首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The coenzyme A (CoA)-acylating aldehyde dehydrogenase (ALDH) catalyzes a key reaction in the acetone- and butanol (solvent)-producing clostridia. It reduces acetyl-CoA and butyryl-CoA to the corresponding aldehydes, which are then reduced by alcohol dehydrogenase (ADH) to form ethanol and 1-butanol. The ALDH of Clostridium beijerinckii NRRL B593 was purified. It had no ADH activity, was NAD(H) specific, and was more active with butyraldehyde than with acetaldehyde. The N-terminal amino acid sequence of the purified ALDH was determined. The open reading frame preceding the ctfA gene (encoding a subunit of the solvent-forming CoA transferase) of C. beijerinckii NRRL B593 was identified as the structural gene (ald) for the ALDH. The ald gene encodes a polypeptide of 468 amino acid residues with a calculated M(r) of 51, 353. The position of the ald gene in C. beijerinckii NRRL B593 corresponded to that of the aad/adhE gene (encoding an aldehyde-alcohol dehydrogenase) of Clostridium acetobutylicum ATCC 824 and DSM 792. In Southern analyses, a probe derived from the C. acetobutylicum aad/adhE gene did not hybridize to restriction fragments of the genomic DNAs of C. beijerinckii and two other species of solvent-producing clostridia. In contrast, a probe derived from the C. beijerinckii ald gene hybridized to restriction fragments of the genomic DNA of three solvent-producing species but not to those of C. acetobutylicum, indicating a key difference among the solvent-producing clostridia. The amino acid sequence of the ALDH of C. beijerinckii NRRL B593 was most similar (41% identity) to those of the eutE gene products (CoA-acylating ALDHs) of Salmonella typhimurium and Escherichia coli, whereas it was about 26% identical to the ALDH domain of the aldehyde-alcohol dehydrogenases of C. acetobutylicum, E. coli, Lactococcus lactis, and amitochondriate protozoa. The predicted secondary structure of the C. beijerinckii ALDH suggests the presence of an atypical Rossmann fold for NAD(+) binding. A comparison of the proposed catalytic pockets of the CoA-dependent and CoA-independent ALDHs identified 6 amino acids that may contribute to interaction with CoA.  相似文献   

3.
4.
Clostridium beijerinckii is an anaerobic bacterium used for the fermentative production of acetone and butanol. The recent availability of genomic sequence information for C. beijerinckii NCIMB 8052 has allowed for an examination of gene expression during the shift from acidogenesis to solventogenesis over the time course of a batch fermentation using a ca. 500-gene set DNA microarray. The microarray was constructed using a collection of genes which are orthologs of members of gene families previously found to be important to the physiology of C. acetobutylicum ATCC 824. Similar to the onset of solventogenesis in C. acetobutylicum 824, the onset of solventogenesis in C. beijerinckii 8052 was concurrent with the initiation of sporulation. However, forespores and endospores developed more rapidly in C. beijerinckii 8052 than in C. acetobutylicum 824, consistent with the accelerated expression of the sigE- and sigG-regulated genes in C. beijerinckii 8052. The comparison of gene expression patterns and morphological changes in C. beijerinckii 8052 and the hyper-butanol-producing C. beijerinckii strain BA101 indicated that BA101 was less efficient in sporulation and phosphotransferase system-mediated sugar transport than 8052 but that it exhibited elevated expression of several primary metabolic genes and chemotaxis/motility genes.  相似文献   

5.
6.
Abstract: A physical map of the Clostridium beijerinckii (formerly Clostridium acetobutylicum ) NCIMB 8052 chromosome has been constructed, encompassing about 90 rare restriction sites. The 14 rrn operons together with 40 genes have been assigned positions on the map. Genetic analysis and gene transfer have been developed in this organism to enable in vivo analysis of the roles of cloned genes using marker replacement technology. Experiments using the available genetic tools have shown that spo0A plays a cardinal role in controlling several aspects of the transition from exponential growth to stationary phase in C. beijerinckii . These include initiation of sporulation, accumulation of the storage polysaccharide, granulose, and production of acetone and butanol. Several C. beijerinckii and C. acetobutylicum genes concerned with fermentative metabolism, whose expression is modulated at the onset of solventogenesis, contain sequence motifs resembling 0A boxes in their 5' regulatory regions. This invites the speculation that they are under direct control of Spo0A, and additional data are now required to test this prediction.  相似文献   

7.
Abstract: Alcohol dehydrogenase (ADH) is a key enzyme for the production of butanol, ethanol, and isopropanol by the solvent-producing clostridia. Initial studies of ADH in extracts of several strains of Clostridium acetobutylicum and C. beijerinckii gave conflicting molecular properties. A more coherent picture has emerged because of the following results: (i) identification of ADHs with different coenzyme specificities in these species; (ii) discovery of structurally conserved ADHs (type 3) in three solvent-producing species; (iii) isolation of mutants with deficiencies in butanol production and restoration of butanol production with a cloned alcohol/aldehyde dehydrogenase gene; and (iv) resolution of various ' C. acetobutylicum ' cultures into four species. The three ADH isozymes of C. beijerinckii NRRL B592 have high sequence similarities to ADH-1 of Clostridium sp. NCP 262 (formerly C. acetobutylicum P262) and to the ADH domain of the alcohol/aldehyde dehydrogenase of C. acetobutylicum ATCC 824/DSM 792. The NADH-dependent activity of the ADHs from C. beijerinckii NRRL B592 and the BDHs from C. acetobutylicum ATCC 824 is profoundly affected by the pH of the assay, and the relative importance of NADH and NADPH to butanol production may be misappraised when NAD(P)H-dependent activities were measured at different pH values. The primary/secondary ADH of isopropanol-producing C. beijerinckii is a type-1 enzyme and is highly conserved in Thermoanaerobacter brockii (formerly Thermoanaerobium brockii ) and Entamoeba histolytica . Several solvent-forming enzymes (primary ADH, aldehyde dehydrogenase, and 3-hydroxybutyryl-CoA dehydrogenase) are very similar between C. beijerinckii and the species represented by Clostridium sp. NCP 262 and NRRL B643. The realization of such relationships will facilitate the elucidation of the roles of different ADHs because each type of ADH can now be studied in an organism most amenable to experimental manipulations.  相似文献   

8.
Glucose uptake and accumulation by Clostridium beijerinckii BA101, a butanol hyperproducing mutant, were examined during various stages of growth. Glucose uptake in C. beijerinckii BA101 was repressed 20% by 2-deoxyglucose and 25% by mannose, while glucose uptake in C. beijerinckii 8052 was repressed 52 and 28% by these sugars, respectively. We confirmed the presence of a phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) associated with cell extracts of C. beijerinckii BA101 by glucose phosphorylation by PEP. The PTS activity associated with C. beijerinckii BA101 was 50% of that observed for C. beijerinckii 8052. C. beijerinckii BA101 also demonstrated lower PTS activity for fructose and glucitol. Glucose phosphorylation by cell extracts derived from both C. beijerinckii BA101 and 8052 was also dependent on the presence of ATP, a finding consistent with the presence of glucokinase activity in C. beijerinckii extracts. ATP-dependent glucose phosphorylation was predominant during the solventogenic stage, when PEP-dependent glucose phosphorylation was dramatically repressed. A nearly twofold-greater ATP-dependent phosphorylation rate was observed for solventogenic stage C. beijerinckii BA101 than for solventogenic stage C. beijerinckii 8052. These results suggest that C. beijerinckii BA101 is defective in PTS activity and that C. beijerinckii BA101 compensates for this defect with enhanced glucokinase activity, resulting in an ability to transport and utilize glucose during the solventogenic stage.  相似文献   

9.
10.
Genetic systems development in the clostridia   总被引:1,自引:0,他引:1  
Abstract: This review describes recent developments in the genetic manipulation of the solventogenic clostridia, Clostridium acetobutylicum and C. beijerinckii . It is to be noted that our laboratory stock of C. acetobutylicum ATCC 824, which was obtained from the American Type Culture Collection, has recently been re-identified as C. beijerinckii NCIMB 8052 based on DNA similarity studies using the S1 nuclease method (personal communication, Dr. Jiann-Shin Chen, Virginia Polytechnic Institute and State University). Reference to our laboratory 824 culture has been changed to C. beijerinckii NCIMB 8052 throughout this paper in order to be consistent with this finding. The focus of this review specifically involves the characterization of an M13-like genetic system for the clostridia based on the pCAK1 phagemid, as well as preliminary work on development of a plasmid-based vector based on the indigenous pDM11 plasmid recovered from C. acetobutylicum NCIB 6443. The construction of a C. beijerinckii strain with amplified endoglucanase activity was achieved by inserting the engB gene from C. cellulovorans into C. beijerinckii . The successful expression of a heterologous engB gene from C. cellulovorans in C. beijerinckii NCIMB 8052 has important industrial significance for the eventual utilization of cellulose by this acetone-butanol-ethanol fermentation microorganism.  相似文献   

11.
12.
Sucrose is the major carbon source in molasses, the traditional substrate employed in the industrial acetone-butanol-ethanol (ABE) fermentation by solventogenic clostridia. The utilization of sucrose by Clostridium beijerinckii NCIMB 8052 was investigated. Extracts prepared from cultures grown on sucrose (but not xylose or fructose) as the sole carbon source possessed sucrose phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) activity. Extract fractionation and reconstitution experiments revealed that the entire sucrose Enzyme II complex resides within the membrane in this organism. Sucrose-6-phosphate hydrolase and fructokinase activities were also detected in sucrose grown cultures. The fructokinase activity, which is required specifically during growth on sucrose, was shown to be inducible under these conditions. A pathway for sucrose metabolism in this organism is proposed.  相似文献   

13.
14.
Corynebacterium glutamicum ATCC 13032 has four enzyme II (EII) genes of the phosphotransferase system in its genome encoding transporters for sucrose, glucose, fructose, and an unidentified EII. To analyze the function of these EII genes, they were inactivated via homologous recombination and the resulting mutants characterized for sugar utilization. Whereas the sucrose EII was the only transport system for sucrose in C. glutamicum, fructose and glucose were each transported by a second transporter in addition to their corresponding EII. In addition, the ptsF ptsG double mutant carrying deletions in the EII genes for fructose and glucose accumulated fructose in the culture broth when growing on sucrose. As no fructokinase gene exists in the C. glutamicum genome, the fructokinase gene from Clostridium acetobutylicum was expressed in C. glutamicum and resulted in the direct phosphorylation of fructose without any fructose efflux. Accordingly, since fructokinase could direct fructose flux to the pentose phosphate pathway for the supply of NADPH, fructokinase expression may be a potential strategy for enhancing amino acid production.  相似文献   

15.
Clostridial strain degeneration   总被引:2,自引:0,他引:2  
Abstract: Strain degeneration, the loss of the capacity to produce solvents and form spores, typically occurs when Clostridium acetobutylicum and related clostridia are repeatedly subcultured in batch culture or grown in continuous culture, as opposed to being grown from germinated, heat-treated spores. Several mechanisms for degeneration have been identified thus far. (i) Degeneration can be caused by excessive acidification of the culture during exponential growth. We present data interpreted to mean that C. beijerinckii (formerly C. acetobutylicum ) NCIMB 8052 cells ferment glucose to acetic and butyric acids at an uncontrolled rate, so that, during rapid growth, the rate of acid production can exceed the rate of induction of the solventogenic pathway enzymes. As a result, the medium pH drops to bactericical levels, and the cells cannot switch to solventogenesis and sporulation. The clostridia seem to be poised either to produce excess acids, or to initiate solventogenesis, depending on small differences in the rates of growth. (ii) We have isolated transposon-insertion mutants of C. beijerinckii NCIMB 8052 that are resistant to degeneration, suggesting the involvement of a regulatory region of the clostridial chromosome. (iii) Involvement of a global regulatory gene has been inferred in C. beijerinckii NCIMB 8052 which degenerates irreversibly in chemostat culture. (iv) Impairment of butanol formation due to a defect in NADH generation has been reported in an oligosporogenous strain which can revert to the non-degenerate phenotype. (v) In continuous culture, degenerate cells may be selected because they continue to divide, while the non-degenerate cells stop dividing and start differentiating.  相似文献   

16.
Our research group is studying the phosphotransferase system (PTS) of Streptomyces coelicolor, which, in other bacteria, is centrally involved in carbon source uptake and regulation. We have surveyed the public available S. coelicolor genome sequence produced by the ongoing genome sequencing project for pts gene homologues (http://www.sanger.ac.uk/Projects/S_coelicolor/). Three genes encoding homologues of the general PTS components enzyme I (ptsI), HPr (ptsH), and enzyme IIACrr (crr; IIAGlc-homologue) and six genes encoding homologues of sugar-specific PTS components were identified. The deduced primary sequences of the sugar-specific components shared significant similarities to PTS permeases of the mannitol/fructose family and of the glucose/sucrose family. A model is presented, in which possible functions of the novel described PTS homologues are discussed.  相似文献   

17.
Acetoin reductase (ACR) catalyzes the conversion of acetoin to 2,3-butanediol. Under certain conditions, Clostridium acetobutylicum ATCC 824 (and strains derived from it) generates both d- and l-stereoisomers of acetoin, but because of the absence of an ACR enzyme, it does not produce 2,3-butanediol. A gene encoding ACR from Clostridium beijerinckii NCIMB 8052 was functionally expressed in C. acetobutylicum under the control of two strong promoters, the constitutive thl promoter and the late exponential adc promoter. Both ACR-overproducing strains were grown in batch cultures, during which 89 to 90% of the natively produced acetoin was converted to 20 to 22 mM d-2,3-butanediol. The addition of a racemic mixture of acetoin led to the production of both d-2,3-butanediol and meso-2,3-butanediol. A metabolic network that is in agreement with the experimental data is proposed. Native 2,3-butanediol production is a first step toward a potential homofermentative 2-butanol-producing strain of C. acetobutylicum.  相似文献   

18.
Clostridium acetobutylicum naturally produces acetone as well as butanol and ethanol. Since acetone cannot be used as a biofuel, its production needs to be minimized or suppressed by cell or bioreactor engineering. Thus, there have been attempts to disrupt or inactivate the acetone formation pathway. Here we present another approach, namely, converting acetone to isopropanol by metabolic engineering. Since isopropanol can be used as a fuel additive, the mixture of isopropanol, butanol, and ethanol (IBE) produced by engineered C. acetobutylicum can be directly used as a biofuel. IBE production is achieved by the expression of a primary/secondary alcohol dehydrogenase gene from Clostridium beijerinckii NRRL B-593 (i.e., adh(B-593)) in C. acetobutylicum ATCC 824. To increase the total alcohol titer, a synthetic acetone operon (act operon; adc-ctfA-ctfB) was constructed and expressed to increase the flux toward isopropanol formation. When this engineering strategy was applied to the PJC4BK strain lacking in the buk gene (encoding butyrate kinase), a significantly higher titer and yield of IBE could be achieved. The resulting PJC4BK(pIPA3-Cm2) strain produced 20.4 g/liter of total alcohol. Fermentation could be prolonged by in situ removal of solvents by gas stripping, and 35.6 g/liter of the IBE mixture could be produced in 45 h.  相似文献   

19.
All eukaryotes so far studied, including animals, plants, yeasts and trypanosomes, have two pathways to target proteins to peroxisomes. These two pathways are specific for the two types of peroxisome targeting signal (PTS) present on peroxisomal matrix proteins. Remarkably, the complete genome sequence of Caenorhabditis elegans lacks the genes encoding proteins specific for the PTS2 targeting pathway. Here we show, by expression of green fluorescent protein (GFP) reporters for both pathways, that the PTS2 pathway is indeed absent in C. elegans. Lack of this pathway in man causes severe disease due to mislocalization of PTS2-containing proteins. This raises the question as to how C. elegans has accommodated the absence of the PTS2 pathway. We found by in silico analysis that C. elegans orthologues of PTS2-containing proteins have acquired a PTS1. We propose that switching of targeting signals has allowed the PTS2 pathway to be lost in the phylogenetic lineage leading to C. elegans.  相似文献   

20.
In this review, we describe the phosphotransferase system (PTS) of Corynebacterium glutamicum and discuss genes for putative global carbon regulation associated with the PTS. C. glutamicum ATCC 13032 has PTS genes encoding the general phosphotransferases enzyme I, HPr and four enzyme II permeases, specific for glucose, fructose, sucrose and one yet unknown substrate. C. gluamicum has a peculiar sugar transport system involving fructose efflux after hydrolyzing sucrose transported via sucrose EII. Also, in addition to their primary PTS, fructose and glucose are each transported by a second transporter, glucose EII and a non-PTS permease, respectively. Interestingly, C. glutamicum does not show any preference for glucose, and thus co-metabolizes glucose with other sugars or organic acids. Studies on PTS-mediated sugar uptake and its related regulation in C. glutamicum are important because the production yield of lysine and cell growth are dependent on the PTS sugars used as substrates for fermentation. In many bacteria, the PTS is also involved in several regulatory processes. However, the detailed molecular mechanism of global carbon regulation associated with the PTS in this organism has not yet been revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号