首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In contrast to gram-negative bacteria, little is known about the mechanisms by which gram-positive bacteria degrade the toxic metabolic intermediate methylglyoxal (MG). Clostridium beijerinckii BR54, a Tn1545 insertion mutant of the NCIMB 8052 strain, formed cultures that contained significantly more (free) MG than wild-type cultures. Moreover, BR54 was more sensitive to growth inhibition by added MG than the wild type, suggesting that it has a reduced ability to degrade MG. The single copy of Tn1545 in this strain lies just downstream from gldA, encoding glycerol dehydrogenase. As a result of antisense RNA production, cell extracts of BR54 possess significantly less glycerol dehydrogenase activity than wild-type cell extracts (H. Liyanage, M. Young, and E. R. Kashket, J. Mol. Microbiol. Biotechnol. 2:87-93, 2000). Inactivation of gldA in both C. beijerinckii and Clostridium difficile gave rise to pinpoint colonies that could not be subcultured, indicating that glycerol dehydrogenase performs an essential function in both organisms. We propose that this role is detoxification of MG. To our knowledge, this is the first report of targeted gene disruption in the C. difficile chromosome.  相似文献   

2.
In contrast to gram-negative bacteria, little is known about the mechanisms by which gram-positive bacteria degrade the toxic metabolic intermediate methylglyoxal (MG). Clostridium beijerinckii BR54, a Tn1545 insertion mutant of the NCIMB 8052 strain, formed cultures that contained significantly more (free) MG than wild-type cultures. Moreover, BR54 was more sensitive to growth inhibition by added MG than the wild type, suggesting that it has a reduced ability to degrade MG. The single copy of Tn1545 in this strain lies just downstream from gldA, encoding glycerol dehydrogenase. As a result of antisense RNA production, cell extracts of BR54 possess significantly less glycerol dehydrogenase activity than wild-type cell extracts (H. Liyanage, M. Young, and E. R. Kashket, J. Mol. Microbiol. Biotechnol. 2:87–93, 2000). Inactivation of gldA in both C. beijerinckii and Clostridium difficile gave rise to pinpoint colonies that could not be subcultured, indicating that glycerol dehydrogenase performs an essential function in both organisms. We propose that this role is detoxification of MG. To our knowledge, this is the first report of targeted gene disruption in the C. difficile chromosome.  相似文献   

3.
4.
gldA, the structural gene for the NAD(+)-dependent glycerol dehydrogenase, was mapped at 89.2 min on the Escherichia coli linkage map, cotransducible with, but not adjacent to, the glpFKX operon encoding the proteins for the uptake and phosphorylation of glycerol. gldA was cloned, and its position on the physical map of E. coli was determined. The expression of gldA was induced by hydroxyacetone under stationary-phase growth conditions.  相似文献   

5.
6.
[目的]利用密码子优化技术,提高甘油脱氢酶基因gldA在大肠杆菌中的表达水平.[方法]针对gldA起始密码子下游区域,优先选择AT含量最高的同义密码子,从而在不改变氨基酸序列的前提下,提高该区域的AT含量.利用大引物PCR的方法对野生型gldA-WT进行定点突变,获得优化型基因gldA-4,与pET-32a(+)连接后...  相似文献   

7.
将一株弗氏中华根瘤菌(R.fredii)QB1130的Tn5插入突变株ON-2用于生态学研究,以评估Tn5在自然环境中的水平转移以及各种水势下Tn5对突变株ON-2在土壤中运动的影响.试验表明,在自然潮湿的土壤中,Tn5本身的水平转移频率很低,且与Tn5插入相关的突变株卡那霉素抗性表型标记在非选择性平板上连续传40代后仍然稳定.突变株ON-2与相对应的野生型菌株QB1130在各种相同水势的土壤中的运动无明显差异(P=0.01),表明Tn5的插入不影响突变株的运动.因此,Tn5可作为研究R.fredii基因工程菌大回应用的一个稳定有效的生态学标记.  相似文献   

8.
9.
X Nassif  D Puaoi    M So 《Journal of bacteriology》1991,173(7):2147-2154
The ability to study the virulence of pathogenic Neisseria spp. has been greatly limited by the absence of genetic tools which allow the construction of defined mutants. We have engineered a transposon system which allows random mutagenesis of the Neisseria genome at relatively high frequency. Tn1545-delta 3 is a 3.4-kb derivative of the gram-positive transposon Tn1545 encoding resistance to kanamycin. Tn1545-delta 3 was subcloned into an erythromycin-resistant derivative of the mobilizable shuttle vector pLES2 to yield the plasmid pMGC20. This latter plasmid was introduced by conjugation from Escherichia coli S17-1 into Neisseria meningitidis 8013N and Neisseria gonorrhoeae 15063G. Kanamycin-resistant 8013N and 15063G transconjugants appeared at frequencies of 10(-5) and 10(-6), respectively. Restriction enzyme analysis and Southern blot hybridization of these transconjugants showed that, in Neisseria spp., the transposon excised spontaneously from pMGC20 and integrated into chromosomal DNA. Our studies revealed that (i) transposition of Tn1545-delta 3 was in numerous, apparently distinct sites, (ii) in most cases, for each transconjugant a single copy of Tn1545-delta 3 was integrated into the chromosome, and (iii) several passages on selective media did not induce secondary transposition. The kanamycin resistance marker expressed by the transconjugants was subsequently transformed into a parental background without change in the chromosomal location of the transposon. To assess the role of the general recombination system in the transposition of Tn1545-delta 3, the recA gene of N. meningitidis has been cloned and a rec derivative of 8013N has been engineered. Similar results were obtained when this latter strain was used as recipient, suggesting that recA function were not required for Tn1545-delta 3 transposition in N. meningitidis. Transposition with Tn1545-delta 3 may be an important technique for mutagenesis of the pathogenic neisseriae.  相似文献   

10.
11.
We mutagenized Sinorhizobium fredii HH103-1 with Tn5-B20 and screened about 2,000 colonies for increased beta-galactosidase activity in the presence of the flavonoid naringenin. One mutant, designated SVQ287, produces lipochitooligosaccharide Nod factors (LCOs) that differ from those of the parental strain. The nonreducing N-acetylglucosamine residues of all of the LCOs of mutant SVQ287 lack fucose and 2-O-methylfucose substituents. In addition, SVQ287 synthesizes an LCO with an unusually long, C20:1 fatty acyl side chain. The transposon insertion of mutant SVQ287 lies within a 1.1-kb HindIII fragment. This and an adjacent 2.4-kb HindIII fragment were sequenced. The sequence contains the 3' end of noeK, nodZ, and noeL (the gene interrupted by Tn5-B20), and the 5' end of nolK, all in the same orientation. Although each of these genes has a similarly oriented counterpart on the symbiosis plasmid of the broad-host-range Rhizobium sp. strain NGR234, there are significant differences in the noeK/nodZ intergenic region. Based on amino acid sequence homology, noeL encodes GDP-D-mannose dehydratase, an enzyme involved in the synthesis of GDP-L-fucose, and nolK encodes a NAD-dependent nucleotide sugar epimerase/dehydrogenase. We show that expression of the noeL gene is under the control of NodD1 in S. fredii and is most probably mediated by the nod box that precedes nodZ. Transposon insertion into neoL has two impacts on symbiosis with Williams soybean: nodulation rate is reduced slightly and competitiveness for nodulation is decreased significantly. Mutant SVQ287 retains its ability to form nitrogen-fixing nodules on other legumes, but final nodule number is attenuated on Cajanus cajan.  相似文献   

12.
In order to elucidate the function of the IS1 insA gene derivatives of plasmid pUC19::Tn9' with insertions of synthetic oligonucleotides were obtained. The latter are equal or multiple of 9 b.p. in length and are located in the Pst1 site within each of the two IS1 copies of the Tn9' transposon. The insertions of the nine base oligonucleotides code for the neutral amino acids and do not shift the reading frame. One of the mutant transposon obtained - Tn9'/X was studied on the ability to form simple insertions and plasmid cointegrates. For this purpose the pUC19 derivatives carrying the wild type and mutant transposon were mobilized by conjugative plasmid pRP3.1. It was found that the damage of the insA gene does not influence the ability of transposon to form simple insertions and plasmid cointegrates in both recA - and rec+ cells of E. coli. However, the frequency of the cointegrate formation in the subsequent transposition of the mutant transposon from pRP3.1::Tn9'/X to pBR322 was by 10-20 times lower in comparison to the wild type transposon. Instable (dissociating) Tn9'/X-mediated plasmid cointegrates formed by interaction pUC19::Tn9'/X and pRP3.1 were obtained. It was shown that in the E. coli recA-cells such cointegrates dissociate, as a rule, "correctly", i.e. they segregate mainly plasmids of types pUC19::Tn9'/X and pUC19::IS1/X. The data obtained correspond with the notion that the gene insA product is not essential for transposition, but is, possibly, involved in the formation of the IS1-generated deletions.  相似文献   

13.
The Gram-negative bacterium Variovorax paradoxus strain B4 was isolated from soil under mesophilic and aerobic conditions to elucidate the so far unknown catabolism of mercaptosuccinate (MS). During growth with MS this strain released significant amounts of sulfate into the medium. Tn5::mob-induced mutagenesis was successfully employed and yielded nine independent mutants incapable of using MS as a carbon source. In six of these mutants, Tn5::mob insertions were mapped in a putative gene encoding a molybdenum (Mo) cofactor biosynthesis protein (moeA). In two further mutants the Tn5::mob insertion was mapped in the gene coding for a putative molybdopterin (MPT) oxidoreductase. In contrast to the wild type, these eight mutants also showed no growth on taurine. In another mutant a gene putatively encoding a 3-hydroxyacyl-coenzyme A dehydrogenase (paaH2) was disrupted by transposon insertion. Upon subcellular fractionation of wild-type cells cultivated with MS as sole carbon and sulfur source, MPT oxidoreductase activity was detected in only the cytoplasmic fraction. Cells grown with succinate, taurine, or gluconate as a sole carbon source exhibited no activity or much lower activity. MPT oxidoreductase activity in the cytoplasmic fraction of the Tn5::mob-induced mutant Icr6 was 3-fold lower in comparison to the wild type. Therefore, a new pathway for MS catabolism in V. paradoxus strain B4 is proposed: (i) MPT oxidoreductase catalyzes the conversion of MS first into sulfinosuccinate (a putative organo-sulfur compound composed of succinate and a sulfino group) and then into sulfosuccinate by successive transfer of oxygen atoms, (ii) sulfosuccinate is cleaved into oxaloacetate and sulfite, and (iii) sulfite is oxidized to sulfate.  相似文献   

14.
Mutant strain ME544, which is able to grow on glycerol slowly, was derived from glycerol-negative mutant strain G011, which is a derivative strain of Cellulomonas sp. NT3060 and is defective in both the enzyme activities of glycerol kinase and glycerol 3-phosphate dehydrogenase. The mutant strain still lacked both the enzyme activities involved in the dissimilation of glycerol and had the same level of glycerol dehydrogenase activity as the parent strain. Dihydroxyacetone kinase activity in mutant strain ME544 was inducibly formed, reaching 4-fold the level in mutant strain G011 in glycerol medium. Thus, the mutant strain seemed to dissimilate glycerol by means of glycerol dehydrogenase followed by an increase in dihydroxyacetone kinase. Subsequently, a mutant strain, GP1807, which was resistant to the inhibition of growth on glycerol by 1,2-propanediol, was derived from mutant strain ME544. Glycerol dehydrogenase activity of the mutant strain was amplified about 6-fold compared to that of the wild type strain.  相似文献   

15.
16.
dsg mutants of Myxococcus xanthus are conditionally defective in fruiting body development, including sporulation. Unable to develop on their own, these mutants can assemble fruiting bodies with spores if they are mixed with wild-type cells. To elucidate the developmental defect in dsg mutants by close comparison with wild type, such mutants have been backcrossed by transduction, using a closely linked insertion of transposon Tn5 for selection. Backcrossed dsg mutants form aggregates that are larger, less compact, and less symmetrical than dsg+ fruiting bodies. Also, the starvation-induced sporulation in dsg aggregates is delayed and reduced. However, dsg mutants can be induced by glycerol or dimethyl sulfoxide to sporulate at levels approaching those of wild type. dsg mutants may thus have a primary defect early in development which diminishes their capacity to aggregate and which indirectly decreases the number of fruiting body spores. The linked insertion of Tn5 also facilitated cloning the dsg gene. The cloned dsg+ allele was shown to be dominant to both the dsg-429 and dsg-439 alleles, and both mutant alleles were shown to belong to the same genetic complementation group. Subcloning of restriction fragments, deletions, and insertions of transposon Tn5 agree in locating the dsg gene to an 850-base-pair segment of the cloned region.  相似文献   

17.
A novel, chromosomally located conjugative transposon in Lactococcus lactis, Tn5276, was identified and characterized. It encodes the production of and immunity to nisin, a lanthionine-containing peptide with antimicrobial activity, and the capacity to utilize sucrose via a phosphotransferase system. Conjugal transfer of Tn5276 was demonstrated from L. lactis NIZO R5 to different L. lactis strains and a recombination-deficient mutant. The integration of Tn5276 into the plasmid-free strain MG1614 was analyzed by using probes based on the gene for the nisin precursor (nisA) and the gene for sucrose-6-phosphate hydrolase (sacA). The transposon inserted at various locations in the MG1614 chromosome and showed a preference for orientation-specific insertion into a single target site (designated site 1). By using restriction mapping in combination with field inversion gel electrophoresis and DNA cloning of various parts of the element including its left and right ends, a physical map of the 70-kb Tn5276 was constructed, and the nisA and sacA genes were located. The nucleotide sequences of Tn5276 junctions in donor strain NIZO R5 and in site 1 of an MG1614-derived transconjugant were determined and compared with that of site 1 in recipient strain MG1614. The results show that the A + T-rich ends of Tn5276 are flanked by a direct hexanucleotide repeat in both the donor and the transconjugant but that the element does not contain a clear inverted repeat.  相似文献   

18.
19.
The NCIMB 8052 strain of Clostridium beijerinckii contains nine copies of a novel insertion sequence, ISCb1, belonging to the IS4 family. The 1764 bp element has 18 bp inverted repeats at its extremities, and generates 11 bp target repeats upon insertion. It contains a 1365 bp ORF whose predicted product (455 amino acids) resembles bacterial transposases. The highly conserved DD(35)E motif is present, as are signatures characteristic of the N3 and C1 domains of bacterial transposases. Codon usage of the ORF is somewhat different from that of other C. beijerinckii genes, suggesting that ISCb1 may have been acquired from another organism by horizontal gene transfer in the evolutionary past. One ISCb1 copy lies close to the site of insertion of Tn 1545 in a mutant strain, C10, which shows a reduced tendency to degenerate (i.e. loss of the potential to form solvents) compared with the wild type. In the C10 strain, the characteristic pattern of DNA fragments detected by an IS-specific probe was altered, but this was due to the Tn1545 insertion itself, rather than an ISCb1-mediated genome re-arrangement. There is currently no evidence that the element is involved in strain degeneration, since 12 independently isolated spontaneous mutants that had lost the ability to form solvents had the same ISCb1 profile as that of the wild type strain. The element is apparently restricted to a series of closely related solvent-forming clostridia.  相似文献   

20.
目的:利用Tn5转座诱变荧光假单胞菌PF20001,研究所获得的突变株对青枯病的生防效果。方法:利用三亲本杂交方式,将带有转座子Tn5的Tn5-102(含luxAB)的质粒pTR102成功地转入PF20001,利用平板相互拮抗法分析突变株对青枯病致病菌的拮抗作用。结果:通过诱导Tn5转座,得到荧光假单胞菌PF20001的Tn5插入突变库。经平板相互拮抗实验发现,菌株PF20001-lux-48拮抗圈明显大于野生型(半径达0.35cm)。用Tn5-lux特异引物进行PCR扩增,结果显示只有以该突变株的DNA为模板才能得到300bp的扩增产物,证实该菌株基因组中有Tn5插入。结论:Tn5的插入使菌株PF20001对青枯病生物防治能力增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号