首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial populations produce antibiotic-tolerant persister cells. A number of recent studies point to the involvement of toxin/antitoxin (TA) modules in persister formation. hipBA is a type II TA module that codes for the HipB antitoxin and the HipA toxin. HipA is an EF-Tu kinase, which causes protein synthesis inhibition and dormancy upon phosphorylation of its substrate. Antitoxins are labile proteins that are degraded by one of the cytosolic ATP-dependent proteases. We followed the rate of HipB degradation in different protease deficient strains and found that HipB was stabilized in a lon(-) background. These findings were confirmed in an in vitro degradation assay, showing that Lon is the main protease responsible for HipB proteolysis. Moreover, we demonstrated that degradation of HipB is dependent on the presence of an unstructured carboxy-terminal stretch of HipB that encompasses the last 16 amino acid residues. Further, substitution of the conserved carboxy-terminal tryptophan of HipB to alanine or even the complete removal of this 16 residue fragment did not alter the affinity of HipB for hipBA operator DNA or for HipA indicating that the major role of this region of HipB is to control HipB degradation and hence HipA-mediated persistence.  相似文献   

2.
Bacteria have evolved mechanisms that allow them to survive in the face of a variety of stresses including nutrient deprivation, antibiotic challenge and engulfment by predator cells. A switch to dormancy represents one strategy that reduces energy utilization and can render cells resistant to compounds that kill growing bacteria. These persister cells pose a problem during treatment of infections with antibiotics, and dormancy mechanisms may contribute to latent infections. Many bacteria encode toxin-antitoxin (TA) gene pairs that play an important role in dormancy and the formation of persisters. VapBC gene pairs comprise the largest of the Type II TA systems in bacteria and they produce a VapC ribonuclease toxin whose activity is inhibited by the VapB antitoxin. Despite the importance of VapBC TA pairs in dormancy and persister formation, little information exists on the structural features of VapC proteins required for their toxic function in vivo. Studies reported here identified 17 single mutations that disrupt the function of VapC1 from non-typeable H. influenzae in vivo. 3-D modeling suggests that side chains affected by many of these mutations sit near the active site of the toxin protein. Phylogenetic comparisons and secondary mutagenesis indicate that VapC1 toxicity requires an alternative active site motif found in many proteobacteria. Expression of the antitoxin VapB1 counteracts the activity of VapC1 mutants partially defective for toxicity, indicating that the antitoxin binds these mutant proteins in vivo. These findings identify critical chemical features required for the biological function of VapC toxins and PIN-domain proteins.  相似文献   

3.
Bacterial endoribonuclease toxins belong to a protein family that inhibits bacterial growth by degrading mRNA or rRNA sequences. The toxin genes are organized in pairs with its cognate antitoxins in the chromosome and thus the activities of the toxins are antagonized by antitoxin proteins or RNAs during active translation. In response to a variety of cellular stresses, the endoribonuclease toxins appear to be released from antitoxin molecules via proteolytic cleavage of antitoxin proteins or preferential degradation of antitoxin RNAs and cleave a diverse range of mRNA or rRNA sequences in a sequence-specific or codon-specific manner, resulting in various biological phenomena such as antibiotic tolerance and persister cell formation. Given that substrate specificity of each endoribonuclease toxin is determined by its structure and the composition of active site residues, we summarize the biology, structure, and substrate specificity of the updated bacterial endoribonuclease toxins.  相似文献   

4.
Biofilms are well known for their extreme tolerance to antibiotics. Recent experimental evidence has indicated the existence of a small fraction of specialized persister cells may be responsible for this tolerance. Although persister cells seem to exist in planktonic bacterial populations, within a biofilm the additional protection offered by the polymeric matrix allows persister cells to evade elimination and serve as a source for re-population. Whether persister cells develop through interactions with toxin/antitoxin modules or are senescent bacteria is an open question. In this investigation we contrast results of the analysis of a mathematical model of the toxin/antitoxin hypothesis for bacteria in a chemostat with results incorporating the senescence hypothesis. We find that the persister fraction of the population as a function of washout rate provides a viable distinction between the two hypotheses. We also give simulation results that indicate that a strategy of alternating dose/withdrawal disinfection can be effective in clearing the entire persister and susceptible populations of bacteria. This strategy was considered previously in analysis of a generic model of persister formation. We find that extending the model of persister formation to include the toxin/antitoxin interactions in a chemostat does not alter the qualitative results that success of the dosing strategy depends on the withdrawal time. While this treatment is restricted to planktonic bacterial populations, it serves as a framework for including persister cells in a spatially dependent biofilm model.  相似文献   

5.
Persistence is an epigenetic trait that allows a small fraction of bacteria, approximately one in a million, to survive prolonged exposure to antibiotics. In Escherichia coli an increased frequency of persisters, called "high persistence," is conferred by mutations in the hipA gene, which encodes the toxin entity of the toxin-antitoxin module hipBA. The high-persistence allele hipA7 was originally identified because of its ability to confer high persistence, but little is known about the physiological role of the wild-type hipA gene. We report here that the expression of wild-type hipA in excess of hipB inhibits protein, RNA, and DNA synthesis in vivo. However, unlike the RelE and MazF toxins, HipA had no effect on protein synthesis in an in vitro translation system. Moreover, the expression of wild-type hipA conferred a transient dormant state (persistence) to a sizable fraction of cells, whereas the rest of the cells remained in a prolonged dormant state that, under appropriate conditions, could be fully reversed by expression of the cognate antitoxin gene hipB. In contrast, expression of the mutant hipA7 gene in excess of hipB did not markedly inhibit protein synthesis as did wild-type hipA and yet still conferred persistence to ca. 10% of cells. We propose that wild-type HipA, upon release from HipB, is able to inhibit macromolecular synthesis and induces a bacteriostatic state that can be reversed by expression of the hipB gene. However, the ability of the wild-type hipA gene to generate a high frequency of persisters, equal to that conferred by the hipA7 allele, may be distinct from the ability to block macromolecular synthesis.  相似文献   

6.
Bacterial populations produce persisters, cells that neither grow nor die in the presence of bactericidal agents, and thus exhibit multidrug tolerance (MDT). The mechanisms of MDT and the nature of persisters have remained elusive. Our previous research has shown that persisters are largely responsible for the recalcitrance of biofilm infections. A general method for isolating persisters was developed, based on lysis of regular cells by ampicillin. A gene expression profile of persisters contained toxin-antitoxin (TA) modules and other genes that can block important cellular functions such as translation. Bactericidal antibiotics kill cells by corrupting the target function (for example, aminoglycosides interrupt translation, producing toxic peptides). We reasoned that inhibition of translation will lead to a shutdown of cellular functions, preventing antibiotics from corrupting their targets, giving rise to MDT persister cells. Overproduction of the RelE toxin, an inhibitor of translation, caused a sharp increase in persisters. Functional expression of a putative HipA toxin also increased persisters, while deletion of the hipBA module caused a sharp decrease in persisters in both stationary and biofilm populations. HipA is thus the first validated persister-MDT gene. We suggest that random fluctuation in the levels of MDT proteins leads to the formation of rare persister cells. The function of these specialized dormant cells is to ensure the survival of the population in the presence of lethal factors.  相似文献   

7.
Bacterial populations contain persisters, cells which survive exposure to bactericidal antibiotics and other lethal factors. Persisters do not have a genetic resistance mechanism, and their means to tolerate killing remain unknown. In exponentially growing populations of Escherichia coli the frequency of persister formation usually is 10−7 to 10−5. It has been shown that cells overexpressing either of the toxic proteins HipA and RelE, both members of the bacterial toxin-antitoxin (TA) modules, have the ability to form more persisters, suggesting a specific role for these toxins in the mechanism of persistence. However, here we show that cells expressing proteins that are unrelated to TA modules but which become toxic when ectopically expressed, chaperone DnaJ and protein PmrC of Salmonella enterica, also form 100- to 1,000-fold more persisters. Thus, persistence is linked not only to toxicity caused by expression of HipA or dedicated toxins but also to expression of other unrelated proteins.  相似文献   

8.
Toxin-Antitoxin modules are small operons involved in stress response and persister cell formation that encode a “toxin” and its corresponding neutralizing “antitoxin”. Regulation of these modules involves a complex mechanism known as conditional cooperativity, which is supposed to prevent unwanted toxin activation. Here we develop mathematical models for their regulation, based on published molecular and structural data, and parameterized using experimental data for F-plasmid ccdAB, bacteriophage P1 phd/doc and E. coli relBE. We show that the level of free toxin in the cell is mainly controlled through toxin sequestration in toxin-antitoxin complexes of various stoichiometry rather than by gene regulation. If the toxin translation rate exceeds twice the antitoxin translation rate, toxins accumulate in all cells. Conditional cooperativity and increasing the number of binding sites on the operator serves to reduce the metabolic burden of the cell by reducing the total amounts of proteins produced. Combining conditional cooperativity and bridging of antitoxins by toxins when bound to their operator sites allows creation of persister cells through rare, extreme stochastic spikes in the free toxin level. The amplitude of these spikes determines the duration of the persister state. Finally, increases in the antitoxin degradation rate and decreases in the bacterial growth rate cause a rise in the amount of persisters during nutritional stress.  相似文献   

9.
10.
Bacterial survival strategies involve phenotypic diversity which is generated by regulatory factors and noisy expression of effector proteins. The question of how bacteria exploit regulatory RNAs to make decisions between phenotypes is central to a general understanding of these universal regulators. We investigated the TisB/IstR‐1 toxin‐antitoxin system of Escherichia coli to appreciate the role of the RNA antitoxin IstR‐1 in TisB‐dependent depolarization of the inner membrane and persister formation. Persisters are phenotypic variants that have become transiently drug‐tolerant by arresting growth. The RNA antitoxin IstR‐1 sets a threshold for TisB‐dependent depolarization under DNA‐damaging conditions, resulting in two sub‐populations: polarized and depolarized cells. Furthermore, our data indicate that an inhibitory 5′ UTR structure in the tisB mRNA serves as a regulatory RNA element that delays TisB translation to avoid inappropriate depolarization when DNA damage is low. Investigation of the persister sub‐population further revealed that both regulatory RNA elements affect persister levels as well as persistence time. This work provides an intriguing example of how bacteria exploit regulatory RNAs to control phenotypic heterogeneity.  相似文献   

11.
The ability of a high frequency (10(-2)) of Escherichia coli to survive prolonged exposure to penicillin antibiotics, called high persistence, is associated with mutations in the hipA gene. The hip operon is located in the chromosomal terminus near dif and consists of two genes, hipA and hipB. The wild-type hipA gene encodes a toxin, whereas hipB encodes a DNA-binding protein that autoregulates expression of the hip operon and binds to HipA to nullify its toxic effects. We have characterized the hipA7 allele, which confers high persistence, and established that HipA7 is non-toxic, contains two mutations (G22S and D291A) and that both mutations are required for the full range of phenotypes associated with hip mutants. Furthermore, expression of hipA7 in the absence of hipB is sufficient to establish the high persistent phenotype, indicating that hipB is not required. There is a strong correlation between the frequency of persister cells generated by hipA7 strains and cell density, with hipA7 strains generating a 20-fold higher frequency of persisters as cultures approach stationary phase. It is also demonstrated that relA knock-outs diminish the high persistent phenotype in hipA7 mutants and that relA spoT knock-outs eliminate high persistence altogether, suggesting that hipA7 facilitates the establishment of the persister state by inducing (p)ppGpp synthesis. Consistent with this proposal, ectopic expression of relA' from a plasmid was shown to increase the number of persistent cells produced by hipA7 relA double mutants by 100-fold or more. A model is presented that postulates that hipA7 increases the basal level of (p)ppGpp synthesis, allowing a significantly greater percentage of cells in a population to assume a persistent, antibiotic-insensitive state by potentiating a rapid transition to a dormant state upon application of stress.  相似文献   

12.
Bacterial populations produce dormant persister cells that are resistant to killing by all antibiotics currently in use, a phenomenon known as multidrug tolerance (MDT). Persisters are phenotypic variants of the wild type and are largely responsible for MDT of biofilms and stationary populations. We recently showed that a hipBA toxin/antitoxin locus is part of the MDT mechanism in Escherichia coli. In an effort to find additional MDT genes, an E. coli expression library was selected for increased survival to ampicillin. A clone with increased persister production was isolated and was found to overexpress the gene for the conserved aerobic sn-glycerol-3-phosphate dehydrogenase GlpD. The GlpD overexpression strain showed increased tolerance to ampicillin and ofloxacin, while a strain with glpD deleted had a decreased level of persisters in the stationary state. This suggests that GlpD is a component of the MDT mechanism. Further genetic studies of mutants affected in pathways involved in sn-glycerol-3-phosphate metabolism have led to the identification of two additional multidrug tolerance loci, glpABC, the anaerobic sn-glycerol-3-phosphate dehydrogenase, and plsB, an sn-glycerol-3-phosphate acyltransferase.  相似文献   

13.
An actomyosin motor complex assembled below the parasite's plasma membrane drives erythrocyte invasion by Plasmodium falciparum merozoites. The complex is comprised of several proteins including myosin (MyoA), myosin tail domain interacting protein (MTIP) and glideosome associated proteins (GAP) 45 and 50, and is anchored on the inner membrane complex (IMC), which underlies the plasmalemma. A ternary complex of MyoA, MTIP and GAP45 is formed that then associates with GAP50. We show that full length GAP45 labelled internally with GFP is assembled into the motor complex and transported to the developing IMC in early schizogony, where it accumulates during intracellular development until merozoite release. We show that GAP45 is phosphorylated by calcium dependent protein kinase 1 (CDPK1), and identify the modified serine residues. Replacing these serine residues with alanine or aspartate has no apparent effect on GAP45 assembly into the motor protein complex or its subcellular location in the parasite. The early assembly of the motor complex suggests that it has functions in addition to its role in erythrocyte invasion.  相似文献   

14.
15.
16.
Neuromodulin (also designated P-57, GAP-43, B-50) is a major presynaptic substrate for protein kinase C. Phosphorylation of neuromodulin decreases its affinity for calmodulin, suggesting that neuromodulin may function to bind and concentrate calmodulin at specific sites within neurons, releasing calmodulin locally in response to phosphorylation by protein kinase C (Alexander, K. A., Cimler, B. M., Meier, K. E., and Storm, D. R. (1987) J. Biol. Chem. 262, 6108-6113). In the present study, we have constructed and characterized several mutant neuromodulins to demonstrate that the amino acid sequence 39-56 is required for calmodulin binding, and that this domain contains the sole in vitro protein kinase C phosphorylation site at serine 41. We also demonstrate that the adjacent phenylalanine 42, interacts hydrophobically with calmodulin. These hydrophobic interactions may be disrupted by the introduction of negative charge at serine 41, and thereby regulate the neuromodulin/calmodulin binding interactions. The sensitivity of the neuromodulin/calmodulin binding interaction to negative charge at serine 41 was determined by substitution of serine 41 with an aspartate or an asparagine residue. The asparagine mutant retained its affinity for calmodulin-Sepharose while the aspartate mutant did not adsorb to calmodulin-Sepharose. We conclude that protein kinase C phosphorylation of neuromodulin abolishes calmodulin binding by introducing negative charges within the calmodulin binding domain at a position adjacent to the phenylalanine.  相似文献   

17.
Bacterial persisters are rare, phenotypically distinct cells that survive exposure to multiple antibiotics. Previous studies indicated that formation and maintenance of the persister phenotype are regulated by suppressing translation. To examine the mechanism of this translational suppression, we developed novel methodology to rapidly purify ribosome complexes from persister cells. We purified His‐tagged ribosomes from Escherichia coli cells that over‐expressed HipA protein, which induces persister formation, and were treated with ampicillin to remove antibiotic‐sensitive cells. We profiled ribosome complexes and analyzed the ribosomal RNA and protein components from these persister cells. Our results show that (i) ribosomes in persisters exist largely as inactive ribosomal subunits, (ii) rRNAs and tRNAs are mostly degraded and (iii) a small fraction of the ribosomes remain mostly intact, except for reduced amounts of seven ribosomal proteins. Our findings explain the basis for translational suppression in persisters and suggest how persisters survive exposure to multiple antibiotics.  相似文献   

18.
19.
A serine/threonine-specific protein kinase activity is closely associated with v-mos-encoded proteins. Experiments were conducted with several mutant forms of p37mos to determine whether or not the kinase function correlates with the biological activity of the mutant v-mos genes. Two mutants lacking cell transformation activity, one an arginine substitution for lysine-121 in the putative ATP-binding site and the other a 23-amino acid deletion from the C-terminal end of p37mos, had no kinase activity associated with their mutant proteins. However, a third mutant with reduced biological activity had drastically less kinase activity than the wild-type protein. The latter mutant was able to phosphorylate the kinase-inactive p37mos(Arg-121) protein in vitro. These results indicate that even though p37mos(Arg-121) can be phosphorylated in trans by other kinase molecules, it lacks the ability to phosphorylate itself in vitro. This provides a compelling argument that the protein kinase function of p37mos is an intrinsic property of the protein. Moreover, since the kinase function correlates with the cellular transformation activity of the v-mos gene, we predict that it is required for the biological activity of the v-mos gene.  相似文献   

20.
We carried out molecular dynamics simulations and free energy calculations for a series of ternary and diplex models for the HipA protein, HipB dimer, and DNA molecule to address the mechanism of HipA sequestration and the binding order of events from apo HipB/HipA to 2HipA + HipB dimer + DNA complex. The results revealed that the combination of DNA with the HipB dimer is energetically favorable for the combination of HipB dimer with HipA protein. The binding of DNA to HipB dimer induces a long‐range allosteric communication from the HipB2‐DNA interface to the HipA–HipB2 interface, which involves the closeness of α1 helices of HipB dimer to HipA protein and formations of extra hydrogen bonds in the HipA–HipB2 interface through the extension of α2/3 helices in the HipB dimer. These simulated results suggested that the DNA molecule, as a regulative media, modulates the HipB dimer conformation, consequently increasing the interactions of HipB dimer with the HipA proteins, which explains the mechanism of HipA sequestration reported by the previous experiment. Simultaneously, these simulations also explored that the thermodynamic binding order in a simulated physiological environment, that is, the HipB dimer first bind to DNA to form HipB dimer + DNA complex, then capturing strongly the HipA proteins to form a ternary complex, 2HipA + HipB dimer + DNA, for sequestrating HipA in the nucleoid. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号