首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A genetic basis of resistance of winter wheat to Fusarium graminearum causing Fusarium head blight was defined as a result of F1, F2, BC1 hybrid analysis in the crosses of some lines and varieties with highly susceptible variety Odesskaya polukarlikovaya. It was found out that resistance to Fusarium graminearum inherited regardless of resistance to rust, mildew and Septoria.  相似文献   

2.
为筛选针对我国黄淮麦区小麦茎腐病抗病新种质,建立可区分小麦其他茎基部病害的茎腐病抗性鉴定方法,本文采用室内苗期鉴定方法对主要来自黄淮麦区的108份小麦品种和高代品系进行茎腐病抗性评价,对其中45份小麦材料同时采用荧光定量PCR方法测定基部茎秆的禾谷镰刀菌DNA含量并与其茎腐病平均病级进行相关分析。共筛选到中抗茎腐病材料22份,未发现高抗和免疫品种(系);相关分析结果表明,小麦基部茎秆禾谷镰刀菌DNA含量与其茎腐病平均病级呈极显著正相关(r=0.73**),小麦基部茎秆禾谷镰刀菌DNA含量可以作为小麦茎腐病抗性的重要参考。抗病新种质的筛选和荧光定量PCR抗性评价方法的建立将为今后黄淮麦区小麦抗茎腐病品种的培育提供帮助。  相似文献   

3.
镰刀菌是植物的重要病原真菌,其入侵植物体可引起镰刀菌病害,给农作物和其它植物的生产带来极大的危害。植物是抗性基因的重要来源之一,随着分子生物学技术的飞速发展,大量的镰刀菌相关抗性基因和抗性候选基因从不同的植物中被分离和鉴定,并应用于抗镰刀菌基因工程育种。对植物来源的镰刀菌抗性基因的种类及其作用机理、抗病候选基因、拟南芥-镰刀菌互作机制及基因调控进行了概述。  相似文献   

4.
Fusarium head blight, caused primarily by Fusarium graminearum, is the most important wheat disease in Canada causing both grain yield and quality losses. Selection for resistance to Fusarium head blight in breeding programs has been difficult because of the complex inheritance of resistance and the environmental effect on disease development and expression. The present study was conducted to examine microsatellite markers associated with resistance to Fusarium head blight and evaluate the effectiveness of these microsatellite markers in selecting for resistance to Fusarium head blight in two doubled-haploid populations segregating for Sumai 3-derived resistance genes. Both doubled-haploid populations were evaluated for resistance to Fusarium head blight by inoculation with F. graminearum in the greenhouse. Eight microsatellite markers from chromosomes 3BS, 6B and 5AL were applied to both doubled-haploid populations. The most significant microsatellite markers were found on the short arm of chromosome 3B, explaining 12% and 36% of phenotypic variation for resistance in the DH181/AC Foremost and AC Foremost/93FHB 21 doubled-haploid populations, respectively. Another important microsatellite marker, gwm644 on 6B, explained 21 % of the phenotypic variation for resistance to Fusarium head blight in the DH181/AC Foremost doubled-haploid population. There was a general lack of marker polymorphism on 5AL for the parents used in this study. Microsatellite markers on chromosome 3BS in addition to microsatellite markers on 6B have the potential for accelerating the development of wheat cultivars with improved Fusarium head blight resistance through the use of marker-assisted selection.  相似文献   

5.
Resistance to Fusarium verticillioides in 20 Zambian Maize Hybrids   总被引:1,自引:0,他引:1  
Visual assessment of maize ears and Fusarium spp. isolation from kernels were compared to determine resistance in 20 Zambian maize hybrids. The mean percentage Fusarium spp. isolations in non-inoculated field experiments varied between years (12–62%). Symptomless infection by Fusarium spp. had domination over symptomatic. More than 95% of the Fusarium species isolated were F. vertcillioides . A disease severity index and the percentage of visibly diseased, discoloured and damaged kernels did not differentiate hybrids with respect to Fusarium spp. ear rot under natural conditions. Artificial inoculation provided a good estimate of Fusarium spp. resistance based on visual symptoms in a year of moderate disease pressure, but not in a year of high disease pressure. The percentage Fusarium spp. isolations showed significant differences between hybrids after inoculation, and it was significantly negatively correlated with the number of days from planting to midsilk. Parental line L5522 contributed to hybrid resistance to Fusarium . The hybrids MM 701-1 and MM 752 were the most resistant among the 20 hybrids.  相似文献   

6.
Fusarium Head Blight (FHB) is a destructive disease that affects the grain yield and quality of cereals. The relationship between the natural defense chemicals benzoxazinoids and the FHB resistance of field grown winter wheat varieties was investigated. FHB resistance was assessed by the inoculation of wheat ears with mixtures of Fusarium avenaceum, Fusarium culmorum, Fusarium graminearum, and Microdochium nivale.  相似文献   

7.
芝麻枯萎病是芝麻主要真菌病害之一,由尖孢镰刀菌芝麻专化型(FOS,Fusarium oxysporum f.sp.sesami)引起,主要在苗期和成株期发生。为精准评价营养生长时期(2对真叶~现蕾)芝麻种质对FOS菌株的抗性水平,试验分析了FOS菌液浓度、蘸根接菌时间、致病力等条件下芝麻种质枯萎病病症及病情指数变化规律,建立了营养生长期芝麻枯萎病抗性精准鉴定方法。结果表明,1×10^6 cfu/mL^5×10^6 cfu/mL浓度下,植株蘸根接菌处理1~2周即可发病;第4周样本枯萎病病情指数趋于稳定。上述方法反映不同芝麻种质营养生长期对FOS菌株的抗性水平以及不同FOS菌株的致病力。营养生长期芝麻枯萎病发生可分为0~4级共5个等级。采用上述鉴定方法对42份芝麻种质进行抗枯萎病鉴定结果显示,野生种Sesamum radiatum Thonn.ex Hornem.高抗枯萎病(DI=0),而S.angustifolium(Oliv.)Engl.高感枯萎病(DI=100)。40份栽培种资源中,高感(HS)种质比例极高(55%),抗病种质比例较低(27.5%)。研究结果为深入开展芝麻抗枯萎病遗传机理分析提供了技术支持。  相似文献   

8.
大麦赤霉病抗扩展性鉴定与评价   总被引:2,自引:0,他引:2  
利用禾谷镰刀菌单花滴注接种研究了245份大麦品种对赤霉病抗扩展性。结果表明,大麦赤霉病抗性除了抗初侵染外还存在抗扩展类型。比较了接种后7d、14d和21d的病小穗数和病小穗率以覆由不同期病小穗率获得的病程曲线面积等7个指标性状,并对其进行遗传参数分析,发现21d病小穗率指标在品种间具帔大的变幅、遗传变异系数和遗传率,21d病小穗数和病程曲线面积与病小穗率呈极显著正相关。不同大麦品种抗扩展性表现不一,供试品种中以Suyin21、乌金一号、莆846193、盐97001、96AC20-30五个品种21d病小穗率最低,为高抗品种,占全部供试品种的2.04%。  相似文献   

9.
Systemic Fungal Growth of Fusarium culmorum in Stems of Winter Wheat   总被引:2,自引:0,他引:2  
Abstract Systemic fungal growth of Fusarium culmorum in winter wheat was investigated under conditions precluding secondary infections by water splash. Growth of F. culmorum in stem tissue was found in both wounded and soil inoculated plants with both methods resulting in a high level of infection. Crown rot can therefore lead to infection of the higher stem internodes under conditions not suitable for Fusarium dispersal. However, no evidence was found for systemic fungal growth leadingto infected heads. Existence of genetic variation for resistance to spread of F. culmorum in the host was found. This resistance was not correlated with resistance to Fusarium head blight.  相似文献   

10.
Fusarium head blight (FHB), caused primarily by Fusarium graminearum, is a major disease problem in wheat (Triticum aestivum). Genetic engineering holds significant potential to enhance FHB resistance in wheat. Due to the requirement of screening for FHB resistance on flowers at anthesis, the number of screens carried out in a year is limited. Our objective was to evaluate the feasibility of using the rapid-maturing dwarf wheat cultivar Apogee as an alternative genotype for transgenic FHB resistance research. Our transformation efficiency (number of transgenic plants/number of embryos) for Apogee was 1.33%. Apogee was also found to exhibit high FHB susceptibility and reached anthesis within 4 weeks. Interestingly, microsatellite marker haplotype analysis of the chromosome 3BS FHB resistant quantitative trait locus (QTL) region indicated that this region maybe deleted in Apogee. Our results indicate that Apogee is particularly well suited for accelerating transgenic FHB resistance research and transgenic wheat research in general. C.A. Mackintosh and D.F. Garvin contributed equally to the article and should be considered co-first authors  相似文献   

11.
由镰孢菌引起的赤霉病是小麦的重要病害,其抗性比较复杂。准确可靠的鉴定和评价方法是抗性改良成功的前提。评述了小麦赤霉病抗性类型及其不同赤霉病抗性鉴定和评价方法的优缺点,重点讨论了抗性类型与抗性鉴定方法的对应性。希望对赤霉病表型鉴定、不同抗性类型的理解和评价以及抗性改良有借鉴意义。  相似文献   

12.
黄瓜枯萎病抗性基因的连锁分子标记   总被引:4,自引:0,他引:4  
黄瓜枯萎病是危害我国黄瓜的主要病害。本实验以黄瓜抗枯萎病亲本WIS2757和感枯萎病亲本津研2号及其F2代分离群体为试材,采用分离群体分组分析法(BSA)进行了与黄瓜抗枯萎病基因连锁的分子标记研究。AFLP分析表明:引物对P15M5扩增出的特异DNA片段P15M5-310与WIS2757黄瓜枯萎病抗性基因连锁,遗传距离为7cM。  相似文献   

13.
Li  Zengqiang  Ma  Lei  Zhang  Yong  Zhao  Wenhui  Zhao  Bingzi  Zhang  Jiabao 《Plant and Soil》2020,448(1-2):383-397
Plant and Soil - Wheat (Triticum aestivum L.) cultivars vary in their resistance to Fusarium head blight (FHB), while it is poorly understood how different cultivars influence FHB-causing Fusarium...  相似文献   

14.
Fusarium ear rot caused by Fusarium verticillioides is a prevalent disease in maize which can severely reduce grain yields and quality. Identification of stable quantitative trait loci (QTL) for resistance to Fusarium ear rot is a basic prerequisite for understanding the genetic mechanism of resistance and for the use of marker-assisted selection. In this study, two hundred and ten F 2:3 families were developed from a cross between resistant inbred line BT-1 and susceptible inbred line Xi502, and were genotyped with 178 simple sequence repeat markers. The resistance of each line was evaluated in two environments by artificial inoculation using the nail-punch method. The resistance QTL were detected using the composite interval mapping method. Three QTL were detected on chromosomes 4, 5 and 10. Of them, the QTL on chromosome 4 (bin 4.05/06) had the largest resistance to Fusarium ear rot, and could explain 17.95?% of the phenotypic variation. For further verification of the QTL effect, we developed near-isogenic lines (NILs) carrying the QTL region on chromosome 4 using parental line Xi502 as the recurrent parent. In the NIL background, this QTL can increase the resistance by 33.7?C35.2?% if the resistance region is homozygous, and by 17.8?C26.5?% if the resistance region contains the heterozygous allele. The stable and significant resistance effect of the QTL on chromosome 4 lays the foundation for further marker-assisted selection and map-based cloning in maize.  相似文献   

15.
小麦赤霉病是全球性小麦病害,严重影响小麦产量和品质,赤霉菌产生的毒素进一步威胁人畜安全,培育抗病品种是控制小麦赤霉病危害的根本途径。植物细胞工程技术可创造新的遗传变异、加快育种进程,已经广泛应用于小麦抗赤霉病育种。概述了体细胞无性系变异诱导、花药培养、小麦与玉米杂交培育加倍单倍体以及幼胚培养一年多代快速成苗等植物细胞工程技术研究进展,着重介绍了其在抗小麦赤霉病育种中的应用。最后对未来发展趋势做了展望,植物细胞工程结合分子育种技术将在小麦抗赤霉病品种培育中发挥更重要的作用。  相似文献   

16.
Summary Studies were made to find out the factors responsible for resistance inCajanus cajan (L.) Millsp. variety C-11-6 against wilt caused byFusarium udum Butl. It was thought to be either due to associated antagonistic microflora in the rhizosphere or due to biochemical constituents in the plant itself. Screening of the rhizosphere isolates revealed the absence of any potent antagonists againstF. udum suggesting that the resistance in C-11-6 variety is not due to antagonistic organisms in the rhizosphere.  相似文献   

17.
《Genomics》2023,115(1):110538
Fusarium wilt is a typical soil-borne disease caused by Fusarium oxysporum f. sp. momordicae (FOM) in bitter gourd. In this study, by comparing sequencing data at multiple time points and considering the difference between resistant (R) and susceptible (S) varieties, differentially expressed genes were screened out. Short time-series expression miner analysis revealed the upregulated expression trend of genes, which were enriched in phenylpropanoid biosynthesis, plant–pathogen interaction, and mitogen-activated protein kinase signaling pathway. Further, observation of the microstructure revealed that the R variety may form tyloses earlier than the S variety to prevent mycelium diffusion from the xylem vessel. After Fusarium wilt infection, the enzymatic activities of superoxide dismutase, peroxidase, phenylalanine ammonia lyase, and catalaseas well as levels of superoxide anion and malondialdehyde were increased in the R variety higher than those in the S variety. This study provides a reference to elucidate the disease resistance mechanism of bitter gourd.  相似文献   

18.
Summary From two lines of Medicago sativa characterized by a high regeneration capability, calli resistant to culture filtrate of Fusarium oxysporum f. sp. medicaginis have been selected. In these calli regeneration capability was greatly reduced and only one plant per callus was recovered. Regenerated plants have been evaluated for resistance to culture filtrate and for in vivo resistance to the pathogen. Three plants out of eight were resistant to the fungus and a high correlation between resistance to culture filtrate and in vivo resistance was observed.Research work supported by C.N.R., Italy. Special grant I.P.R.A. Subproject 1, paper no. 1468  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号