells that would normally constitute the fourth whorl. This ectopic APETALA3 expression is proposed to be one of the causes of the development of the extra stamens in superman flowers. The spatial pattern of AGAMOUS expression remains unaltered in superman flowers as compared to wild-type flowers. Taken together these data indicate that one of the functions of the wild-type SUPERMAN gene product is to negatively regulate APETALA3 in the fourth whorl of the flower. In addition, superman mutants exhibit a loss of determinacy of the floral meristem, an effect that appears to be mediated by the APETALA3 and PISTILLATA gene products.  相似文献   

10.
The dioecious white campion (Silene latifolia) has been chosen as a working model for sexual development. In this species, sexual dimorphism is achieved through two distinct developmental blocks: inhibition of carpel development in male flowers, and early arrest of anther differentiation in female flowers. The combined advantages of the dioecious system and the availability of a sexual mutant lacking both male and female reproductive organs have been exploited in a molecular subtraction approach using male and asexual flower buds. This resulted in the cloning of 22 cDNA clones expressed in stamens at distinct stages of development. Fourteen of these clones corresponded to genes whose expression was detected in pre-meiotic stamens, a stage of development for which very little information is presently available. Furthermore, the absence of similarities with database sequences for ten clones suggests that they represent novel genes. Functional analysis of each clone will enable their positioning within the reproductive organ developmental pathway(s). In parallel, these clones are being exploited as developmental markers of early differentiation within the flower.  相似文献   

11.
12.
Gibberellin 3-oxidase (GA3ox) catalyzes the final step in the synthesis of bioactive gibberellins (GAs). We examined the expression patterns of all four GA3ox genes in Arabidopsis thaliana by promoter-beta-glucuronidase gene fusions and by quantitative RT-PCR and defined their physiological roles by characterizing single, double, and triple mutants. In developing flowers, GA3ox genes are only expressed in stamen filaments, anthers, and flower receptacles. Mutant plants that lack both GA3ox1 and GA3ox3 functions displayed stamen and petal defects, indicating that these two genes are important for GA production in the flower. Our data suggest that de novo synthesis of active GAs is necessary for stamen development in early flowers and that bioactive GAs made in the stamens and/or flower receptacles are transported to petals to promote their growth. In developing siliques, GA3ox1 is mainly expressed in the replums, funiculi, and the silique receptacles, whereas the other GA3ox genes are only expressed in developing seeds. Active GAs appear to be transported from the seed endosperm to the surrounding maternal tissues where they promote growth. The immediate upregulation of GA3ox1 and GA3ox4 after anthesis suggests that pollination and/or fertilization is a prerequisite for de novo GA biosynthesis in fruit, which in turn promotes initial elongation of the silique.  相似文献   

13.
Diverse roles for MADS box genes in Arabidopsis development.   总被引:17,自引:1,他引:16       下载免费PDF全文
Members of the MADS box gene family play important roles in flower development from the early step of determining the identity of floral meristems to specifying the identity of floral organ primordia later in flower development. We describe here the isolation and characterization of six additional members of this family, increasing the number of reported Arabidopsis MADS box genes to 17. All 11 members reported prior to this study are expressed in flowers, and the majority of them are floral specific. RNA expression analyses of the six genes reported here indicate that two genes, AGL11 and AGL13 (AGL for AGAMOUS-like), are preferentially expressed in ovules, but each has a distinct expression pattern. AGL15 is preferentially expressed in embryos, with its onset at or before the octant stage early in embryo development. AGL12, AGL14, and AGL17 are all preferentially expressed in root tissues and therefore represent the only characterized MADS box genes expressed in roots. Phylogenetic analyses showed that the two genes expressed in ovules are closely related to previously isolated MADS box genes, whereas the four genes showing nonfloral expression are more distantly related. Data from this and previous studies indicate that in addition to their proven role in flower development, MADS box genes are likely to play roles in many other aspects of plant development.  相似文献   

14.
Floral organ identity B class genes are generally recognized as being required for development of petals and stamens in angiosperm flowers. Spinach flowers are distinguished in their complete absence of petals in both sexes, and the absence of a developed stamen whorl in female flowers. As such, we hypothesized that differential expression of B class floral identity genes is integral to the sexual dimorphism in spinach flowers. We isolated two spinach orthologs of Arabidopsis B class genes by 3 and 5 RACE. Homology assignments were tested by comparisons of percent amino acid identities, searches for diagnostic consensus amino acid residues, conserved motifs, and phylogenetic groupings. In situ hybridization studies demonstrate that both spinach B class genes are expressed throughout the male floral meristem in early stages, and continue to be expressed in sepal primordia in reduced amounts at later stages of development. They are also highly expressed in the third whorl primordia when they arise and continue to be expressed in these tissues through the development of mature anthers. In contrast, neither gene can be detected in any stage in female flowers by in situ analyses, although northern blot experiments indicate low levels of SpAP3 within the inflorescence. The early, strong expressions of both B class floral identity genes in male floral primordia and their absence in female flowers demonstrate that B class gene expression precedes the origination of third whorl primordia (stamen) in males and is associated with the establishment of sexual floral dimorphism as it initiates in the first (sepal) whorl. These observations suggest that regulation of B class floral identity genes has a role in the development of sexual dimorphism and dioecy in spinach rather than being a secondary result of organ abortion.Electronic Supplementary Material Supplementary material is available for this article at Edited by G. Jürgens  相似文献   

15.
Maize develops separate male and female flowers in different locations on a single plant. Male flowers develop at the tip of the shoot in the tassel, and female flowers develop on the ears, which terminate short branches. The development of male flowers in tassels and female flowers in ears is the result of selective abortion of pistils or stamens, respectively, in developing florets. Genetic analysis has shown that stamen abortion and pistil abortion are under the control of two different genetic pathways. Local levels of the plant hormone gibberellic acid determine whether or not stamens are suppressed. Pistil abortion is under the regulation of the tassel seed genes, one of which has been shown to encode a short-chain alcohol dehydrogenase. The tassel seed genes play a role in regulating the fate of inflorescence meristems as well as pistil primordium fate.  相似文献   

16.
17.
18.
DEFICIENS (DEF) and GLOBOSA (GLO) function in petal and stamen organ identity in Antirrhinum and are orthologs of APETALA3 and PISTILLATA in Arabidopsis. These genes are known as B-function genes for their role in the ABC genetic model of floral organ identity. Phylogenetic analyses show that DEF and GLO are closely related paralogs, having originated from a gene duplication event after the separation of the lineages leading to the extant gymnosperms and the extant angiosperms. Several additional gene duplications followed, providing multiple potential opportunities for functional divergence. In most angiosperms studied to date, genes in the DEF/GLO MADS-box subfamily are expressed in the petals and stamens during flower development. However, in some angiosperms, the expression of DEF and GLO orthologs are occasionally observed in the first and fourth whorls of flowers or in nonfloral organs, where their function is unknown. In this article we review what is known about function, phylogeny, and expression in the DEF/GLO subfamily to examine their evolution in the angiosperms. Our analyses demonstrate that although the primary role of the DEF/GLO subfamily appears to be in specifying the stamens and inner perianth, several examples of potential sub- and neofunctionalization are observed.  相似文献   

19.
植物MADS-box基因家族编码高度保守的转录因子,参与了包括花发育在内的多种发育进程。为阐释双子叶植物草原龙胆(Eustoma grandiflorum)花器官发育的分子调控机制,根据MADS-box基因保守序列设计简并引物,用3'-RACE方法从草原龙胆中克隆了4个花器官特异表达的MADS-box家族基因。序列和系统进化树分析表明,这4个基因分别与金鱼草DEF基因、矮牵牛FBP3基因和FBP6基因以及拟南芥SEP3基因具有很高的同源性,分别属DEF/GLO、AG-like和SEP-like亚家族。从而将这4个基因分别命名为EgDEF1、EgGLO1、EgPLE1和EgSEP3-1。推导的氨基酸序列显示,这些基因编码的蛋白质都包含高度保守的MADS结构域、I结构域和K结构域,每个基因均有其亚家族特异的C-末端功能域。基因特异性RT-PCR检测结果显示:EgDEF1在萼片、花瓣、雄蕊及胚珠中高丰度表达,在心皮中微量表达;而EgGLO1在花瓣和雄蕊中高丰度表达,在萼片中微量表达;在根、茎、叶等营养器官中均未检测到上述2个基因的表达。EgPLE1在雌蕊、心皮和胚珠中特异表达,但表达的丰度存在差异,在雄蕊中的表达有所减弱。SEP-like亚家族基因EgSEP3-1在四轮花器官和胚珠中均特异表达,且表达丰度相对一致。  相似文献   

20.
《植物生态学报》2017,41(11):1190
Aims Viola philippica is a species with a typical chasmogamous-cleistogamous (CH-CL) mixed breeding system. It provides a flower model system to investigate floral organs development under different photoperiods. Morphological changes of intermediate cleistogamous (inCL) flowers have been observed, the trends in variation of changes from CH flowers to CL flowers or from CL flowers to CH flowers have been analyzed, the localized effects of poorly developed stamens and petals in CL and inCL flowers have been identified. This research provided morphology and structural changes with implication for the evolutionary significance of the dimorphic flower formation for further study in dimorphic flower development.Methods We used methods of anatomy and structural analysis to observe the morphological structures of flowers under different photoperiods.Important findings Photoperiod played an important role in the development of CH and CL flowers in V. philippica. Under short-day light and intermediate-day light, both CH and inCL flowers developed simultaneously. Most of the floral buds were CH flowers under a photoperiod of short-day light, but most of the floral buds were inCL flowers under mid-day light. Complete CL flowers formed under long-day lights. However, there were a series of transitional types in the number and morphology of stamens and petals among inCL flowers, including five stamens with three petals related to CH flowers and two stamens with one petal related to CL flowers. The former type was dominant under short-day light conditions, and the latter type was dominant under mid-day light. Further more, there were localized effects in stamen and petal development for CL and inCL flowers. The development of ventral lower petal (corresponding to the lower petal with spur of CH flower) and the adjacent two stamens in inCL flowers were best, and the back petal was similar to that of CL flowers, an organ primordium structure. The adjacent stamens with the back petals tended to be poorly developed. In extreme cases, these stamens in inCL flowers had no pollen sac, only a membranous appendage or even a primordium structure. When the plants with CL or CH flowers were placed under short-day light or long-day light, the newly induced flowers all showed a series of inCL flower types, finally the CL flowers transformed into CH flowers, and the CH flowers transformed into CL flowers. This result indicates the gradual effects of different photoperiods on dimorphic flowers development of V. philippica. A long photoperiod could inhibit the development of partial stamens and petals, and a short photoperiod could prevent the suppression of long-day light and promote the development of stamens and petals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号