首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The small size of miRNAs makes profiling of all the 462 known human miRNAs difficult using single cell samples. Recently, we showed that judicious sequence partitioning between RT primers and second strand synthesis primers permitted multiplexed RT-PCR amplification of miRNA in very small samples to allow individual real time PCR quantification. Here, we show that zip coding the primers and TaqMan probes with sequences specific to each miRNA greatly improves reaction specificity, which permits the profiling of all miRNAs in a single multiplexed RT-PCR reaction.  相似文献   

2.
Aims:  To develop a strain-specific rapid assay for identification and quantification of Lactobacillus rhamnosus GG in human faecal samples.
Methods and Results:  A unique random amplified polymorphic DNA (RAPD) band of the L. rhamnosus GG strain was isolated and sequenced. Strain-specific polymerase chain reaction (PCR) primers and probes were designed based on the sequence. Quantification was performed by the real-time PCR using a fluorescent resonance energy transfer (FRET) system. The specificity of the assay was tested with DNA isolated from a set of known strains and human faecal samples. The analytical sensitivity of the method for L. rhamnosus GG was about 10 CFU per assay, which corresponds to 105 CFU g−1 of wet faeces.
Conclusions:  Quantitative real-time PCR is a suitable method for strain-specific identification of L. rhamnosus GG in human faecal samples.
Significance and Impact of the Study:  Lactobacillus rhamnosus GG is one of the most studied probiotic strains in clinical trials but still lacks a DNA-based identification method. This study describes a real-time PCR method for strain-specific identification and quantification of L. rhamnosus GG in human faecal samples.  相似文献   

3.
The Invader PLUS technology is a sensitive, rapid method for the detection and quantification of nucleic acid. While the original technology is based on the amplification by polymerase chain reaction (PCR) of the target sequence followed by its detection using the Invader technology, the current modification allows simultaneous PCR amplification and Invader reaction. The PCR primers and the Invader probes are designed to operate at the same temperature. This allows simpler design and faster results. This technology has been applied for the quantification of six periodontitis-related bacteria (Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Toreponema denticola, Tannerella forsythensis and Fusobacterium nucleatum). Direct comparison of this modified Invader PLUS with real-time PCR demonstrated similar linear range. Furthermore, testing of 64 volunteers showed a good correlation between both technologies with correlation factors r2 spanning between 0.827 and 0.987. We demonstrated here that the proposed improvement of the Invader PLUS allows the detection and quantification of DNA sequences using a simple design and protocol that can be implemented in clinical testing.  相似文献   

4.
应用real-timePCR法快速定量人类粪便中双歧杆菌的研究   总被引:1,自引:0,他引:1  
目的建立快速、准确从粪便标本中定量双歧杆菌的RT—PCR技术。方法传统培养定量法,普通PCR定量法,real—timePCR比较测量。结果(I)粪便标本前处理采取简单的离心和清洗、稀释步骤能去除粪便标本中的抑制物,实现不提取DNA直接进行PCR、real—time定量粪便中双歧杆菌。(2)本实验建立的PCR方法直接半定量粪便双歧杆菌技术在双歧杆菌值介于10^3~10^7CFU/ml时具有较好的分辨率,粪便标本普通PCR得理论菌数与培养得菌数值之间差异无显著性(P〉0.05);real-timePCR直接定量双歧杆菌技术在双歧杆菌值介于10^1-10^7CFU/ml时具有较好的分辨率,粪便标本RT—PCR得理论菌数与培养得菌数值之间差异无显著性(P〉0.05)。结论利用PCR、real—timePCR直接半定量和定量粪便中的双歧杆菌可行。  相似文献   

5.
Polymerase chain reaction (PCR) is a sensitive and rapid method for the diagnosis of canine Leishmania infection and can be performed on a variety of biological samples, including peripheral blood, lymph node, bone marrow and skin. Standard PCR requires electrophoretic analysis of the amplification products and is usually not suitable for quantification of the template DNA (unless competitor-based or other methods are developed), being of reduced usefulness when accurate monitoring of target DNA is required. Quantitative real-time PCR allows the continuous monitoring of the accumulation of PCR products during the amplification reaction. This allows the identification of the cycle of near-logarithmic PCR product generation (threshold cycle) and, by inference, the relative quantification of the template DNA present at the start of the reaction. Since the amplification product are monitored in "real-time" as they form cycle-by-cycle, no post-amplification handling is required. The absolute quantification is performed according either to an internal standard co-amplified with the sample DNA, or to an external standard curve obtained by parallel amplification of serial known concentrations of a reference DNA sequence. From the quantification of the template DNA, an estimation of the relative load of parasites in the different samples can be obtained. The advantages compared to standard and semi-quantitative PCR techniques are reduction of the assay's time and contamination risks, and improved sensitivity. As for standard PCR, the minimal components of the quantitative PCR reaction mixture are the DNA target of the amplification, an oligonucleotide primer pair flanking the target sequence, a suitable DNA polymerase, deoxynucleotides, buffer and salts. Different technologies have been set up for the monitoring of amplification products, generally based on the use of fluorescent probes. For instance, SYBR Green technology is a non-specific detection system based on a fluorescent dsDNA intercalator and it is applicable to all potential targets. TaqMan technology is more specific since performs the direct assessment of the amount of amplified DNA using a fluorescent probe specific for the target sequence flanked by the primer pair. This probe is an oligonucleotide labelled with a reporter dye (fluorescent) and a quencher (which absorbs the fluorescent signal generated by the reporter). The thermic protocol of amplification allows the binding of the fluorescent probe to the target sequence before the binding of the primers and the starting of the polymerization by Taq polymerase. During polymerization, 5'-3' exonuclease activity of Taq polymerase digests the probe and in this way the reporter dye is released from the probe and a fluorescent signal is detected. The intensity of the signal accumulates at the end of each cycle and is related to the amount of the amplification product. In recent years, quantitative PCR methods based either on SYBR Green or TaqMan technology have been set up for the quantification of Leishmania in mouse liver, mouse skin and human peripheral blood, targeting either single-copy chromosomal or multi-copy minicircle sequences with high sensitivity and reproducibility. In particular, real-time PCR seems to be a reliable, rapid and noninvasive method for the diagnosis and follow up of visceral leishmaniasis in humans. At present, the application of real-time PCR for research and clinical diagnosis of Leishmania infection in dogs is still foreseable. As for standard PCR, the high sensitivity of real-time PCR could allow the use of blood sampling that is less invasive and easily performed for monitoring the status of the dogs. The development of a real-time PCR assay for Leishmania infantum infection in dogs could support the standard and optimized serological and PCR methods currenly in use for the diagnosis and follow-up of canine leishmaniasis, and perhaps prediction of recurrences associated with tissue loads of residual pathogens after treatment. At this regard, a TaqMan Real Time PCR method developed for the quantification of Leishmania infantum minicircle DNA in peripheral blood of naturally infected dogs sampled before and at different time points after the beginning of a standard antileishmanial therapy will be illustrated.  相似文献   

6.
The evolution of fungicide resistance within populations of plant pathogens must be monitored to develop management strategies. Such monitoring often is based on microbiological tests, such as microtiter plate assays. Molecular monitoring methods can be considered if the mutations responsible for resistance have been identified. Allele-specific real-time PCR approaches, such as amplification refractory mutation system (ARMS) PCR and mismatch amplification mutation assay (MAMA) PCR, are, despite their moderate efficacy, among the most precise methods for refining SNP quantification. We describe here a new real-time PCR method, the allele-specific probe and primer amplification assay (ASPPAA PCR). This method makes use of mixtures of allele-specific minor groove binder (MGB) TaqMan probes and allele-specific primers for the fine quantification of SNPs from a pool of DNA extracted from a mixture of conidia. It was developed for a single-nucleotide polymorphism (SNP) that is responsible for resistance to the sterol biosynthesis inhibitor fungicide fenhexamid, resulting in the replacement of the phenylalanine residue (encoded by the TTC codon) in position 412 of the enzymatic target (3-ketoreductase) by a serine (TCC), valine (GTC), or isoleucine (ATC) residue. The levels of nonspecific amplification with the ASPPAA PCR were reduced at least four times below the level of currently available allele-specific real-time PCR approaches due to strong allele specificity in amplification cycles, including two allele selectors. This new method can be used to quantify a complex quadriallelic SNP in a DNA pool with a false discovery rate of less than 1%.  相似文献   

7.
Adenoviruses 40 and 41 have been recognized as important etiological agents of gastroenteritis in children. A real-time PCR method (TaqMan assay) was developed for rapid quantification of adenovirus 40 (Ad40) by amplifying an 88 bp sequence from the hexon gene. To establish a quantification standard curve, a 1090 bp hexon region of Ad40 was amplified and cloned into the pGEM-T Vector. A direct correlation was observed between the fluorescence threshold cycle number (Ct) and the starting quantity of Ad40 hexon gene. The quantification was linear over 6-log units and the amplification efficiency averaged greater than 95%. Seeding studies using various environmental matrices (including sterile water, creek water, brackish estuarine water, ocean water, and secondary sewage effluent) suggest that this method is applicable to environmental samples. However, real-time PCR was sensitive to inhibitors present in the environmental samples. Lower efficiency of PCR amplification was found in secondary sewage effluent and creek waters. Application of the method to fecal contaminated waters successfully quantified the presence of Ad40. The sensitivity of the real-time PCR is comparable to the traditional nested PCR assay for environmental samples. In addition, the real-time PCR assay offers the advantage of speed and insensitivity to contamination during PCR set up. The real-time PCR assay developed in this study is suitable for quantitative determination of Ad40 in environmental samples and represents a considerable advancement in pathogen quantification in aquatic environments.  相似文献   

8.
应用TaqMan荧光定量PCR检测土拉弗朗西斯菌   总被引:2,自引:0,他引:2  
目的:利用Roche LightCycler实时定量PCR系统建立一种快速、灵敏、特异的检测土拉弗朗西斯菌的方法。方法:基于TaqMan荧光探针实时定量PCR技术,选择土拉弗朗西斯菌染色体上的特异序列[醇醛酮还原酶(AKR)和外膜蛋白FopA基因]作为检测靶序列,建立土拉弗朗西斯菌实时定量PCR检测方法;评价该检测方法的特异性和灵敏性;采用克隆菌株污染环境土壤来模拟实际样品,评价该检测方法在快速检测与现场检测等实际应用中的表现。结果:优化筛选基因组中的FT-AKR和FT-fopA片段作为检测靶序列,所建立的土拉弗朗西斯菌实时定量PCR检测方法检测克隆菌株质粒的灵敏度均为10个拷贝/每个反应体系;以其他非土拉弗朗西斯菌为模板未出现非特异扩增;模拟环境土壤样品检测灵敏度2个引物对分别为440和960CFU/g土壤;盲测实验结果显示对于灵敏度范围内的阳性样本均能正确识别,并能正确检测出不同浓度的阳性样本。以FT-fopA片段为靶序列的扩增效率不及基于FT-AKR引物对的扩增。结论:基于FT-AKR片段的引物对扩增效率高,检测土拉弗朗西斯菌具有特异、灵敏的特点,对临床诊断、环境污染监测、防治生物突发事件等具有重要意义。  相似文献   

9.
A real-time RT-PCR assay using newly designed primers was developed to analyze developmental and adult MHC mRNA expression both in skeletal muscles and single fibers. Only 4 ng of total RNA was necessary for the analysis of the relative mRNA expression of MHC genes. Different validation steps were realized concerning both specificity and sensitivity of each primer set, and linearity and efficiency of each real-time PCR amplification. Then, quantification of MHC mRNA in neonatal and adult muscles as well as in single fibers was done by the ΔCT method, with CycA gene as the reference gene. Due to a higher sensitivity than that of a competitive PCR method, we demonstrated that this assay is suitable to study very low level of MHC mRNA expression as developmental MHC in adult muscle and to quantify mRNA from very small samples.  相似文献   

10.
The application of a real-time quantitative PCR method (5' nuclease assay), based on the use of a probe labeled at its 5' end with a stable, fluorescent lanthanide chelate, for the quantification of human fecal bifidobacteria was evaluated. The specificities of the primers and the primer-probe combination were evaluated by conventional PCR and real-time PCR, respectively. The results obtained by real-time PCR were compared with those obtained by fluorescent in situ hybridization, the current gold standard for intestinal microbiota quantification. In general, a good correlation between the two methods was observed. In order to determine the detection limit and the accuracy of the real-time PCR procedure, germfree rat feces were spiked with known amounts of bifidobacteria and analyzed by both methods. The detection limit of the method used in this study was found to be about 5 x 10(4) cells per g of feces. Both methods, real-time PCR and fluorescent in situ hybridization, led to an accurate quantification of the spiked samples with high levels of bifidobacteria, but real-time PCR was more accurate for samples with low levels. We conclude that the real-time PCR procedure described here is a specific, accurate, rapid, and easy method for the quantification of bifidobacteria in feces.  相似文献   

11.
Real-time PCR data analysis for quantification has been the subject of many studies aimed at the identification of new and improved quantification methods. Several analysis methods have been proposed as superior alternatives to the common variations of the threshold crossing method. Notably, sigmoidal and exponential curve fit methods have been proposed. However, these studies have primarily analyzed real-time PCR with intercalating dyes such as SYBR Green. Clinical real-time PCR assays, in contrast, often employ fluorescent probes whose real-time amplification fluorescence curves differ from those of intercalating dyes. In the current study, we compared four analysis methods related to recent literature: two versions of the threshold crossing method, a second derivative maximum method, and a sigmoidal curve fit method. These methods were applied to a clinically relevant real-time human herpes virus type 6 (HHV6) PCR assay that used a minor groove binding (MGB) Eclipse hybridization probe as well as an Epstein-Barr virus (EBV) PCR assay that used an MGB Pleiades hybridization probe. We found that the crossing threshold method yielded more precise results when analyzing the HHV6 assay, which was characterized by lower signal/noise and less developed amplification curve plateaus. In contrast, the EBV assay, characterized by greater signal/noise and amplification curves with plateau regions similar to those observed with intercalating dyes, gave results with statistically similar precision by all four analysis methods.  相似文献   

12.
13.
14.
目的建立SYBR GreenⅠ荧光染料实时定量RT-PCR方法,测定实验动物等来源的EV71病毒RNA。方法运用EV71VP1保守区引物,优化real time RT-PCR条件,运用NASBA方法扩增EV71病毒RNA,计算拷贝数,经10倍系列稀释做出标准曲线,作为EV71病毒RNA定量检测的外标准品。结果应用Qiagen公司QuantiTect SYBR Green RT-PCR Kit,该标准品可精确定量到100copies/μL,PCR扩增效率达到99.5%。结论 SYBRGreenⅠ荧光染料实时定量PCR法测定EV71病毒RNA拷贝数的方法敏感性高、稳定性好,可用于EV71病毒RNA载量的定量测定。  相似文献   

15.
A new DNA reporter construct has been designed for protein quantification by immuno-PCR. It has been shown that the amplification efficiency of a reporter that contains a fragment of human adenovirus 2 flanked by homoprimer sequences is much higher than standard PCR format based on two different primers. The further application of the new construct and its homoprimer-based detection could represent new ways to increase the sensitivity of the immuno-PCR and the efficiency of single-molecule PCR.  相似文献   

16.
The application of a real-time quantitative PCR method (5′ nuclease assay), based on the use of a probe labeled at its 5′ end with a stable, fluorescent lanthanide chelate, for the quantification of human fecal bifidobacteria was evaluated. The specificities of the primers and the primer-probe combination were evaluated by conventional PCR and real-time PCR, respectively. The results obtained by real-time PCR were compared with those obtained by fluorescent in situ hybridization, the current gold standard for intestinal microbiota quantification. In general, a good correlation between the two methods was observed. In order to determine the detection limit and the accuracy of the real-time PCR procedure, germfree rat feces were spiked with known amounts of bifidobacteria and analyzed by both methods. The detection limit of the method used in this study was found to be about 5 × 104 cells per g of feces. Both methods, real-time PCR and fluorescent in situ hybridization, led to an accurate quantification of the spiked samples with high levels of bifidobacteria, but real-time PCR was more accurate for samples with low levels. We conclude that the real-time PCR procedure described here is a specific, accurate, rapid, and easy method for the quantification of bifidobacteria in feces.  相似文献   

17.
Succession of ecotypes, physiologically diverse strains with negligible rRNA sequence divergence, may explain the dominance of small, red-pigmented (phycoerythrin-rich) cyanobacteria in the autotrophic picoplankton of deep lakes (C. Postius and A. Ernst, Arch. Microbiol. 172:69-75, 1999). In order to test this hypothesis, it is necessary to determine the abundance of specific ecotypes or genotypes in a mixed background of phylogenetically similar organisms. In this study, we examined the performance of Taq nuclease assays (TNAs), PCR-based assays in which the amount of an amplicon is monitored by hydrolysis of a labeled oligonucleotide (TaqMan probe) when hybridized to the amplicon. High accuracy and a 7-order detection range made the real-time TNA superior to the corresponding end point technique. However, in samples containing mixtures of homologous target sequences, quantification can be biased due to limited specificity of PCR primers and probe oligonucleotides and due to accumulation of amplicons that are not detected by the TaqMan probe. A decrease in reaction efficiency, which can be recognized by direct monitoring of amplification, provides experimental evidence for the presence of such a problem and emphasizes the need for real-time technology in quantitative PCR. Use of specific primers and probes and control of amplification efficiency allow correct quantification of target DNA in the presence of an up to 10(4)-fold excess of phylogenetically similar DNA and of an up to 10(7)-fold excess of dissimilar DNA.  相似文献   

18.
19.
Commercialization of several genetically modified crops has been approved worldwide to date. Uniplex polymerase chain reaction (PCR)-based methods to identify these different insertion events have been developed, but their use in the analysis of all commercially available genetically modified organisms (GMOs) is becoming progressively insufficient. These methods require a large number of assays to detect all possible GMOs present in the sample and thereby the development of multiplex PCR systems using combined probes and primers targeted to sequences specific to various GMOs is needed for detection of this increasing number of GMOs. Here we report on the development of a multiplex real-time PCR suitable for multiple GMO identification, based on the intercalating dye SYBR Green I and the analysis of the melting curves of the amplified products. Using this method, different amplification products specific for Maximizer 176, Bt11, MON810, and GA21 maize and for GTS 40-3-2 soybean were obtained and identified by their specific Tm. We have combined amplification of these products in a number of multiplex reactions and show the suitability of the methods for identification of GMOs with a sensitivity of 0.1% in duplex reactions. The described methods offer an economic and simple alternative to real-time PCR systems based on sequence-specific probes (i.e., TaqMan chemistry). These methods can be used as selection tests and further optimized for uniplex GMO quantification.  相似文献   

20.
We have developed a quantitative PCR assay (LightCycler* using the pair of primers JW58 and JW59 for the detection of the 35-fold repeated B gene of oxoplasma gondii. This real-time PCR, using fluorescence resonance energy transfert (FRET) hybridization probes, allows the quantification of . gondii with several technical requirements not previously described: i) an internal amplification control (co-amplified in a single tube with the same primers), ii) Uracil-N-Glycosylase and iii) a standard curve corresponding to a serial dilution from a calibrated suspension of T. gondii ranging from 40 to 4.106( )parasites in one ml of amniotic fluid (1 to 105( ) . gondii/PCR). In artificial samples, one parasite could be detected if at least three reactions were performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号