首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
beta-Ketoacyl-acyl carrier protein (ACP) synthase III (KAS III, also called acetoacetyl-ACP synthase) encoded by the fabH gene is thought to catalyze the first elongation reaction (Claisen condensation) of type II fatty acid synthesis in bacteria and plant plastids. However, direct in vivo evidence that KAS III catalyzes an essential reaction is lacking, because no mutant organism deficient in this activity has been isolated. We report the first bacterial strain lacking KAS III, a fabH mutant constructed in the Gram-positive bacterium Lactococcus lactis subspecies lactis IL1403. The mutant strain carries an in-frame deletion of the KAS III active site region and was isolated by gene replacement using a medium supplemented with a source of saturated and unsaturated long-chain fatty acids. The mutant strain is devoid of KAS III activity and fails to grow in the absence of supplementation with exogenous long-chain fatty acids demonstrating that KAS III plays an essential role in cellular metabolism. However, the L. lactis fabH deletion mutant requires only long-chain unsaturated fatty acids for growth, a source of long-chain saturated fatty acids is not required. Because both saturated and unsaturated fatty acids are required for growth when fatty acid synthesis is blocked by biotin starvation (which prevents the synthesis of malonyl-CoA), another pathway for saturated fatty acid synthesis must remain in the fabH deletion strain. Indeed, incorporation of [1-14C]acetate into fatty acids in vivo showed that the fabH mutant retained about 10% of the fatty acid synthetic ability of the wild-type strain and that this residual synthetic capacity was preferentially diverted to the saturated branch of the pathway. Moreover, mass spectrometry showed that the fabH mutant retained low levels of palmitic acid upon fatty acid starvation. Derivatives of the fabH deletion mutant strain were isolated that were octanoic acid auxotrophs consistent with biochemical studies indicating that the major role of FabH is production of short-chain fatty acid primers. We also confirmed the essentiality of FabH in Escherichia coli by use of a plasmid-based gene insertion/deletion system. Together these results provide the first genetic evidence demonstrating that FabH conducts the major condensation reaction in the initiation of type II fatty acid biosynthesis in both Gram-positive and Gram-negative bacteria.  相似文献   

2.
The 3-ketoacyl-acyl carrier protein (ACP) synthase III from spinach was purified to homogeneity by an eight-step procedure that included an ACP-affinity column. The size of the native enzyme was M(r) = 63,000 based on gel filtration, and its subunit size was M(r) = 40,500 based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggesting that 3-ketoacyl-ACP synthase III may be a homodimer. The purified enzyme was highly specific for acetyl-CoA and malonyl-ACP. The Km for acetyl-CoA was 5 microM when assayed in the presence of 10 microM malonyl-CoA. Acetyl-, butyryl-, and hexanoyl-ACP would not substitute for acetyl-CoA as substrates. The specificity for acetyl-CoA suggested that the physiological function of 3-ketoacyl-ACP synthase is to catalyze the initial condensation reaction in fatty acid biosynthesis. The homogeneous 3-ketoacyl-ACP synthase was capable of catalyzing acetyl-CoA:ACP transacylation but at a rate about 90-fold slower than the condensation reaction with malonyl-ACP. The 3-ketoacyl-ACP synthase was inhibited 100% by 5 mM N-ethylmaleimide or 20 mM sodium arsenite.  相似文献   

3.
A DNA fragment containing the Pseudomonas aeruginosa fabD (encoding malonyl-coenzyme A [CoA]:acyl carrier protein [ACP] transacylase), fabG (encoding beta-ketoacyl-ACP reductase), acpP (encoding ACP), and fabF (encoding beta-ketoacyl-ACP synthase II) genes was cloned and sequenced. This fab gene cluster is delimited by the plsX (encoding a poorly understood enzyme of phospholipid metabolism) and pabC (encoding 4-amino-4-deoxychorismate lyase) genes; the fabF and pabC genes seem to be translationally coupled. The fabH gene (encoding beta-ketoacyl-ACP synthase III), which in most gram-negative bacteria is located between plsX and fabD, is absent from this gene cluster. A chromosomal temperature-sensitive fabD mutant was obtained by site-directed mutagenesis that resulted in a W258Q change. A chromosomal fabF insertion mutant was generated, and the resulting mutant strain contained substantially reduced levels of cis-vaccenic acid. Multiple attempts aimed at disruption of the chromosomal fabG gene were unsuccessful. We purified FabD as a hexahistidine fusion protein (H6-FabD) and ACP in its native form via an ACP-intein-chitin binding domain fusion protein, using a novel expression and purification scheme that should be applicable to ACP from other bacteria. Matrix-assisted laser desorption-ionization spectroscopy, native polyacrylamide electrophoresis, and amino-terminal sequencing revealed that (i) most of the purified ACP was properly modified with its 4'-phosphopantetheine functional group, (ii) it was not acylated, and (iii) the amino-terminal methionine was removed. In an in vitro system, purified ACP functioned as acyl acceptor and H(6)-FabD exhibited malonyl-CoA:ACP transacylase activity.  相似文献   

4.
Fatty acid synthase from the uropygial gland of goose was inactivated by iodoacetamide with a second-order rate constant of 1.3 M-1 S-1 at pH 6.0 and 25 degrees C. Of the seven component activities of the synthase, only the condensation activity was significantly inhibited by iodoacetamide modification. Since preincubation of the enzyme with acetyl-CoA, but not with malonyl-CoA, protected the enzyme from inactivation by iodoacetamide, it is suggested that iodoacetamide probably modified the primer-binding thiol group at the condensation active site. Determination of the stoichiometry of modification was done using [1-14C]iodoacetamide that was purified by high-performance liquid chromatography. Graphical analysis of the data showed that binding of 1.2 carboxamidomethyl groups per subunit of fatty acid synthase would result in complete inhibition of the enzyme activity, suggesting that there is one condensation domain per subunit of fatty acid synthase. Analysis of the tryptic peptide map of the enzyme that was modified with [1-14C]iodoacetamide in the presence and absence of acetyl-CoA revealed that acetyl-CoA prevented the labeling of a major radioactive peptide and a minor radioactive peptide. These two peptides were purified by high-performance liquid chromatography. Amino acid analysis of these two peptides revealed that the major radioactive peptide contained S-carboxymethylcysteine while the minor radioactive peptide did not. However, the latter peptide contained beta-alanine, suggesting that this peptide was from the acyl carrier protein segment of fatty acid synthase and that the iodoacetamide treatment resulted in modification of the pantetheine thiol, although to a lower extent than the primer-binding thiol. The sequence of the primer-binding active site peptide from the condensation domain was H2N-Gly-Pro-Ser-Leu-Ser-Ile-Asp- Thr-Ala-Cys(carboxamidomethyl)-X-Ser-Ser-Leu-Met-Ala-Leu-Glu-Asn-A la-Tyr-Lys- COOH, the first reported sequence of the condensation active site from a vertebrate fatty acid synthase. The acyl carrier protein segment showed extensive sequence homology with the acyl carrier protein of Escherichia coli, particularly in the vicinity of the phosphopantetheine attachment, and the sequence was H2N-Asp-Val-Ser-Ser-Leu- Asn-Ala-Asp-Ser-Thr-Leu-Ala-Asp-Leu-Gly-Leu-Asp-Ser(4'-phosphopanteth ein e) -Leu-Met-Gly-Val-Glu-Val-Arg-COOH.  相似文献   

5.
The long-chain alpha-alkyl-beta-hydroxy fatty acids, termed mycolic acids, which are characteristic components of the mycobacterial cell wall are produced by successive rounds of elongation catalyzed by a multifunctional (type I) fatty acid synthase complex followed by a dissociated (type II) fatty acid synthase. In bacterial type II systems, the first initiation step in elongation is the condensation of acetyl-CoA with malonyl-acyl carrier protein (ACP) catalyzed by beta-ketoacyl-ACP III (FabH). An open reading frame in the Mycobacterium tuberculosis genome (Rv0533c), now termed mtfabH, was 37.3% identical to Escherichia coli ecFabH and contained the Cys-His-Asn catalytic triad signature. However, the purified recombinant mtFabH clearly preferred long-chain acyl-CoA substrates rather than acyl-ACP primers and did not utilize acetyl-CoA as a primer in comparison to ecFabH. In addition, purified mtFabH was sensitive to thiolactomycin and resistant to cerulenin in an in vitro assay. However, mtFabH overexpression in Mycobacterium bovis BCG did not confer thiolactomycin resistance, suggesting that mtFabH may not be the primary target of thiolactomycin inhibition in vivo and led to several changes in the lipid composition of the bacilli. The data presented is consistent with a role for mtFabH as the pivotal link between the type I and type II fatty acid elongation systems in M. tuberculosis. This study opens up new avenues for the development of selective and novel anti-mycobacterial agents targeted against mtFabH.  相似文献   

6.
A universal set of genes encodes the components of the dissociated, type II, fatty acid synthase system that is responsible for producing the multitude of fatty acid structures found in bacterial membranes. We examined the biochemical basis for the production of branched-chain fatty acids by gram-positive bacteria. Two genes that were predicted to encode homologs of the beta-ketoacyl-acyl carrier protein synthase III of Escherichia coli (eFabH) were identified in the Bacillus subtilis genome. Their protein products were expressed, purified, and biochemically characterized. Both B. subtilis FabH homologs, bFabH1 and bFabH2, carried out the initial condensation reaction of fatty acid biosynthesis with acetyl-coenzyme A (acetyl-CoA) as a primer, although they possessed lower specific activities than eFabH. bFabH1 and bFabH2 also utilized iso- and anteiso-branched-chain acyl-CoA primers as substrates. eFabH was not able to accept these CoA thioesters. Reconstitution of a complete round of fatty acid synthesis in vitro with purified E. coli proteins showed that eFabH was the only E. coli enzyme incapable of using branched-chain substrates. Expression of either bFabH1 or bFabH2 in E. coli resulted in the appearance of a branched-chain 17-carbon fatty acid. Thus, the substrate specificity of FabH is an important determinant of branched-chain fatty acid production.  相似文献   

7.
Acyl carrier protein (ACP) is a required cofactor for fatty acid synthesis in Escherichia coli. Mutants lacking beta-ketoacyl-ACP synthase II activity (fabF1 or fabF3) possessed a different molecular species of ACP (F-ACP) that was separated from the normal form of the protein by conformationally sensitive gel electrophoresis. Synthase I mutants contained the normal protein. Complementation of fabF1 mutants with an F' factor harboring the wild-type synthase II allele resulted in the appearance of normal ACP, whereas complementation with an F' possessing the fabF2 allele (a mutation that produces a synthase II enzyme with altered catalytic activity) resulted in the production of both forms of ACP. The structural difference between F-ACP and ACP persisted after the removal of the 4'-phosphopantetheine prosthetic group, and both forms of the protein had identical properties in an in vitro fatty acid synthase assay. Both ACP and F-ACP were purified to homogeneity, and their primary amino acid sequences were determined. The two ACP species were identical but differed from the sequence reported for E. coli E-15 ACP in that an Asn instead of an Asp was at position 24 and an Ile instead of a Val was at position 43. Therefore, F-ACP appears to be a modification of ACP that is detected when beta-ketoacyl-ACP synthase II activity is impaired.  相似文献   

8.
The biochemical basis for the inhibition of fatty acid biosynthesis in Escherichia coli by the antibiotic thiolactomycin was investigated. A biochemical assay was developed to measure acetoacetyl-acyl carrier protein (ACP) synthase activity, a recently discovered third condensing enzyme from E. coli (Jackowski, S., and Rock, C.O. (1987) J. Biol. Chem. 262, 7927-7931). In contrast to the other two condensing enzymes in E. coli, acetoacetyl-ACP synthase (synthase III) condensed malonyl-ACP with acetyl-CoA, rather than with acetyl-ACP. The concentration dependence of thiolactomycin inhibition of fatty acid biosynthesis in vivo was the same as the inhibition of acetoacetyl-ACP synthase activity in vitro indicating that the two phenomena were related. A thiolactomycin-resistant mutant (strain CDM5) was isolated. The specific activity of acetoacetyl-ACP synthase in extracts from this mutant was 10-fold lower than in extracts from its thiolactomycin-sensitive parent resulting in a marked defect in the ability of strain CDM5 to incorporate acetyl-CoA into fatty acids in vitro. The residual acetoacetyl-ACP synthase activity in the resistant strain was refractory to thiolactomycin inhibition. In addition, acetyl-CoA:ACP transacylase activity in strain CDM5 was resistant to inactivation by thiolactomycin suggesting that the acetoacetyl-ACP synthase also catalyzes this transacylation reaction. These data point to acetoacetyl-ACP synthase as a target for thiolactomycin inhibition of bacterial fatty acid biosynthesis.  相似文献   

9.
The prototypical type II fatty acid synthesis (FAS) pathway in bacteria utilizes two distinct classes of β-ketoacyl synthase (KAS) domains to assemble long-chain fatty acids, the KASIII domain for initiation and the KASI/II domain for elongation. The central role of FAS in bacterial viability and virulence has stimulated significant effort toward developing KAS inhibitors, particularly against the KASIII domain of the β-acetoacetyl-acyl carrier protein (ACP) synthase FabH. Herein, we show that the opportunistic pathogen Pseudomonas aeruginosa does not utilize a FabH ortholog but rather a new class of divergent KAS I/II enzymes to initiate the FAS pathway. When a P. aeruginosa cosmid library was used to rescue growth in a fabH downregulated strain of Escherichia coli, a single unannotated open reading frame, PA5174, complemented fabH depletion. While deletion of all four KASIII domain-encoding genes in the same P. aeruginosa strain resulted in a wild-type growth phenotype, deletion of PA5174 alone specifically attenuated growth due to a defect in de novo FAS. Siderophore secretion and quorum-sensing signaling, particularly in the rhl and Pseudomonas quinolone signal (PQS) systems, was significantly muted in the absence of PA5174. The defect could be repaired by intergeneric complementation with E. coli fabH. Characterization of recombinant PA5174 confirmed a preference for short-chain acyl coenzyme A (acyl-CoA) substrates, supporting the identification of PA5174 as the predominant enzyme catalyzing the condensation of acetyl coenzyme A with malonyl-ACP in P. aeruginosa. The identification of the functional role for PA5174 in FAS defines the new FabY class of β-ketoacyl synthase KASI/II domain condensation enzymes.  相似文献   

10.
The sequence acetyl-CoA leads to acetyl-O-enzyme leads to acetyl-S-acyl carrier protein has for the first time been demonstrated directly with a multifunctional (mammalian) fatty acid synthase. This was achieved by blocking of the active-site thiols of rabbit mammary fatty acid synthase with iodoacetamide. The modified enzyme was incubated with [14C]acetyl-CoA to form acetyl-O-enzyme, and acetyl-CoA was removed rapidly by centrifuge desalting. We were then able to demonstrate transfer of the acetyl group from [14C]acetyl-O-enzyme to the pantetheine thiol in a fragment of rabbit mammary fatty acid synthase containing the phosphopantetheine group, and to E. coli acyl carrier protein.  相似文献   

11.
When individual enzyme activities of the fatty acid synthetase (FAS) system were assayed in extracts from five different plant tissues, acetyl-CoA:acyl carrier protein (ACP) transacylase and beta-ketoacyl-ACP synthetases I and II had consistently low specific activities in comparison with the other enzymes of the system. However, two of these extracts synthesized significant levels of medium chain fatty acids (rather than C16 and C18 acid) from [14C]malonyl-CoA; these extracts had elevated levels of acetyl-CoA:ACP transacylase. To explore the role of the acetyl transacylase more carefully, this enzyme was purified some 180-fold from spinach leaf extracts. Varying concentrations of the transacylase were then added either to spinach leaf extracts or to a completely reconstituted FAS system consisting of highly purified enzymes. The results suggested that: (a) acetyl-CoA:ACP transacylase was the enzyme catalyzing the rate-limiting step in the plant FAS system; (b) increasing concentration of this enzyme markedly increased the levels of the medium chain fatty acids, whereas increase of the other enzymes of the FAS system led to increased levels of stearic acid synthesis; and (c) beta-ketoacyl-ACP synthetase I was not involved in the rate-limiting step. It is suggested that modulation of the activity of acetyl-CoA:ACP transacylase may have important implications in the type of fatty acid synthesized, as well as the amount of fatty acids formed.  相似文献   

12.
Whereas other organisms utilize type I or type II synthases to make fatty acids, trypanosomatid parasites such as Trypanosoma brucei are unique in their use of a microsomal elongase pathway (ELO) for de novo fatty acid synthesis (FAS). Because of the unusual lipid metabolism of the trypanosome, it was important to study a second FAS pathway predicted by the genome to be a type II synthase. We localized this pathway to the mitochondrion, and RNA interference (RNAi) or genomic deletion of acyl carrier protein (ACP) and beta-ketoacyl-ACP synthase indicated that this pathway is likely essential for bloodstream and procyclic life cycle stages of the parasite. In vitro assays show that the largest major fatty acid product of the pathway is C16, whereas the ELO pathway, utilizing ELOs 1, 2, and 3, synthesizes up to C18. To demonstrate mitochondrial FAS in vivo, we radio-labeled fatty acids in cultured procyclic parasites with [(14)C]pyruvate or [(14)C]threonine, either of which is catabolized to [(14)C]acetyl-CoA in the mitochondrion. Although some of the [(14)C]acetyl-CoA may be utilized by the ELO pathway, a striking reduction in radiolabeled fatty acids following ACP RNAi confirmed that it is also consumed by mitochondrial FAS. ACP depletion by RNAi or gene knockout also reduces lipoic acid levels and drastically decreases protein lipoylation. Thus, octanoate (C8), the precursor for lipoic acid synthesis, must also be a product of mitochondrial FAS. Trypanosomes employ two FAS systems: the unconventional ELO pathway that synthesizes bulk fatty acids and a mitochondrial pathway that synthesizes specialized fatty acids that are likely utilized intramitochondrially.  相似文献   

13.
In the bacterial type II fatty acid synthase system, beta-ketoacyl-acyl carrier protein (ACP) synthase III (FabH) catalyzes the condensation of acetyl-CoA with malonyl-ACP. We have identified, expressed, and characterized the Streptococcus pneumoniae homologue of Escherichia coli FabH. S. pneumoniae FabH is approximately 41, 39, and 38% identical in amino acid sequence to Bacillus subtilis, E. coli, and Hemophilus influenzae FabH, respectively. The His-Asn-Cys catalytic triad present in other FabH molecules is conserved in S. pneumoniae FabH. The apparent K(m) values for acetyl-CoA and malonyl-ACP were determined to be 40.3 and 18.6 microm, respectively. Purified S. pneumoniae FabH preferentially utilized straight short-chain CoA primers. Similar to E. coli FabH, S. pneumoniae FabH was weakly inhibited by thiolactomycin. In contrast, inhibition of S. pneumoniae FabH by the newly developed compound SB418011 was very potent, with an IC(50) value of 0.016 microm. SB418011 also inhibited E. coli and H. influenzae FabH with IC(50) values of 1.2 and 0.59 microm, respectively. The availability of purified and characterized S. pneumoniae FabH will greatly aid in structural studies of this class of essential bacterial enzymes and facilitate the identification of small molecule inhibitors of type II fatty acid synthase with the potential to be novel and potent antibacterial agents active against pathogenic bacteria.  相似文献   

14.
H Tai  J G Jaworski 《Plant physiology》1993,103(4):1361-1367
A cDNA clone encoding spinach (Spinacia oleracea) 3-ketoacyl-acyl carrier protein synthase III (KAS III), which catalyzes the initial condensing reaction in fatty acid biosynthesis, was isolated. Based on the amino acid sequence of tryptic digests of purified spinach KAS III, degenerate polymerase chain reaction (PCR) primers were designed and used to amplify a 612-bp fragment from first-strand cDNA of spinach leaf RNA. A root cDNA library was probed with the PCR fragment, and a 1920-bp clone was isolated. Its deduced amino acid sequence matched the sequences of the tryptic digests obtained from the purified KAS III. Northern analysis confirmed that it was expressed in both leaf and root. The clone contained a 1218-bp open reading frame coding for 405 amino acids. The identity of the clone was confirmed by expression in Escherichia coli BL 21 as a glutathione S-transferase fusion protein. The deduced amino acid sequence was 48 and 45% identical with the putative KAS III of Porphyra umbilicalis and KAS III of E. coli, respectively. It also had a strong local homology to the plant chalcone synthases but had little homology with other KAS isoforms from plants, bacteria, or animals.  相似文献   

15.
The transfer of the phosphopantetheine chain from coenzyme A (CoA) to the acyl carrier protein (ACP), a key protein in both fatty acid and polyketide synthesis, is catalyzed by ACP synthase (AcpS). Streptomyces coelicolor AcpS is a doubly promiscuous enzyme capable of activation of ACPs from both fatty acid and polyketide synthesis and catalyzes the transfer of modified CoA substrates. Five crystal structures have been determined, including those of ligand-free AcpS, complexes with CoA and acetyl-CoA, and two of the active site mutants, His110Ala and Asp111Ala. All five structures are trimeric and provide further insight into the mechanism of catalysis, revealing the first detailed structure of a group I active site with the essential magnesium in place. Modeling of ACP binding supported by mutational analysis suggests an explanation for the promiscuity in terms of both ACP partner and modified CoA substrates.  相似文献   

16.
The phosphopantetheine thiol of rabbit mammary fatty acid synthase was specifically alkylated using chloro[14C]acetyl-CoA and a radioactive fragment generated by limited elastase digestion of the modified protein was purified by gel filtration. We have previously mapped this fragment to an internal location in the 250 000-Mr polypeptide adjacent to the thioesterase domain [Eur. J. Biochem. 130, 185-193 (1983)]. The purified fragment had apparent molecular weights of 23 000 by gel filtration and 10 000 by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate, while amino acid analysis indicated a minimal molecular weight of 10 400. We have determined the amino acid sequence of the first 64 residues of the fragment. The phosphopantetheine moiety is esterified to a serine at residue 38 in the sequence. When the sequences of the rabbit acyl carrier fragment and the 8847-Mr acyl carrier protein of Escherichia coli are aligned, 17 out of 64 residues are identical. These results suggest that the limited proteolysis delineates an internal acyl carrier domain within the rabbit protein and provide the first clear evidence that multifunctional fatty acid synthases have arisen by fusion of ancestral monofunctional proteins.  相似文献   

17.
Glycogen synthase preparations from Saccharomyces cerevisiae contained two polypeptides of molecular weights 85,000 and 77,000. Oligonucleotides based on protein sequence were utilized to clone a S. cerevisiae glycogen synthase gene, GSY1. The gene would encode a protein of 707 residues, molecular mass 80,501 daltons, with 50% overall identity to mammalian muscle glycogen synthases. The amino-terminal sequence obtained from the 85,000-dalton species matched the NH2 terminus predicted by the GSY1 sequence. Disruption of the GSY1 gene resulted in a viable haploid with glycogen synthase activity, and purification of glycogen synthase from this mutant strain resulted in an enzyme that contained the 77,000-dalton polypeptide. Southern hybridization of genomic DNA using the GSY1 coding sequence as a probe revealed a second weakly hybridizing fragment, present also in the strain with the GSY1 gene disrupted. However, the sequences of several tryptic peptides derived from the 77,000-dalton polypeptide were identical or similar to the sequence predicted by the GSY1 gene. The data are explained if S. cerevisiae has two glycogen synthase genes encoding proteins with significant sequence similarity The protein sequence predicted by the GSY1 gene lacks the extreme NH2-terminal phosphorylation sites of the mammalian enzymes. The COOH-terminal phosphorylated region of the mammalian enzyme over-all displayed low identity to the yeast COOH terminus, but there was homology in the region of the mammalian phosphorylation sites 3 and 4. Three potential cyclic AMP-dependent protein kinase sites are located in this region of the yeast enzyme. The region of glycogen synthase likely to be involved in covalent regulation are thus more variable than the catalytic center of the molecule.  相似文献   

18.
Medium chain hydrolase (MCH) is an enzyme which regulates the chain length of fatty acid synthesis specifically in the mammary gland of the rat. During lactation, MCH interacts with fatty acid synthase (FAS) to cause premature release of acyl chains, thus providing medium chain fatty acids for synthesis of milk fat. In this study we have investigated the ability of rat MCH to interact with the phylogenetically more distant FAS structure present in plant systems and to cause a perturbation of fatty acid synthesis. Inin vitro experiments, addition of purified MCH to rapeseed homogenates was found to cause a significant perturbation of fatty acid synthesis towards medium chain length products. The rat MCH gene was expressed in transgenic oilseed rape using a seed specific rape acyl carrier protein (ACP) promoter and a rape ACP plastid targeting sequence. Western analysis showed MCH protein to be present in transgenic seed and for its expression to be developmentally regulated in concert with storage lipid synthesis. The chimaeric preprotein was correctly processed and immunogold labelling studies confirmed MCH to be localized within plastid organelles. However, fatty acid analysis of oil from MCH-expressing rape seed showed no significant differences to that from control seed.  相似文献   

19.
Substrate specificity of condensing enzymes is a predominant factor determining the nature of fatty acyl chains synthesized by type II fatty acid synthase (FAS) enzyme complexes composed of discrete enzymes. The gene (mtKAS) encoding the condensing enzyme, beta-ketoacyl-[acyl carrier protein] (ACP) synthase (KAS), constituent of the mitochondrial FAS was cloned from Arabidopsis thaliana, and its product was purified and characterized. The mtKAS cDNA complemented the KAS II defect in the E. coli CY244 strain mutated in both fabB and fabF encoding KAS I and KAS II, respectively, demonstrating its ability to catalyze the condensation reaction in fatty acid synthesis. In vitro assays using extracts of CY244 containing all E. coli FAS components, except that KAS I and II were replaced by mtKAS, gave C(4)-C(18) fatty acids exhibiting a bimodal distribution with peaks at C(8) and C(14)-C(16). Previously observed bimodal distributions obtained using mitochondrial extracts appear attributable to the mtKAS enzyme in the extracts. Although the mtKAS sequence is most similar to that of bacterial KAS IIs, sensitivity of mtKAS to the antibiotic cerulenin resembles that of E. coli KAS I. In the first or priming condensation reaction of de novo fatty acid synthesis, purified His-tagged mtKAS efficiently utilized malonyl-ACP, but not acetyl-CoA as primer substrate. Intracellular targeting using green fluorescent protein, Western blot, and deletion analyses identified an N-terminal signal conveying mtKAS into mitochondria. Thus, mtKAS with its broad chain length specificity accomplishes all condensation steps in mitochondrial fatty acid synthesis, whereas in plastids three KAS enzymes are required.  相似文献   

20.
Genes for subunits of acetyl coenzyme A carboxylase (ACC), which is the enzyme that catalyzes the first step in the synthesis of fatty acids in Lactobacillus plantarum L137, were cloned and characterized. We identified six potential open reading frames, namely, manB, fabH, accB, accC, accD, and accA, in that order. Nucleotide sequence analysis suggested that fabH encoded beta-ketoacyl-acyl carrier protein synthase III, that the accB, accC, accD, and accA genes encoded biotin carboxyl carrier protein, biotin carboxylase, and the beta and alpha subunits of carboxyltransferase, respectively, and that these genes were clustered. The organization of acc genes was different from that reported for Escherichia coli, for Bacillus subtilis, and for Pseudomonas aeruginosa. E. coli accB and accD mutations were complemented by the L. plantarum accB and accD genes, respectively. The predicted products of all five genes were confirmed by using the T7 expression system in E. coli. The gene product of accB was biotinylated in E. coli. Northern and primer extension analyses demonstrated that the five genes in L. plantarum were regulated polycistronically in an acc operon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号