首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The postembryonic ontogeny of the kinorhynch Paracentrophyes praedictus is described by light microscopy and scanning electron microscopy. The development of head scalids and trunk Characteristics has been studied. The first of 6 juvenile stages possesses 11 segments already. One segment each is added both in stages 2 and 5. The number of head scalids increases during development. Every scalid becomes visible as a spinose anlage in one stage and differentiates in the next stage. All head scalids in stage 1 represent anlagen of scalids. Late juvenile stages J-5 and J-6 express two different scalid patterns which do not seem to depend on the gender. Scalids and trunk segments develop in a subfrontal and a subcaudal growing zone, respectively. The presumed neotenic status of P. praedictus is rejected because this species exhibits the same number of juvenile stages as observed in all other Kinorhyncha studied. It is suggested that a weakly sclerotized, juvenile-like trunk cuticle as found, e.g. in adult P. praedictus represents the plesiomorphic characteristic within the Kinorhyncha; a thickened cuticle has probably evolved independently within both the cyclorhagid and the homalorhagid Kinorhyncha.  相似文献   

2.
Postembryonic development in the kinorhynch species Antygomonas incomitata was examined using scanning electron microscopy. The morphology of the six juvenile stages, J‐1 to J‐6, varies at numerous details, but they can also be distinguished by a few key characters. Juvenile stage 1 by its composition of only nine trunk segments; J‐2 by the combination of possessing 10 trunk segments, but no cuspidate spines on segment 9; J‐3 by the presence of cuspidate spines on segment 9, but only one pair of cuspidate spines on segment 8; J‐4 by the combination of 10 trunk segments only, but having two pairs of cuspidate spines on segment 8; J‐5 by possessing 11 trunk segments and same spine compositions as adults but is still maintaining postmarginal spiculae; J‐6 specimens closely resemble adults and are most easily identified by their reduced trunk lengths. New segments are formed in a growth zone in the anterior part of the terminal segment. The complete number of segments is reached in J‐5. Development of cuticular head and trunk structures are described through all postembryonic stages and following developmental patterns could be outlined: the mouth cone possesses outer oral styles from J‐1, but in J‐1 to J‐3, the styles alternate in size. Scalids of the introvert are added after each molt, and scalids appear earliest in the anterior rings, whereas scalids in more posterior rings are added in older postembryonic stages. The early J‐1 stage is poor in spines and sensory spots and both structures increase in number after each molt. The complete spine composition is reached in J‐4, whereas new sensory spots appear after all molts, inclusive the final one from J‐6 to adult. Sensory spots in the paraventral positions often appear as Type 3 sensory spots but are through development transformed to Type 2. This transformation happens earliest on the anterior segments. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Arthropods are characterized by a rigid, articulating, exoskeleton operated by a lever‐like system of segmentally arranged, antagonistic muscles. This skeletomuscular system evolved from an unsegmented body wall musculature acting on a hydrostatic skeleton, similar to that of the arthropods’ close relatives, the soft‐bodied onychophorans. Unfortunately, fossil evidence documenting this transition is scarce. Exceptionally‐preserved panarthropods from the Cambrian Lagerstätte of Sirius Passet, Greenland, including the soft‐bodied stem‐arthropod Pambdelurion whittingtoni and the hard‐bodied arthropods Kiisortoqia soperi and Campanamuta mantonae, are unique in preserving extensive musculature. Here we show that Pambdelurion's myoanatomy conforms closely to that of extant onychophorans, with unsegmented dorsal, ventral and longitudinal muscle groups in the trunk, and extrinsic and intrinsic muscles controlling the legs. Pambdelurion also possesses oblique musculature, which has previously been interpreted as an arthropodan characteristic. However, this oblique musculature appears to be confined to the cephalic region and first few body segments, and does not represent a shift towards arthropodan myoanatomy. The Sirius Passet arthropods, Kiisortoqia and Campanamuta, also possess large longitudinal muscles in the trunk, although, unlike Pambdelurion, they are segmentally divided at the tergal boundaries. Thus, the transition towards an arthropodan myoanatomy from a lobopodian ancestor probably involved the division of the peripheral longitudinal muscle into segmented units.  相似文献   

4.
SYNOPSIS. Certain aspects of development that are indicativeof changing functional and ecological capabilities are reviewedfor six different organ systems in the northern anchovy, Engraulismordax, and other teleosts. The six organ systems are the integument,the lateral line system, the eye, the digestive tract, the gasbladder, and the trunk musculature. The integument developsgradually but also has transient specialized cells during thelarval period. The lateral line system is functional at hatchingand then elaborates by recruitment proportional to growth duringthe larval period. The eyes are capable of photopic binocularvision when feeding starts, and later gradually develop a scotopicsystem. The digestive tract develops a capacity for proteindigestion and filtering during the mid and late larval period.The gas bladder gradually develops an expansion capability bymuscle differentiation after initial inflation. The trunk musculaturedifferentiates and recruits two fiber types that gradually supercedethe embryonic musculature during the larval period. Thus muchof the development of organs in the anchovy after hatching orafter feeding starts can be characterized as initial differentiationand then continued recruitment of specialized cell arrays. Behaviorpatterns appear to develop in conjunction with such recruitments.This may apply to fishes generally, but pattern and tempo ofdevelopment must differ among species. Brief comparison of theanchovy and the Pacific mackerel, which has a more rapid anddirect development, suggests that some of the differences inthe two types of larvae relate to the marked difference in feedingmodes of the adult stages.  相似文献   

5.
6.
Ultrastructure, biology, and phylogenetic relationships of kinorhyncha   总被引:4,自引:1,他引:3  
The article summarizes current knowledge mainly about the (functional)morphology and ultrastructure, but also about the biology, development,and evolution of the Kinorhyncha. The Kinorhyncha are microscopic,bilaterally symmetrical, exclusively free-living, benthic, marineanimals and ecologically part of the meiofauna. They occur throughoutthe world from the intertidal to the deep sea, generally insediments but sometimes associated with plants or other animals.From adult stages 141 species are known, but 38 species havebeen described from juvenile stages. The trunk is arranged into11 segments as evidenced by cuticular plates, sensory spots,setae or spines, nervous system, musculature, and subcuticularglands. The ultrastructure of several organ systems and thepostembryonic development are known for very few species. Almostno data are available about the embryology and only a singlegene has been sequenced for a single species. The phylogeneticrelationships within Kinorhyncha are unresolved. Priapulida,Loricifera, and Kinorhyncha are grouped together as Scalidophora,but arguments are found for every possible sistergroup relationshipwithin this taxon. The recently published Ecdysozoa hypothesissuggests a closer relationship of the Scalidophora, Nematoda,Nematomorpha, Tardigrada, Onychophora, and Arthropoda.  相似文献   

7.
Fluorescence-labelled phalloidin in combination with confocal laser scanning microscopy (cLSM) has been used to reconstruct the body musculature in Encentrum mucronatum and Dicranophorus forcipatus in order to gain insight into the architecture of body musculature in representatives of the hitherto uninvestigated Dicranophoridae.

In both species, a system of outer circular and inner longitudinal muscles has been found. In E. mucronatum, seven circular muscles (musculi circulares I–VII) and six paired longitudinal muscles (musculi longitudinales I–VI) have been identified. In D. forcipatus, eight circular muscles (musculi circulares I–VIII) and nine paired longitudinal muscles (musculi longitudinales I–IX) are present. In both species, some of the longitudinal muscles span the whole specimen, while others are shorter and connect head and trunk or foot and trunk. Differences in shape and extension of the circular muscles in both species are related to differences in structure of the trunk integument.

Surveying the literature on rotifer musculature, muscles identified in this study are homologised across Rotifera and given individual names. Based on the study of E. mucronatum and D. forcipatus and previous studies on other rotifers, a system of musculature in the ground pattern of Ploima comprising at least three circular muscles (pars coronalis, corona sphincter, musculus circumpedalis) and three pairs of longitudinal muscles (musculi longitudinales ventrales, musculi longitudinales dorsales and musculi longitudinales capitum) is suggested.  相似文献   


8.
The metazoan phylum Cycliophora includes small cryptic epibionts that live attached to the mouthparts of clawed lobsters. The life cycle is complex, with alternating sexual and asexual generations, and involves several sessile and free‐living stages. So far, the morphological and genetic characterization of cycliophorans has been unable to clarify the phylogenetic position of the phylum. In this study, we add new details on the muscular anatomy of the feeding stage, the attached Prometheus larva, the dwarf male, and the female of one of the two hitherto described species, Symbion pandora. The musculature of the feeding stage is composed of myofibers that run longitudinally in the buccal funnel (two fibers) and in the trunk (variable number of fibers). The mouth opening is lined by a myoepithelial ring musculature. A complex myoepithelial sphincter is situated proximal to the anus. In the attached Prometheus larva, three longitudinal sets of myofilaments run dorsally, laterally, and ventrally along the entire anterior‐posterior body axis. The muscular architecture of the dwarf male is complex, especially close to the penis, in the posterior part of the body. An X‐shaped muscle structure is found on the dorsal side, whereas on the ventral side, longitudinal muscles and a V‐shaped muscle structure are present. These muscles are complemented by additional dorsoventral muscles. The mesodermal muscle fibers attach to the cuticle via the epidermis in all life cycle stages studied herein. The musculature of the female is similar to that of the Pandora larva of Symbion americanus and includes dorsoventral muscles and longitudinal muscles that run in the dorsal and ventral body region. Overall, our results reveal striking similarities in the muscular arrangement of the life cycle stages of both Symbion species. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Whole-mounts of Philodina sp., a bdelloid rotifer, were stained with fluorescent-labeled phalloidin to visualize the musculature. Several different muscle types were identified including incomplete circular bands, coronal retractors and foot retractors. Based on the position of the larger muscle bands in the body wall, their function during creeping locomotion and tun formation was inferred. Bdelloid creeping begins with the contraction of incomplete circular muscle bands against the hydrostatic pseudocoel, resulting in an anterior elongation of the body. One or more sets of ventral longitudinal muscles then contract bringing the rostrum into contact with the substrate, where it presumably attaches via adhesive glands. Different sets of ventral longitudinal muscles, foot and trunk retractors, function to pull the body forward. These same longitudinal muscle sets are also used in `tun' formation, in which the head and foot are withdrawn into the body. Three sets of longitudinal muscles supply the head region (anterior head segments) and function in withdrawal of the corona and rostrum. Two additional pairs of longitudinal muscles function to retract the anterior trunk segments immediately behind the head, and approximately five sets of longitudinal retractors are involved in the withdrawal of the foot and posterior toes. To achieve a greater understanding of rotifer behavior, it is important to elucidate the structural complexity of body wall muscles in rotifers. The utility of fluorescently-labeled phalloidin for the visualization of these muscles is discussed and placed in the context of rotifer functional morphology.  相似文献   

10.
Heterosquilla tricarinata was laboratory-cultured through itscomplete larval development and found to have one propelagicand two pelagic larval stages prior to metamorphosis to thejuvenile. These larval stages, the first juvenile, and relevantportions of the second juvenile stage, are described and figured.Individual larvae do not change in size during intermoult periods.Larvae occurring in the plankton show a progressive decreasein mean size between early (September) and late (November) springtime.Reasons for this are suggested. The first pelagic stage of H.tricarinata is anatomically very advanced in development, andthe number of pelagic stages very few, in comparison with otherknown stomatopod life-histories. Ecological implications ofthis are discussed in relation to the high-latitude distributionof the species. Comparison is made between the final pelagicstage of H. tricarinata and that of its congenor H. brazieri. *Permanent address: Zoology Department, University of Queensland,Brisbane, Australia  相似文献   

11.
Developmental programmes for many marine invertebrates include the assembly of muscular systems appropriate to the functions of swimming and feeding in pelagic larvae. Upon metamorphosis, that musculature is often radically re-organized to meet very different demands of post-larval life. To investigate the development and fate of musculature in the nudibranch Phestilla sibogae, embryos, larvae and metamorphosing stages were fixed, labelled with phalloidin and examined with confocal microscopy. The resultant images revealed the sequential development of both large retractor muscles and numerous finer muscles that allow the larva to manipulate the velum, foot and operculum. Observations of living specimens at the same stages as those fixed for microscopy revealed the actions of the muscles as they developed. During metamorphosis, muscles with shell attachments disintegrate as the larva transforms into a shell-less juvenile. Notably, the massive velar, pedal and opercular retractor muscles disappear during metamorphosis in a sequence that corresponds to their loss of function. Other muscles, however, that appear to be important to the embryo and free-swimming larva persist into juvenile life. The comprehensive and detailed observations of the musculature presented here provide a solid foundation for comparisons with other species with different phylogenies and life histories.  相似文献   

12.
Recently several conflicting hypotheses concerning the basal phylogenetic relationships within the Phasmatodea (stick and leaf insects) have emerged. In previous studies, musculature of the abdomen proved to be quite informative for identifying basal taxa among Phasmatodea and led to conclusions regarding the basal splitting events within the group. However, this character complex was not studied thoroughly for a representative number of species, and usually muscle innervation was omitted. In the present study the musculature and nerve topography of mid-abdominal segments in both sexes of seven phasmid species are described and compared in detail for the first time including all putative basal taxa, e.g. members of Timema, Agathemera, Phylliinae, Aschiphasmatinae and Heteropteryginae. The ground pattern of the muscle and nerve arrangement of mid-abdominal segments, i.e. of those not modified due to association with the thorax or genitalia, is reconstructed. In Timema, the inner ventral longitudinal muscles are present, whereas they are lost in all remaining Phasmatodea (Euphasmatodea). The ventral longitudinal muscles in the abdomen of Agathemera, which span the whole length of each segment, do not represent the plesiomorphic condition as previously assumed, but might be a result of secondary elongation of the external ventral longitudinal muscles. Sexual dimorphism, common within the Phasmatodea, also applies to the muscle arrangement in the abdomen of some species. Only in the females of Haaniella dehaanii (Heteropteryginae) and Phyllium celebicum (Phylliinae) the ventral external longitudinal muscles are elongated and span the length of the whole segment, possibly as a result of convergent evolution.  相似文献   

13.
SUMMARY Molecular phylogenetics suggests that the Sipuncula fall into the Annelida, although they are morphologically very distinct and lack segmentation. To understand the evolutionary transformations from the annelid to the sipunculan body plan, it is important to reconstruct the ancestral states within the respective clades at all life history stages. Here we reconstruct the ancestral states for the head/introvert retractor muscles and the body wall musculature in the Sipuncula using Bayesian statistics. In addition, we describe the ontogenetic transformations of the two muscle systems in four sipunculan species with different developmental modes, using F-actin staining with fluorescent-labeled phalloidin in conjunction with confocal laser scanning microscopy. All four species, which have smooth body wall musculature and less than the full set of four introvert retractor muscles as adults, go through developmental stages with four retractor muscles that are eventually reduced to a lower number in the adult. The circular and sometimes the longitudinal body wall musculature are split into bands that later transform into a smooth sheath. Our ancestral state reconstructions suggest with nearly 100% probability that the ancestral sipunculan had four introvert retractor muscles, longitudinal body wall musculature in bands and circular body wall musculature arranged as a smooth sheath. Species with crawling larvae have more strongly developed body wall musculature than those with swimming larvae. To interpret our findings in the context of annelid evolution, a more solid phylogenetic framework is needed for the entire group and more data on ontogenetic transformations of annelid musculature are desirable.  相似文献   

14.
Developmental changes in interrenal responsiveness in anuran amphibians   总被引:2,自引:2,他引:0  
Basal activity of the hypothalamo-pituitary-interrenal (HPI)axis changes over development in larval amphibians, but developmentof the responsiveness of this axis to an external stressor hasnot been studied. We compared developmental changes in whole-bodycorticosterone content of two anuran amphibian species, Ranapipiens (family Ranidae) and Xenopus laevis (family Pipidae).We also examined developmental changes in the responsivenessof the HPI axis by subjecting tadpoles of different developmentalstages to a laboratory shaking/confinement stress and to ACTHinjection. We measured whole-body corticosterone content asan indicator of the activity of the HPI axis. Whole-body corticosteronecontent of R. pipiens remained low during premetamorphosis andprometamorphosis but increased dramatically at metamorphic climaxand remained elevated in juvenile frogs. By contrast, whole-bodycorticosterone content of X. laevis was highest during premetamorphosis,declined at the onset of prometamorphosis, increased at metamorphicclimax and remained at climax levels in juvenile frogs. Premetamorphicand prometamorphic tadpoles of both species showed strong corticosteroneresponses to both shaking stress and ACTH injection. The magnitudeand pattern of response differed among developmental stages,with premetamorphic tadpoles of both species showing greaterresponsiveness to stress and ACTH. Our results show that interrenalresponsiveness is developed in premetamorphic tadpoles, suggestingthat at these stages tadpoles are capable of mounting an increasein stress hormone production in response to changes in the externalenvironment. Our results also highlight the importance of comparativestudies in understanding the development of the stress axis.  相似文献   

15.
The structure of the larval nervous system and the musculature of Phoronis pallida were studied, as well as the remodeling of these systems at metamorphosis. The serotonergic portion of the apical ganglion is a U-shaped field of cell bodies that send projections into a central neuropil. The majority of the serotonergic cells are (at least) bipolar sensory cells, and a few are nonsensory cells. Catecholaminergic cell bodies border the apical ganglion. The second (hood) sense organ develops at competence and is composed of bipolar sensory cells that send projections into a secondary neuropil. Musculature of the competent larva includes circular and longitudinal muscle fibers of the body wall, as well as elevators and depressors of the tentacles and hood. The juvenile nervous system and musculature are developed prior to metamorphosis and are integrated with those of the larva. Components of the juvenile nervous system include a diffuse neural net of serotonergic cell bodies and fibers and longitudinal catecholaminergic fibers. The juvenile body wall musculature consists of longitudinal fibers that overlie circular muscle fibers, except in the cincture regions, where this pattern is reversed. Metamorphosis is initiated by the larval neuromuscular system but is completed by the juvenile neuromuscular system. During metamorphosis, the larval nervous system and the musculature undergo cell death, and the larval tentacles and gut are remodeled into the juvenile arrangement. Although the phoronid nervous system has often been described as deuterostome-like, these data show that several cytological aspects of the larval and juvenile neuromuscular systems also have protostome (lophotrochozoan) characteristics.  相似文献   

16.

Background

The standard textbook information that annelid musculature consists of oligochaete-like outer circular and inner longitudinal muscle-layers has recently been called into question by observations of a variety of complex muscle systems in numerous polychaete taxa. To clarify the ancestral muscle arrangement in this taxon, we compared myogenetic patterns during embryogenesis of Ophryotrocha diadema with available data on oligochaete and polychaete myogenesis. This work addresses the conflicting views on the ground pattern of annelids, and adds to our knowledge of the evolution of lophotrochozoan taxa.

Results

Somatic musculature in Ophryotrocha diadema can be classified into the trunk, prostomial/peristomial, and parapodial muscle complexes. The trunk muscles comprise strong bilateral pairs of distinct dorsal and ventral longitudinal strands. The latter are the first to differentiate during myogenesis. They originate within the peristomium and grow posteriorly through the continuous addition of myocytes. Later, the longitudinal muscles also expand anteriorly and form a complex arrangement of prostomial muscles. Four embryonic parapodia differentiate in an anterior-to-posterior progression, significantly contributing to the somatic musculature. Several diagonal and transverse muscles are present dorsally. Some of the latter are situated external to the longitudinal muscles, which implies they are homologous to the circular muscles of oligochaetes. These circular fibers are only weakly developed, and do not appear to form complete muscle circles.

Conclusion

Comparison of embryonic muscle patterns showed distinct similarities between myogenetic processes in Ophryotrocha diadema and those of oligochaete species, which allows us to relate the diverse adult muscle arrangements of these annelid taxa to each other. These findings provide significant clues for the interpretation of evolutionary changes in annelid musculature.  相似文献   

17.
The complete postembryonic development of Tropodiaptomus informiscomprises six naupliar and six copepodid stages of which thelast is the adult. Of all the characteristics, it is the shapeand number of setae on the terminal segments of the antennulesin the late naupliar stages, and the shape and setae of exo-and endopods of the fifth legs from copepodids III to V whichare most useful in constructing relationships among eight diaptomidsreared.  相似文献   

18.
The larval trunk morphology including chaetotaxy, locomotory structures, and trunk musculature of Heterobathmia pseuderiocrania, Eriocrania cicatricella, and Acanthopteroctetes unifascia is described using conventional light, polarization, and scanning electron microscopy. The ground plan morphology of the lepidopteran larva and neolepidopteran caterpillar is discussed in light of the life history succession from free soil dwelling organism to endophagous and finally to a primarily free living, angiosperm associated organism. I suggest that the larval morphology is argued to be strongly influenced by the shift in number of surfaces present in the larval environment. Especially the environment of the endophagous species, where the upper surface of the leaf mine is linked to the presence of dorsal locomotory structures such as the retractable calli and dorsal friction patches is proposed to have had a significant impact on the morphology and locomotory mechnism of the lepidopteran caterpillar. The chaetotaxy of the lepidopteran ground plan is found to be simple, consisting only of primary and secondary tactile setae and segmental proprioceptors. The presumption of Gerasimov ([1935] Zool Anz 112:177–194) that MXD1 of the prothorax is a shifted mesothoracic MD setae is supported. I suggest that the serial arrangement of the proprioceptors MD1, present on all trunk segments except the prothorax, and a trisetous MV group on all the thoracic segments is part of the lepidopteran larval ground plan. The absence of apodeme structures associated with trunk musculature in the nonglossatans suggests that this is an autapomorphic character of the Lepidoptera and it is further found to have been influential in the evolution of the typical caterpillar trunk. The attachments of the thoracic muscles directly to the trunk integument, suggest that the apodemal structures ancestral to the Amphiesmenoptera have been reduced in the Lepidoptera. Within the non‐Neolepidoptera, the lifehistory shift may have resulted in reduction of the dorsal locomotory structures, such as calli. The abdominal musculature and structural similarities further suggest that the ventral calli are structural predecessors to the crotchet bearing proleg of the “typical caterpillar.” J. Morphol. 274:1239–1262, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Stage Development and Flowering in Dactylis glomerata L.   总被引:1,自引:0,他引:1  
CALDER  D. M. 《Annals of botany》1964,28(2):187-206
The results of pilot experiments lead to the conclusion thatD. glomerata exhibits a number of developmental stages: firstly,a juvenile stage during which the plant is insensitive to environmentalconditions which later stimulate flowering; secondly, an inductivestage, when the plant responds to periodic exposure to darknessat the conclusion of which it is fully induced or ripe to flower,and finally, a post-inductive stage during which inflorescencesare initiated and undergo further development; these are long-dayprocesses. In four populations studied the juvenile stage lasts about fiveweeks. In north European material daily exposure to seven hoursof darkness is near the minimum for induction although thereis considerable within-population variation. Further, it appearsthat the daily dark requirement becomes less as the plant ages. Comparisons are made of the flowering behaviour of D. glomerataand Lolium perenne. The differences between these species resultfrom the presence of a juvenile stage in Dactylis and the possibilityof satisfying its inductive requirement by long days. Inductionin Lolium requires short days or low temperature. The significance of these results is discussed in the lightof previous work on the environmental control of flowering inherbage grasses. The existence of three developmental stagescan explain the wide differences in interpretation of the floweringrequirements of Dactylis previously held. The possible evolutionof flowering requirements is also discussed.  相似文献   

20.
We applied fluorescence staining of F-actin, confocal laser scanning microscopy, as well as bright-field light microscopy, SEM, and TEM to examine myogenesis in larval and early juvenile stages of the tusk-shell, Antalis entalis. Myogenesis follows a strict bilaterally symmetrical pattern without special larval muscle systems. The paired cephalic and foot retractors appear synchronously in the early trochophore-like larva. In late larvae, both retractors form additional fibers that project into the anterior region, thus enabling retraction of the larval prototroch. These fibers, together with the prototroch, disappear during metamorphosis. The anlagen of the putative foot musculature, mantle retractors, and buccal musculature are formed in late larval stages. The cephalic captacula and their musculature are of postmetamorphic origin. Development of the foot musculature is dramatically pronounced after metamorphosis and results in a dense muscular grid consisting of outer ring, intermediate diagonal, and inner longitudinal fibers. This is in accordance with the proposed function of the foot as a burrowing organ based on muscle-antagonistic activity. The existence of a distinct pair of cephalic retractors, which is also found in basal gastropods and cephalopods, as well as new data on scaphopod shell morphogenesis and recent cladistic analyses, indicate that the Scaphopoda may be more closely related to the Gastropoda and Cephalopoda than to the Bivalvia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号