首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ADP-ribosylation of transducin by pertussis toxin   总被引:8,自引:0,他引:8  
Transducin, the guanyl nucleotide-binding regulatory protein of retinal rod outer segments that couples the photon receptor, rhodopsin, with the light-activated cGMP phosphodiesterase, can be resolved into two functional components, T alpha and T beta gamma. T alpha (39 kDa), which is [32P]ADP-ribosylated by pertussis toxin and [32P]NAD in rod outer segments and in purified transducin, was also labeled by the toxin after separation from T beta gamma (36 kDa and approximately 10 kDa); neither component of T beta gamma was a pertussis toxin substrate. Labeling of T alpha was enhanced by T beta gamma and was maximal at approximately 1:1 molar ratio of T alpha : T beta gamma. Limited proteolysis by trypsin of T alpha in the presence of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) resulted in the sequential appearance of proteins of 38 and 32 kDa. The amino terminus of both 38- and 32-kDa proteins was leucine, whereas that of T alpha could not be identified and was assumed to be blocked. The 32-kDa peptide was not a pertussis toxin substrate. Labeling of the 38-kDa protein was poor and was not enhanced by T beta gamma. Trypsin treatment of [32P]ADP-ribosyl-T alpha produced a labeled 37-38-kDa doublet followed by appearance of radioactivity at the dye front. It appears, therefore, that, although the 38-kDa protein was poor toxin substrate, it contained the ADP-ribosylation site. Without rhodopsin, labeling of T alpha (in the presence of T beta gamma) was unaffected by Gpp(NH)p, guanosine 5'-O-(thiotriphosphate) (GTP gamma S), GTP, GDP, and guanosine 5'-O-(thiodiphosphate) (GDP beta S) but was increased by ATP. When photolyzed rhodopsin and T beta gamma were present, Gpp(NH)p and GTP gamma S decreased [32P]ADP-ribosylation by pertussis toxin. Thus, pertussis toxin-catalyzed [32P]ADP-ribosylation of T alpha was affected by nucleotides, rhodopsin and light in addition to T beta gamma. The amino terminus of T alpha, while it does not contain the pertussis toxin ADP-ribosylation site, appeared critical to its reactivity.  相似文献   

2.
Hormonal stimulation of adenylate cyclase from bovine cerebral cortex is mediated by a guanine-nucleotide regulatory protein (Gs). This protein contains at least three polypeptides: a guanine nucleotide-binding alpha s component and a beta X gamma component, which modulates the function of alpha s. The alpha s component from many tissues can be ADP-ribosylated with cholera toxin, but has been unusually difficult to modify in brain. We have improved incorporation of ADP-ribose by including isonicotinic acid hydrazide to inhibit the potent NAD glycohydrolase activity of brain. ADP-ribosylation is further improved by addition of detergent to render the substrates accessible and 20 mM-EDTA to chelate metal ions. Although Mg2+ is absolutely required for activation of adenylate cyclase by the GTP analogue guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG), it is not obligatory for p[NH]ppG-stimulated ADP-ribosylation by cholera toxin. Under these conditions, the ADP-ribosylation of brain membranes is not enhanced by a cytosolic protein. We find that there are two major sizes of brain alpha s, which we have named 'alpha sL', with an apparent Mr of 42,000-45,000, and 'alpha sH' with an apparent Mr of 46,000-51,000 depending on the gel-electrophoretic system used. The alpha sL and alpha sH components can incorporate different amounts of ADP-ribose depending on the reaction conditions, so that one or the other may appear to predominate. Thus we show that incomplete ADP-ribosylation by cholera toxin is not a good indication of the relative amounts of alpha s units. Functionally, however, both forms of alpha s appear to be similar. Both forms associate with the catalytic unit of adenylate cyclase, but neither of them does so preferentially. There is an excess of each of them over the amount associated with catalytic unit. We have now substantially purified Gs from brain by a modification of the method of Sternweis et al. [(1981) J. Biol. Chem. 256, 11517-11526] as well as by a new, simplified, procedure. On SDS/polyacrylamide-gel electrophoresis, the purified brain Gs contains both the 45 and 51 kDa alpha s polypeptides revealed by ADP-ribosylation and a beta X gamma component. Activation of purified alpha s by guanine nucleotides or fluoride can be reversed by addition of purified beta X gamma component. The activated form of purified brain Gs has an Mr of 49,000 as determined by hydrodynamic measurements, which is consistent with the idea that the active form of brain Gs is the dissociated one.  相似文献   

3.
Transducin, a guanine nucleotide-binding protein consisting of two subunits (T alpha and T beta gamma), mediates the signal coupling between rhodopsin and a membrane-bound cyclic GMP phosphodiesterase in retinal rod outer segments. The T alpha subunit is an activator of the phosphodiesterase, and the function of the T beta gamma subunit is to physically link T alpha with photolyzed rhodopsin. In this study, the mechanism of cholera toxin-catalyzed ADP-ribosylation of T alpha has been examined in a reconstituted system consisting of purified transducin and stripped rod outer segment membranes. Limited proteolysis of the labeled T alpha with trypsin indicated that the inserted ADP-ribose is located exclusively on a single proteolytic fragment with an apparent molecular weight of 23,000. Maximal incorporation of ADP-ribose was achieved when guanosine 5'-(beta, gamma-imido)triphosphate (Gpp(NH)p) and T beta gamma were present at concentrations equal to that of T alpha and when rhodopsin was continuously irradiated with visible light in the 400-500 nm region. The stimulating effect of illumination was related to the direct interaction of the retinal chromophore with opsin. These findings strongly suggest that a transient protein complex consisting of T alpha X Gpp(NH)p, T beta gamma, and a photointermediate of rhodopsin is the required substrate for cholera toxin. Single turnover kinetic measurements demonstrated that the ADP-ribosylation of T alpha coincided with the appearance of a population of transducin molecules having a very slow rate of GTP hydrolysis. The hydrolysis rate of the bound GTP for this population was 1.1 X 10(-3)/s, which was 22-fold slower than the rate for the unmodified transducin.  相似文献   

4.
Transducin is the retinal rod outer segment (ROS)-specific G protein coupling the photoexcited rhodopsin to cyclic GMP-phosphodiesterase. The alpha subunit of transducin is known to be ADP-ribosylated by bacterial toxins. We investigated the possibility that transducin is modified in vitro by an endogenous ADP-ribosyltransferase activity. By using either ROS, cytosolic extract of ROS or purified transducin in the presence of [alpha-32P]nicotinamide adenine dinucleotide (NAD+), the alpha and beta subunits of transducin were found to be radiolabeled. The labeling was decreased by snake venom phosphodiesterase I (PDE I). The modification was shown to be mono ADP-ribosylation by analyses on thin layer chromatography of the PDE I-hydrolyzed products which revealed only 5'AMP residues. In addition we report that sodium nitroprusside activates the ADP-ribosylation of transducin.  相似文献   

5.
In the presence of 1 microM atrial natriuretic factor (ANF) and low (0.1 mM) Mg2+ concentrations, the initial rate of binding of [3H]guanosine 5'-[beta, gamma-imido)triphosphate [( 3H]p[NH]ppG) to rat lung plasma membranes was increased twofold to threefold. ANF-dependent stimulation of the initial rate of [3H]p[NH]ppG binding was reduced at high (5 mM) Mg2+ concentrations. Preincubation of membranes with p[NH]ppG (5 min at 37 degrees C) eliminated the ANF-dependent effect on [3H]p[NH]ppG binding whereas ANF-dependent [3H]p[NH]ppG binding was unaffected by similar pretreatment with guanosine 5'-[beta-thio]diphosphate (GDP[beta S]). An increase in ANF concentration from 10 pM to 1 microM caused a 40% decrease in forskolin-stimulated or isoproterenol-stimulated adenylate cyclase activities (IC50 5 nM) in rat lung plasma membranes. GTP (100 microM) was obligatory for the ANF-dependent inhibition of adenylate cyclase, which could be completely overcome by the presence of 100 microM GDP[beta S] or the addition of 10 mM Mn2+. Reduction of Na2+ concentration from 120 mM to 20 mM had the same effect. Pertussis toxin eliminated ANF-dependent inhibition of adenylate cyclase by catalyzing ADP-ribosylation of membrane-bound Ni protein (41-kDa alpha subunit of the inhibitory guanyl-nucleotide-binding protein of adenylate cyclase). The data support the notion that one of the ANF receptors in rat lung plasma membranes is negatively coupled to a hormone-sensitive adenylate cyclase complex via the GTP-binding Ni protein.  相似文献   

6.
The bifunctional reagents para-phenyldimaleimide and maleimidobenzoyl-N-hydroxysuccinimide ester were used to chemically cross-link the subunits of the transducin and cGMP phosphodiesterase (PDE) complexes of bovine rod photoreceptor cells. The cross-linked products were identified by Western immunoblotting using antisera against purified subunits of transducin (T alpha and T beta gamma) and PDE. Oligomeric cross-linked products of transducin subunits as large as (T alpha beta gamma)3 were observed in the latent form of transducin with bound GDP. In addition to the expected T alpha beta and T beta gamma cross-linked products, a (T alpha gamma)2 structure was detected. The close proximity of T alpha and T gamma suggests that T gamma may play a role in conferring the specificity of the interaction between T alpha and rhodopsin. Most of the oligomeric cross-linked structures between T alpha and T beta gamma were diminished in the activated form of transducin, with guanosine 5'-(beta, gamma-imidotriphosphate) (Gpp(NH)p) bound. However, cross-linking between T beta and T gamma was not altered. These results suggest that transducin exists as an oligomer in solution which dissociates upon the binding of Gpp(NH)p. To identify the possible interacting domains between the T alpha, T beta, and T gamma subunits, the cross-linked products were subjected to limited tryptic proteolysis. Several cross-linked tryptic peptides of transducin subunits were found and include the cross-linked products of the N terminus 15-kDa fragment of T beta and the C terminus 5-kDa fragment of T alpha, T gamma and the 12-kDa fragment of T alpha, T gamma and the 15-kDa as well as the 23-kDa fragments of T beta, and an intra-T alpha cross-linked product of the 2- and 21-kDa fragments. These results have allowed the construction of a topographical model for the transducin subunits. The organization of the subunits of PDE (P alpha, P beta, and P gamma) was also studied. The formation of the high molecular size cross-linked products of PDE resulted in the concurrent loss of the P beta and P gamma subunits, suggesting that they are in close proximity. Finally, the interaction between transducin and PDE was examined by chemical cross-linking of transducin-Gpp(NH)p and PDE. Two additional cross-linked products of 180 and 210 kDa were obtained which could be due to the cross-linking of T alpha or T beta with P alpha beta subunits.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
V N Hingorani  Y Ho 《Biochemistry》1987,26(6):1633-1639
Fluorescein 5'-isothiocyanate (FITC) was used to modify the lysine residues of bovine transducin (T), a GTP-binding protein involved in phototransduction of rod photoreceptor cells. The incorporation of FITC showed a stoichiometry of approximately 1 mol of FITC/mol of transducin. The labeling was specific for the T alpha subunit. There was no significant incorporation on the T beta gamma subunit. The modification had no effect on the transducin-rhodopsin interaction or on the binding of guanosine 5'-(beta, gamma-imidotriphosphate) [Gpp(NH)p] to transducin in the presence of photolyzed rhodopsin. The dissociation of the FITC-transducin-Gpp(NH)p complex from rhodopsin membrane remained unchanged. However, the intrinsic GTPase activity of T alpha and its ability to activate the cGMP phosphodiesterase were diminished by FITC modification. The rate of FITC labeling of the transducin-Gpp(NH)p complex was about 3-fold slower than that of transducin. Limited tryptic digestion and peptide mapping were used to localize the FITC labeling site. The majority of the FITC label was on the 23-kilodalton fragment, and a minor amount was on the 9-kilodalton fragment of the T alpha subunit. These results indicate that FITC labeling does not alter the activation of transducin by photolyzed rhodopsin but does affect the GTP hydrolytic activity as well as the GTP-induced conformational change of T alpha, which ultimately leads to the activation of cGMP phosphodiesterase.  相似文献   

8.
Work in several laboratories has shown that Gi, the inhibitory guanyl nucleotide-binding protein of the adenylate cyclase system, is similar in many ways to transducin, the guanyl nucleotide-binding protein of the retinal light-activated cGMP phosphodiesterase system. Separated subunits of purified transducin, T alpha (approximately 39 kDa) and T beta gamma (approximately 35 and approximately 10 kDa), do not exhibit GTPase activity; GTPase activity is observed when the subunits are combined in the presence of rhodopsin ( Fung , B. K.-K. (1983) J. Biol. Chem. 258, 10495-10502). Subunits of Gi, Gi alpha (approximately 41 kDa), and Gi beta gamma (approximately 35 and approximately 10 kDa) were prepared from rabbit liver membranes. It was found that Gi beta gamma could replace T beta gamma in reconstituting the rhodopsin-stimulated GTPase activity of T alpha. Gi alpha exhibited rhodopsin-stimulated GTPase activity when reconstituted with Gi beta gamma or T beta gamma. GTPase activity was a function of Gi alpha concentration when Gi beta gamma or T beta gamma was constant, and the GTPase activity of a given amount of Gi alpha was dependent on Gi beta gamma concentration. These studies demonstrate that the GTPase activity of Gi resides in Gi alpha and further establish that Gi alpha and Gi beta gamma are functionally analogous to T alpha and T beta gamma, respectively.  相似文献   

9.
Transducin (T alpha beta gamma), the heterotrimeric GTP-binding protein that interacts with photoexcited rhodopsin (Rh*) and the cGMP-phosphodiesterase (PDE) in retinal rod cells, is sensitive to cholera (CTx) and pertussis toxins (PTx), which catalyze the binding of an ADP-ribose to the alpha subunit at Arg174 and Cys347, respectively. These two types of ADP-ribosylations are investigated with transducin in vitro or with reconstituted retinal rod outer-segment membranes. Several functional perturbations inflicted on T alpha by the resulting covalent modifications are studied such as: the binding of T alpha to T beta gamma to the membrane and to Rh*; the spontaneous or Rh*-catalysed exchange of GDP for GTP or guanosine 5-[gamma-thio]triphosphate (GTP[gamma S]), the conformational switch and activation undergone by transducin upon this exchange, the activation of T alpha GDP by fluoride complexes and the activation of the PDE by T alpha GTP. ADP-ribosylation of transducin by CTx requires the GTP-dependent activation of ADP-ribosylation factors (ARF), takes place only on the high-affinity, nucleotide-free complex, Rh*-T alpha empty-T beta gamma and does not activate T alpha. Subsequent to CTx-catalyzed ADP-ribosylation the following occurs: (a) addition of GDP induces the release from Rh* of inactive CTxT alpha GDP (CTxT alpha, ADP-ribosylated alpha subunit of transducin) which remains associated to T beta gamma; (b) CTxT alpha GDP-T beta gamma exhibits the usual slow kinetics of spontaneous exchange of GDP for GTP[gamma S] in the absence of Rh*, but the association and dissociation of fluoride complexes, which act as gamma-phosphate analogs, are kinetically modified, suggesting that the ADP-ribose on Arg174 specifically perturbs binding of the gamma-phosphate in the nucleotide site; (c) CTxT alpha GDP-T beta gamma can still couple to Rh* and undergo fast nucleotide exchange; (d) CTxT alpha GTP[gamma S] and CTxT alpha GDP-AlFx (AlFx, Aluminofluoride complex) activate retinal cGMP-phosphodiesterase (PDE) with the same efficiency as their unmodified counterparts, but the kinetics and affinities of fluoride activation are changed; (e) CTxT alpha GTP hydrolyses GTP more slowly than unmodified T alpha GTP, which entirely accounts for the prolonged action of CTxT alpha GTP on the PDE; (f) after GTP hydrolysis, CTxT alpha GDP reassociates to T beta gamma and becomes inactive. Thus, CTx catalyzed ADP-ribosylation only perturbs in T alpha the GTP-binding domain, but not the conformational switch nor the domains of contact with the T beta gamma subunit, with Rh* and with the PDE.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The kinetic constants for the ADP-ribosylation of transducin were determined for the recombinant S1 subunit of pertussis toxin (rS1, composed of 235 amino acids) and two genetically derived deletion peptides, C180 and C195, which are composed of the 180 and 195 amino-terminal residues of the S1 subunit, respectively. Titration of NAD in the presence of a constant concentration of transducin (0.5 microM) showed that the KmappNAD in the ADP-ribosylation of transducin were similar, approximately 20 microM, for rS1, C195, and C180. In contrast, titration of transducin in the presence of a constant concentration of NAD (25 nM) showed that rS1 possessed a lower Kmapp(transducin) and greater kcat than either C195 or C180. Previous studies (Cortina, G., and Barbieri, J.T. (1991) J. Biol. Chem. 266, 3022-3030) showed that the 16 carboxyl terminal residues of the S1 subunit did not function in the ADP-ribosylation of transducin. It thus appears that residues between 195 and 219 of the S1 subunit are required for high affinity transducin binding and may be involved in the transfer of ADP-ribose to transducin. To localize the defect in the recognition of transducin by C180, rS1 and C180 were assayed for the ability to ADP-ribosylate either transducin or the purified alpha subunit of transducin (T alpha). Upon saturation of the target protein, rS1 ADP-ribosylated equivalent moles of transducin or T alpha, with the linear velocity of rS1-mediated ADP-ribosylation of transducin approximately 16-fold more rapid than the rate of ADP-ribosylation of T alpha. In contrast, the initial linear velocity of C180-mediated ADP-ribosylation of transducin was only 1.7-fold more rapid than the rate of ADP-ribosylation of T alpha. These data indicate that the amino-terminal 180 amino acids of S1 confer the specificity for ADP-ribosylation primarily through the interaction with T alpha, while residues between 195 and 219 of S1 confer high affinity binding to transducin primarily through the interaction, either directly or indirectly, with T beta gamma.  相似文献   

11.
Transducin, the guanyl nucleotide-binding protein of the retinal light-activated cGMP phosphodiesterase system, is structurally and functionally similar to the inhibitory and stimulatory guanyl nucleotide-binding proteins, Gi and Gs, of the adenylate cyclase complex. All are heterotrimers composed of alpha, beta, and gamma subunits. Gs and Gi can be activated by NaF with AlCl3 as well as by agonists acting through specific receptors. The effects of NaF and AlCl3 on transducin were investigated in a reconstituted system consisting of the purified subunits of transducin (T alpha, T beta, gamma) and rhodopsin. NaF noncompetitively inhibited the GTPase activity of T alpha in a concentration- and time-dependent manner. Inhibition by NaF was enhanced synergistically by AlCl3 which alone only slightly inhibited GTPase activity. None of the other anions tested reproduced the effect of fluoride. Fluoride inhibited [3H]guanosine 5'-(beta, gamma-imido)triphosphate binding to T alpha and release of bound GDP. The ADP-ribosylation of T alpha by pertussis toxin and binding of T alpha to rhodopsin, both of which are enhanced in the presence of T beta gamma, were inhibited by NaF and AlCl3. These findings are consistent with the hypothesis that fluoride enhances the dissociation of T alpha from T beta gamma, resulting in the inhibition of GTP-GDP exchange, and therefore, GTP hydrolysis.  相似文献   

12.
Our previous study has shown that P gamma, the regulatory subunit of cGMP phosphodiesterase (PDE), is ADP-ribosylated by endogenous ADP-ribosyltransferase when P gamma is free or complexed with the catalytic subunits of PDE in amphibian rod photoreceptor membranes. The P gamma domain containing ADP-ribosylated arginines was shown to be involved in its interaction with T alpha, a key interaction for PDE activation. In this study, we describe a possible function of the P gamma ADP-ribosylation in the GTP/T alpha-dependent PDE activation. When rod membranes were preincubated with or without NAD and washed with a buffer containing GTP, the PDE activity of NAD-preincubated membranes was increased by the GTP-washing only to approximately 50% of that of membranes preincubated without NAD. The P gamma release by the GTP-washing from these NAD-preincubated membranes was also suppressed to approximately 50% of that preincubated without NAD. Taking into consideration that approximately 50% of P gamma is ADP-ribosylated under these conditions, these observations suggest that the ADP-ribosylated P gamma cannot interact with GTP/T alpha. We have also shown that a soluble fraction of ROS contains an enzyme(s) to release the radioactivity of [32P]ADP-ribosylated P gamma in concentration- and time-dependent manners, suggesting that the P gamma ADP-ribosylation is reversible. Rod ADP-ribosyltransferase solubilized from membranes by phosphatidylinositol-specific phospholipase C was separated into two fractions by ion-exchange columns. Biochemical characterization of these two fractions, including measurement of the Km for NAD and P gamma, estimation of their molecular masses, ADP-ribosylation of P gamma arginine mutants, effects of ADP-ribosyltransferase inhibitors on the P gamma ADP-ribosylation, and effects of salts and pH on the P gamma ADP-ribosylation, indicates that rod ADP-ribosyltransferase contains two isozymes, and that these two isozymes have similar properties for the P gamma ADP-ribosylation. Our observations strongly suggest that the negative regulation of PDE through the reversible P gamma ADP-ribosylation may function in the phototransduction mechanism.  相似文献   

13.
Employing [32P]ADP-ribosylation by pertussis toxin we have identified a G protein that is located in the rough endoplasmic reticulum of canine pancreas and therefore termed it GRER. Identification of GRER is based on the following data. A 41-kDa polypeptide was the only polypeptide that was [32P]ADP-ribosylated by pertussis toxin in pancreas rough microsomes. Guanosine 5'-(gamma-thio)triphosphate (GTP gamma S) and 1 mM ATP, 6 mM MgCl2, 10 mM NaF (AMF) inhibited ADP-ribosylation of this polypeptide. The [32P]ADP-ribosylated 41-kDa polypeptide was immunoprecipitated by antisera which specifically recognized the C-terminal residues of the alpha subunits of Gi and transducin, indicating that the 41-kDa polypeptide is immunologically related to the alpha subunits of heterotrimeric G proteins. Treatment with GTP gamma S resulted in a reduction in the sedimentation rate of the [32P]ADP-ribosylated, detergent-solubilized GRER. It also induced the release of the [32P]ADP-ribosylated 41-kDa polypeptide from rough microsomes in the absence of detergent, unlike ADP-ribosylated alpha subunits of plasma membrane-associated G proteins. These data are consistent with an oligomeric nature of GRER. The codistribution of GRER with an endoplasmic reticulum marker protein during subcellular fractionation and the lack of plasma membrane contamination of the rough microsomal fraction, combined with the isodensity of GRER with rough microsomes as well as the isodensity of GRER with "stripped" microsomes after extraction of rough microsomes with EDTA and 0.5 M KCl, localized GRER to the rough endoplasmic reticulum. Preliminary experiments suggest that GRER appears not to be involved in translocation of proteins across the rough endoplasmic reticulum membrane.  相似文献   

14.
The cyclic GMP phosphodiesterase of retinal rods is composed of three distinct polypeptides: alpha (90 kDa), beta (86 kDa), and gamma (10 kDa). In this multimeric form, the enzyme is inhibited. Its activity is stimulated by the interaction with the GTP-bound form of the T alpha subunit of transducin and reversed upon the recombination of the inhibitory gamma subunit with the catalytic alpha beta subunit. We show here by a novel coimmunoprecipitation technique that the gamma subunit, but not the alpha beta subunit, forms a 1:1 complex with T alpha. The binding of gamma to T alpha is nucleotide-dependent and is facilitated by GTP gamma S or Gpp(NH)p. This study provides convincing evidence that the T alpha-GTP subunit of transducin stimulates phosphodiesterase activity by binding to gamma and physically carrying it away from alpha beta.  相似文献   

15.
Pertussis toxin catalyzes the transfer of ADP-ribose from NAD to the guanine nucleotide-binding regulatory proteins Gi, Go, and transducin. Based on a partial amino acid sequence for a tryptic peptide of ADP-ribosylated transducin, asparagine had been characterized as the site of pertussis toxin-catalyzed ADP-ribosylation. Subsequently, cDNA data for the alpha subunit of transducin indicated that the putative asparagine residue was, in fact, not present in the protein. To determine the amino acid that served as the ADP-ribose acceptor, radiolabel from [adenine-U-14C]NAD was incorporated, in the presence of pertussis toxin, into the alpha subunit of transducin (0.3 mol/mol). An ADP-ribosylated, tryptic peptide was purified and fully sequenced by automated Edman degradation. The amino acid sequence, Glu-Asn 343-Leu-Lys-Asp 346-X-Gly 348-Leu-Phe, corresponds to the cDNA sequence coding the carboxyl-terminal nonapeptide, Glu 342-Phe 350, which includes by cDNA sequence cysteine at position 347. Neither Asn 343 nor Asp 346 appeared to be modified; residue 347 adhered to the sequencing resin. Cysteine, the missing residue, was eluted from the sequencing resin with acetic acid along with 76% of the peptide-associated radioactivity, half of which, presumably ADP-ribosylcysteine, eluted from an anion exchange column between NAD and ADP-ribose; the other half had a retention time corresponding to 5'-AMP. We conclude that Cys 347 and not Asn 343 or Asp 346 is the site of pertusis toxin-catalyzed ADP-ribosylation in transducin.  相似文献   

16.
The visual excitation system of the retinal rod outer segments and the hormone-sensitive adenylate cyclase complex are regulated through guanine nucleotide-binding proteins, transducin in the former and inhibitory and stimulatory regulatory components, Gi and Gs, in the latter. These proteins are functionally and structurally similar; all are heterotrimers composed of alpha, beta, and gamma subunits and exhibit guanosine triphosphatase activity stimulated by light-activated rhodopsin or the agonist-receptor complex. Adenylate cyclase can be stimulated by vanadate, which, like NaF, probably acts through Gs. Effects of vanadate on the function of a guanine nucleotide-binding protein were investigated in a reconstituted model system consisting of purified transducin subunits (T alpha, T beta gamma) and rhodopsin in phosphatidylcholine vesicles. Vanadate (decameric) inhibited [3H]GTP binding to T alpha and noncompetitively inhibited GTP hydrolysis in a concentration-dependent manner with maximal inhibition of approximately 90% at 3-5 mM. Vanadate also inhibited release of bound GDP but did not affect the rate of hydrolysis of bound GTP (single turnover rate), indicating that vanadate did not interfere with the intrinsic GTPase activity of T alpha. Binding of T alpha to rhodopsin and the ADP-ribosylation of T alpha by pertussis toxin, both of which are enhanced in the presence of T beta gamma, were inhibited by vanadate. These findings are consistent with the conclusion that vanadate can cause the dissociation of T alpha from T beta gamma, resulting in the inhibition of GDP-GTP exchange and thereby GTP hydrolysis. Adenylate cyclase activation could result from a similar effect of vanadate on Gs.  相似文献   

17.
The properties and functions of the sulfhydryl groups of transducin were examined by 5,5' -dithiobis-(2-nitrobenzoic acid) titration and N-ethylmaleimide modification. The T beta gamma subunit of transducin contained a total of six free sulfhydryl groups and two were reactive under native conditions. Both reactive sulfhydryl groups were located in the beta polypeptide. The functions of transducin were not affected by the modification of these two sulfhydryl groups. The T alpha subunit of transducin contained three accessible sulfhydryl groups under both native and denaturing conditions. When 1.3 sulfhydryl groups were covalently modified by N-ethylmaleimide, the GTPase activity, the guanosine 5' -(beta, gamma-imido)triphosphate (Gpp(NH)p) uptake, and the rhodopsin-binding property of transducin were inhibited. The binding of Gpp(NH)p to T alpha blocked two of the three sulfhydryl groups from chemical modification and increased the reactivity of the remaining one. Modification of this specific sulfhydryl group of T alpha -Gpp(NH)p inhibited the exchange of the bound Gpp(NH)p for GTP. However, the modified T alpha-Gpp(NH)p was able to activate cGMP phosphodiesterase in solution and on positively charged liposomes. These findings demonstrated that a conformational change of T alpha occurs upon the binding of Gpp(NH)p and a specific sulfhydryl group of T alpha plays an important role in the activation of transducin in retinal rod outer segments.  相似文献   

18.
Two proteins serving as substrates for ADP-ribosylation catalyzed by islet-activating protein (IAP), pertussis toxin, and binding guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) with high affinities were purified from the cholate extract of rat brain membranes. The purified proteins had the same heterotrimeric structure (alpha beta gamma) as the IAP substrates previously purified from rabbit liver and bovine brain and differed from each other in alpha only; the molecular weight of alpha was 41,000 (alpha 41 beta gamma) and 39,000 (alpha 39 beta gamma). Both were further resolved into alpha (alpha 41 or alpha 39) and beta gamma which were also purified to homogeneity to compare the activities of alpha-monomers with the original trimers. The maintenance of the rigid trimeric structure by combining alpha 41 or alpha 39 with beta gamma in the absence of Mg2+ was essential for the alpha-subunit to be ADP-ribosylated by IAP. The alpha-subunit was very stable but displayed the only partial GTP gamma S-binding activity under these conditions. Isolated alpha-monomers exhibited high GTPase activities when assayed in the presence of submicromolar Mg2+ but were very unstable at 30 degrees C and not ADP-ribosylated by IAP. The most favorable conditions for the GTP gamma S binding to alpha-subunits were achieved by combining alpha 41 or alpha 39 with beta gamma in the presence of millimolar Mg2+, probably due to the increase in stability and unmasking of the GTP-binding sites. There was no qualitative difference in these properties between alpha 41 beta gamma (alpha 41) and alpha 39 beta gamma (alpha 39). But alpha 39 beta gamma (or alpha 39) was usually more active than alpha 41 beta gamma (or alpha 41), at least partly due to its higher affinity for Mg2+ and lower affinity for beta gamma. Relation of these differences in activity between alpha 41 beta gamma and alpha 39 beta gamma to their physiological roles in signal transduction is discussed.  相似文献   

19.
V N Hingorani  L F Chang  Y K Ho 《Biochemistry》1989,28(18):7424-7432
The structure of the GTP-binding site of transducin, a signal-transducing G-protein involved in the visual excitation process, was studied by affinity labeling. Radioactive GTP analogues with reactive groups attached to different moieties of the GTP molecule were obtained and include 8-azido-GTP, P3-(4-azidoanilino)-P1-5'-GTP (AA-GTP), 5'-[p-(fluorosulfonyl)benzoyl]guanosine (FSBG), 3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)-GTP (ANPAP-GTP), the 2',3'-dialdehyde derivative of GTP (oGTP), and a bifunctional cross-linking analogue, 8-azido-P3-(4-azidoanilino)-P1-5'-GTP (8-azido-AA-GTP). With the exception of FSBG, all of the analogues were found to bind to transducin specifically and serve as a cofactor to activate the retinal cGMP cascade or act as a competitive inhibitor for the GTPase activity of transducin. The labeling sites of these analogues were localized by tryptic peptide mapping. ANPAP-GTP and oGTP were unable to covalently modify transducin, suggesting that the 2'- and 3'-hydroxy groups on the ribose ring of GTP are not in direct contact with the protein. AA-GTP only labeled the T alpha subunit of transducin and was localized on the 21-kDa tryptic fragment of T alpha. This indicates that the phosphate moiety of the bound GTP is in direct contact with this peptide. On the other hand, 8-azido-GTP labeled both the T alpha and T beta gamma subunits of transducin. The labeling on T alpha was on the 12-kDa tryptic fragment, suggesting that the guanine ring binding site is composed of a different peptide fragment than the phosphate binding region. Treatment with the bifunctional analogue 8-azido-AA-GTP generated the cross-linked products of T alpha and T beta gamma. This observation implies that the guanine ring of the bound GTP on T alpha could be in close proximity with T beta gamma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Recently we demonstrated the presence in calf thymocytes of a GTP-binding protein (G-protein) composed of three polypeptides, 54, 41, and 27 kDa, which was physically and functionally associated with a soluble phosphoinositides-specific phospholipase C (PI-phospholipase C). The properties of this G protein were further investigated with the following results. 1) In addition to the ability to bind [35S]guanosine-5'-[gamma-thio]triphosphate (GTP gamma S), the G-protein exhibited GTPase activity, which was enhanced by Mg2+, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol, but inhibited by sodium cholate, GTP gamma S and F-.2) The 54-kDa polypeptide was ADP-ribosylated by pertussis toxin and also by endogenous membrane-bound ADP-ribosyltransferase, but none of these three polypeptides was ADP-ribosylated by cholera toxin. 3) The G-protein did not cross-react with either anti-rat brain alpha 1 (alpha-subunit of inhibitory G-protein, G1), alpha 0 (alpha-subunit of other G1-like G-protein, G0) or beta gamma antibodies. 4) Incubation of this G Protein with GTP gamma S caused dissociation of the three polypeptides. 5) The 27 kDa polypeptide showed GTP-binding activity and enhanced the phosphatidylinositol 4,5-bisphosphate hydrolysis by purified PI-phospholipase C. These results suggest that the PI-phospholipase C-associated G-protein in calf thymocytes may be a novel one and that it is involved in the regulation of PI-phospholipase C activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号