首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
Bacterial superantigens have potent in vivo effects. Respiratory viral infections are often associated with secondary bacterial infections, raising the likelihood of exposure to bacterial superantigens after the initiation of the anti-viral immune response. In this study, the general and V beta-specific effects of exposure to Staphylococcal enterotoxin B (SEB) during influenza virus infection on both the ongoing acute and the subsequent recall CD8(+) T cell responses were analyzed, using the well-characterized murine influenza model system and tetrameric MHC/peptide reagents to directly identify virus-specific T cells. The results show that although superantigen exposure during the primary viral infection caused delayed viral clearance, there was remarkably little effect of SEB on the magnitude or TCR repertoire of the ongoing cytolytic T cell response or on the recall response elicited by secondary viral infection. Thus, despite the well-characterized immunomodulatory effects of SEB, there was surprisingly little interference with concurrent anti-viral immunity.  相似文献   

2.
HIV replicates primarily in lymphoid tissue and immune activation is a major stimulus in vivo. To determine the cells responsible for HIV replication during Ag-driven T cell activation, we used a novel in vitro model employing dendritic cell presentation of superantigen to CD4(+) T cells. Dendritic cells and CD4(+) T cells are the major constituents of the paracortical region of lymphoid organs, the main site of Ag-specific activation and HIV replication. Unexpectedly, replication occurred in nonproliferating bystander CD4(+) T cells that lacked activation markers. In contrast, activated Ag-specific cells were relatively protected from infection, which was associated with CCR5 and CXC chemokine receptor 4 down-regulation. The finding that HIV replication is not restricted to highly activated Ag-specific CD4(+) T cells has implications for therapy, efforts to eradicate viral reservoirs, immune control of HIV, and Ag-specific immune defects.  相似文献   

3.
Herpesviruses infect most humans. Their infections can be associated with pathological conditions and significant changes in T cell repertoire but evidences of symbiotic effects of herpesvirus latency have never been demonstrated. We tested the hypothesis that HCMV and EBV-specific CD8 T cells contribute to the heterologous anti-viral immune response. Volume of activated/proliferating virus-specific and total CD8 T cells was evaluated in 50 patients with acute viral infections: 20 with HBV, 12 with Dengue, 12 with Influenza, 3 with Adenovirus infection and 3 with fevers of unknown etiology. Virus-specific (EBV, HCMV, Influenza) pentamer+ and total CD8 T cells were analyzed for activation (CD38/HLA-DR), proliferation (Ki-67/Bcl-2low) and cytokine production. We observed that all acute viral infections trigger an expansion of activated/proliferating CD8 T cells, which differs in size depending on the infection but is invariably inflated by CD8 T cells specific for persistent herpesviruses (HCMV/EBV). CD8 T cells specific for other non-related non persistent viral infection (i.e. Influenza) were not activated. IL-15, which is produced during acute viral infections, is the likely contributing mechanism driving the selective activation of herpesvirus specific CD8 T cells. In addition we were able to show that herpesvirus specific CD8 T cells displayed an increased ability to produce the anti-viral cytokine interferon-γ during the acute phase of heterologous viral infection. Taken together, these data demonstrated that activated herpesvirus specific CD8 T cells inflate the activated/proliferating CD8 T cells population present during acute viral infections in human and can contribute to the heterologous anti-viral T cell response.  相似文献   

4.
Regulation of CD8 T cell expansion and contraction is essential for successful immune defense against intracellular pathogens. IL-10 is a regulatory cytokine that can restrict T cell responses by inhibiting APC functions. IL-10, however, can also have direct effects on T cells. Although blockade or genetic deletion of IL-10 enhances T cell-mediated resistance to infections, the extent to which IL-10 limits in vivo APC function or T cell activation/proliferation remains unknown. Herein, we demonstrate that primary and memory CD8 T cell responses following Listeria monocytogenes infection are enhanced by the absence of IL-10. Surface expression of the IL-10R is transiently up-regulated on CD8 T cells following activation, suggesting that activated T cells can respond to IL-10 directly. Consistent with this notion, CD8 T cells lacking IL-10R2 underwent greater expansion than wild-type T cells upon L. monocytogenes infection. The absence of IL-10R2 on APCs, in contrast, did not enhance T cell responses following infection. Our studies demonstrate that IL-10 produced during bacterial infection directly limits expansion of pathogen-specific CD8 T cells and reveal an extrinsic regulatory mechanism that modulates the magnitude of memory T cell responses.  相似文献   

5.
Regulatory T cell (Treg)-mediated suppression of CD8+ T cells has been implicated in the establishment and maintenance of chronic viral infections, but little is known about the mechanism of suppression. In this study an in vitro assay was developed to investigate the suppression of CD8+ T cells by Friend retrovirus (FV)-induced Tregs. CD4+CD25+ T cells isolated from mice chronically infected with the FV suppressed the development of effector function in naive CD8+ T cells without affecting their ability to proliferate or up-regulate activation markers. In vitro restimulation was not required for suppression by FV-induced Tregs, correlating with their high activation state in vivo. Suppression was mediated by direct T cell-T cell interactions and occurred in the absence of APCs. Furthermore, suppression occurred irrespective of the TCR specificity of the CD8+ T cells. Most interestingly, FV-induced Tregs were able to suppress the function of CD8+ effector T cells that had been physiologically activated during acute FV infection. The ability to suppress the effector function of activated CTLs is likely a requisite role for Tregs in limiting immunopathology by CD8+ T cells during antiviral immune responses. Such activity may also have adverse consequences by allowing viruses to establish and maintain chronic infections if suppression of antiviral immune responses occurs before virus eradication.  相似文献   

6.
CD4 T cell help plays an important role in promoting CD8 T cell immunity to pathogens. In models of infection with vaccinia virus (VV) and Listeria monocytogenes, CD4 T cell help is critical for the survival of activated CD8 T cells during both the primary and memory recall responses. Still unclear, however, is how CD4 T cell help promotes CD8 T cell survival. In this study, we first showed that CD4 T cell help for the CD8 T cell response to VV infection was mediated by IL-21, a cytokine produced predominantly by activated CD4 T cells, and that direct action of IL-21 on CD8 T cells was critical for the VV-specific CD8 T cell response in vivo. We next demonstrated that this intrinsic IL-21 signaling was essential for the survival of activated CD8 T cells and the generation of long-lived memory cells. We further revealed that IL-21 promoted CD8 T cell survival in a mechanism dependent on activation of the STAT1 and STAT3 pathways and subsequent upregulation of the prosurvival molecules Bcl-2 and Bcl-x(L). These results identify a critical role for intrinsic IL-21 signaling in CD8 T cell responses to an acute viral infection in vivo and may help design effective vaccine strategies.  相似文献   

7.
Natural killer (NK) cells belong to the innate immune system and protect against cancers and a variety of viruses including retroviruses by killing transformed or infected cells. They express activating and inhibitory receptors on their cell surface and often become activated after recognizing virus-infected cells. They have diverse antiviral effector functions like the release of cytotoxic granules, cytokine production and antibody dependent cellular cytotoxicity. The importance of NK cell activity in retroviral infections became evident due to the discovery of several viral strategies to escape recognition and elimination by NK cells. Mutational sequence polymorphisms as well as modulation of surface receptors and their ligands are mechanisms of the human immunodeficiency virus-1 to evade NK cell-mediated immune pressure. In Friend retrovirus infected mice the virus can manipulate molecular or cellular immune factors that in turn suppress the NK cell response. In this model NK cells lack cytokines for optimal activation and can be functionally suppressed by regulatory T cells. However, these inhibitory pathways can be overcome therapeutically to achieve full activation of NK cell responses and ultimately control dissemination of retroviral infection. One effective approach is to modulate the crosstalk between NK cells and dendritic cells, which produce NK cell-stimulating cytokines like type I interferons (IFN), IL-12, IL-15, and IL-18 upon retrovirus sensing or infection. Therapeutic administration of IFNα directly increases NK cell killing of retrovirus-infected cells. In addition, IL-2/anti-IL-2 complexes that direct IL-2 to NK cells have been shown to significantly improve control of retroviral infection by NK cells in vivo. In this review, we describe novel approaches to improve NK cell effector functions in retroviral infections. Immunotherapies that target NK cells of patients suffering from viral infections might be a promising treatment option for the future.  相似文献   

8.
Dynamics of T cell responses in HIV infection   总被引:14,自引:0,他引:14  
Cytotoxic CD8(+) T cells play a major role in the immune response against viruses. However, the dynamics of CD8(+) T cell responses during the course of a human infection are not well understood. Using tetrameric complexes in combination with a range of intracellular and extracellular markers, we present a detailed analysis of the changes in activation and differentiation undergone by Ag-specific CD8(+) T cells, in relation to Ag-specific CD4(+) T cell responses, in the context of a human infection: HIV-1. During primary HIV-1 infection, the initial population of HIV-specific CD8(+) T cells is highly activated and prone to apoptosis. The Ag-specific cells differentiate rapidly from naive to cells at a perforin low intermediate stage of differentiation, later forming a stable pool of resting cells as viral load decreases during chronic infection. These observations have significant implications for our understanding of T cell responses in human viral infections in general and indicate that the definition of effector and memory subsets in humans may need revision.  相似文献   

9.
Because of their relative resistance to viral cytopathic effects, APC can provide an alternative reservoir for latently integrated HIV. We used an HIV-transgenic mouse model in which APC serve as the major source of inducible HIV expression to study mechanisms by which integrated virus can be activated in these cells. When admixed with transgenic APC, activated T lymphocytes provided a major contact-dependent stimulus for viral protein expression in vitro. Using blocking anti-CD154 mAb as well as CD154-deficient T cells, the HIV response induced by activated T lymphocytes was demonstrated to require CD40-CD154 interaction. The role of this pathway in the induction of HIV expression from APC in vivo was further studied in an experimental model involving infection of the HIV-transgenic mice with PLASMODIUM: chabaudi parasites. Enhanced viral production by dendritic cells and macrophages in infected mice was associated with up-regulated CD40 expression. More importantly, in vivo treatment with blocking anti-CD154 mAb markedly reduced viral expression in P. chabaudi-infected animals. Together, these findings indicate that immune activation of integrated HIV can be driven by the costimulatory interaction of activated T cells with APC. Because chronic T cell activation driven by coinfections as well as HIV-1 itself is a characteristic of HIV disease, this pathway may be important in sustaining viral expression from APC reservoirs.  相似文献   

10.
Dendritic cells (DC) are a heterogeneous cell population that bridge the innate and adaptive immune systems. CD8alpha DC play a prominent, and sometimes exclusive, role in driving amplification of CD8(+) T cells during a viral infection. Whether this reliance on a single subset of DC also applies for CD4(+) T cell activation is unknown. We used a direct ex vivo antigen presentation assay to probe the capacity of flow cytometrically purified DC populations to drive amplification of CD4(+) and CD8(+) T cells following infection with influenza virus by different routes. This study examined the contributions of non-CD8alpha DC populations in the amplification of CD8(+) and CD4(+) T cells in cutaneous and systemic influenza viral infections. We confirmed that in vivo, effective immune responses for CD8(+) T cells are dominated by presentation of antigen by CD8alpha DC but can involve non-CD8alpha DC. In contrast, CD4(+) T cell responses relied more heavily on the contributions of dermal DC migrating from peripheral lymphoid tissues following cutaneous infection, and CD4 DC in the spleen after systemic infection. CD4(+) T cell priming by DC subsets that is dependent upon the route of administration raises the possibility that vaccination approaches could be tailored to prime helper T cell immunity.  相似文献   

11.
12.
Plasmacytoid dendritic cells (pDC) produce type I interferons (IFN-I) and proinflammatory cytokines in response to viruses; however, their contribution to antiviral immunity in vivo is unclear. In this study, we investigated the impact of pDC depletion on local and systemic antiviral responses to herpes simplex virus (HSV) infections using CLEC4C-DTR transgenic mice. We found that pDC do not appear to influence viral burden or survival after vaginal HSV-2 infection, nor do they seem to contribute to virus-specific CD8 T cell responses following subcutaneous HSV-1 infection. In contrast, pDC were important for early IFN-I production, proinflammatory cytokine production, NK cell activation and CD8 T cell responses during systemic HSV-2 and HSV-1 infections. Our data also indicate that unlike pDC, TLR3-expressing cells are important for promoting antiviral responses to HSV-1 regardless of the route of virus administration.  相似文献   

13.
Mouse mammary tumor virus (MMTV) infects B lymphocytes and expresses a superantigen on the cell surface after integration of its reverse-transcribed genome. Superantigen-dependent B- and T-cell activation becomes detectable 2 to 3 days after infection. We show here that before this event, B cells undergo a polyclonal activation which does not involve massive proliferation. This first phase of B-cell activation is T cell independent. Moreover, during the first phase of activation, when only a small fraction of B cells is infected by MMTV(SW), viral DNA is detected only in activated B cells. Such a B-cell activation is also seen after injection of murine leukemia virus but not after injection of vaccinia virus, despite the very similar kinetics and intensity of the immune response. Since retroviruses require activated target cells to induce efficient infection, these data suggest that the early polyclonal retrovirus-induced target cell activation might play an important role in the establishment of retroviral infections.  相似文献   

14.
In this study, we examined the effect of in vivo treatment of acutely SIV-infected Mamu-A*01+ rhesus macaques with IL-15. IL-15 treatment during acute infection increased viral set point by 3 logs and accelerated the development of simian AIDS in two of six animals with one developing early minimal lesion SIV meningoencephalitis. Although IL-15 induced a 2- to 3-fold increase in SIV-specific CD8+ T cell and NK cell numbers at peak viremia and reduced lymph node (LN) SIV-infected cells, this had no impact on peak viremia and did not lower viral set point. At viral set point, however, activated SIV-specific CD8+ T cells and NK cells were reduced in the blood of IL-15-treated animals and LN SIV-infected cells were increased. Week 30 LN from IL-15-treated animals had significantly increased Gag-specific CD8+ T cell numbers, whereas total cell, lymphocyte, and CD4+ T cell numbers were reduced. IL-15 treatment significantly reduced anti-SIV Ab concentrations at week 3 and viral set point. IL-15 increased Ki-67+CD4+ T cells at week 1 of treatment and reduced blood CCR5+ and CD45RA-CD62L- CD4+ T cells. The frequency of day 7 Ki-67+CD4+ T cells strongly correlated with viral set point. These findings suggest that CD4+ T cell activation during acute infection determines subsequent viral set point and IL-15 treatment by increasing such activation elevates viral set point. Finally, IL-15-treated acutely SIV-infected primates may serve as a useful model to investigate the poorly understood mechanisms that control viral set point and disease progression in HIV infection.  相似文献   

15.
The mechanisms of how Th cells promote CD8(+) T cell responses during viral infections are largely unknown. In this study, we unraveled the mechanisms of T cell help for CD8(+) T cell responses during vaccinia virus infection. Our results demonstrate that Th cells promote vaccinia virus-specific CD8(+) T cell responses via two interconnected synergistic pathways: First, CD40L expressed by activated CD4(+) T cells instructs dendritic cells to produce bioactive IL-12p70, which is directly sensed by Ag-specific CD8(+) T cells, resulting in increased IL-2Rα expression. Second, Th cells provide CD8(+) T cells with IL-2, thereby enhancing their survival. Thus, Th cells are at the center of an important communication loop with a central role for IL-2/IL-2R and bioactive IL-12.  相似文献   

16.
17.
Recent studies have demonstrated that viral and bacterial infections can induce dramatic in vivo expansion of Ag-specific T lymphocytes. Although presentation of Ag is critical for activation of naive T cells, it is less clear how dependent subsequent in vivo T cell proliferation and memory generation are upon Ag. We investigated T cell expansion and memory generation in mice infected alternately with strains of Listeria monocytogenes that contained or lacked an immunodominant, MHC class I-restricted T cell epitope. We found substantial differences in the responses of effector and memory T cells to inflammatory stimuli. Although effector T cells undergo in vivo expansion in response to bacterial infection in the absence of Ag, memory T cells show no evidence for such bystander activation. However, Ag-independent expansion of effector T cells does not result in increased memory T cell frequencies, indicating that Ag presentation is critical for effective memory T cell generation. Early reinfection of mice with L. monocytogenes before the maximal primary T cell response induces typical memory expansion, suggesting that the capacity for a memory T cell response exists within the primary effector population. Our findings demonstrate that T cell effector proliferation and memory generation are temporally overlapping processes with differing requirements for Ag.  相似文献   

18.
Hepatitis C virus (HCV) infection frequently persists despite eliciting substantial virus-specific immune responses. Thus, HCV infection provides a setting in which to investigate mechanisms of immune escape that allow for viral persistence. Viral amino acid substitutions resulting in decreased MHC binding or impaired Ag processing of T cell epitopes reduce Ag density on the cell surface, permitting evasion of T cell responses in chronic viral infection. Substitutions in viral epitopes that alter TCR contact residues frequently result in escape, but via unclear mechanisms because such substitutions do not reduce surface presentation of peptide-MHC complexes and would be expected to prime T cells with new specificities. We demonstrate that a known in vivo HCV mutation involving a TCR contact residue significantly diminishes T cell recognition and, in contrast to the original sequence, fails to effectively prime naive T cells. This mutant epitope thus escapes de novo immune recognition because there are few highly specific cognate TCR among the primary human T cell repertoire. This example is the first on viral immune escape via exploitation of a "hole" in the T cell repertoire, and may represent an important general mechanism of viral persistence.  相似文献   

19.
The suppressive capacity of regulatory T cells (Tregs) has been extensively studied and is well established for many diseases. The expansion, accumulation, and activation of Tregs in viral infections are of major interest in order to find ways to alter Treg functions for therapeutic benefit. Tregs are able to dampen effector T cell responses to viral infections and thereby contribute to the establishment of a chronic infection. In the Friend retrovirus (FV) mouse model, Tregs are known to expand in all infected organs. To better understand the characteristics of these Treg populations, their phenotype was analyzed in detail. During acute FV-infection, Tregs became activated in the spleen and bone marrow, as indicated by various T cell activation markers, such as CD43 and CD103. Interestingly, Tregs in the bone marrow, which contains the highest viral loads during acute infection, displayed greater levels of activation than Tregs from the spleen. Treg expansion was driven by proliferation but no FV-specific Tregs could be detected. Activated Tregs in FV-infection did not produce Granzyme B (GzmB) or tumor necrosis factor α (TNFα), which are thought to be a potential mechanism for their suppressive activity. Furthermore, Tregs expressed inhibitory markers, such as TIM3, PD-1 and PD-L1. Blocking TIM3 and PD-L1 with antibodies during chronic FV-infection increased the numbers of activated Tregs. These data may have important implications for the understanding of Treg functions during chronic viral infections.  相似文献   

20.
Host responses to infectious challenges include initial events elicited directly by agent structures distinct from host determinants, activation of innate immune system components by the products of initial events, and the shaping of downstream adaptive immunity by these initial/innate responses. The picture emerging from viral infections is that viral structures interact with intracellular signaling pathways to induce expression of the type 1 interferons, IFN-alpha/beta. In addition to mediating direct antiviral effects, these cytokines play dominant roles in regulating innate and adaptive immune responses to infection. In particular, IFN-alpha/beta acts to inhibit interleukin-12 (IL-12) expression and IL-12 activation of innate natural killer (NK) cell IFN-alpha production, while inducing NK cell cytotoxicity and proliferation, and promoting adaptive T cell IFN-alpha responses. Although certain viral infections do elicit initial/innate IL-12 and NK-cell-produced IFN-alpha, endogenous IFN-alpha/beta also controls the magnitudes of these responses. Thus, the pathways activated, to dominantly regulate innate and adaptive immune responses during viral infections, are being defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号