首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Increased glomerularprostaglandin E2 (PGE2) production isassociated with the progression of diseases such as membranous nephropathy, nephrotic syndrome, and anti-Thy1 nephritis. Weinvestigated the signaling pathways that regulate the synthesis andactions of PGE2 in glomerular podocytes. To study itsactions, we assessed the ability of PGE2 to regulate theproduction of its own precursor, arachidonic acid (AA), in a mousepodocyte cell line. PGE2 dose-dependently reduced phorbolester (PMA)-mediated AA release. Inhibition of PMA-stimulated AArelease by PGE2 was found to be cAMP/PKA-dependent, becausePGE2 significantly increased levels of this secondmessenger, whereas the inhibitory actions of PGE2 werereversed by PKA inhibition and reproduced by the cAMP-elevating agentsforskolin and IBMX. PGE2 synthesis in this podocyte cellline increased fourfold at 60 min in response to PMA, coinciding withupregulation of cyclooxygenase (COX)-2 but not COX-1 levels. However,PGE2 synthesis was significantly reduced by COX-1-selectiveinhibition, yet to a lesser extent by COX-2-selective inhibition. Ourfindings suggest that PMA-stimulated PGE2 synthesis inmouse podocytes requires both basal COX-1 activity and induced COX-2expression, and that PGE2 reduces PMA-stimulated AA releasein a cAMP/PKA-dependent manner. Such an autocrine regulatory loop mighthave important consequences for podocyte and glomerular function in thecontext of renal diseases involving PGE2 synthesis.

  相似文献   

2.
Disruption of microfilaments in human umbilical vein endothelialcells (HUVEC) with cytochalasin D (cytD) or latrunculin A (latA)resulted in a 3.3- to 5.7-fold increase in total synthesis ofprostaglandin E2 (PGE2) and a 3.4- to 6.5-foldincrease in prostacyclin (PGI2) compared with controlcells. Disruption of the microtubule network with nocodazole orcolchicine increased synthesis of PGE2 1.7- to 1.9-fold andPGI2 1.9- to 2.0-fold compared with control cells.Interestingly, however, increased release of PGE2 andPGI2 from HUVEC into the media occurred only when microfilaments were disrupted. CytD treatment resulted in 6.7-fold morePGE2 and 3.8-fold more PGI2 released from HUVECcompared with control cells; latA treatment resulted in 17.7-fold more PGE2 and 11.2-fold more PGI2 released comparedwith control cells. Both increased synthesis and release ofprostaglandins in response to all drug treatments were completelyinhibited by NS-398, a specific inhibitor of cyclooxygenase-2 (COX-2).Disruption of either microfilaments using cytD or latA or ofmicrotubules using nocodazole or colchicine resulted in a significantincrease in COX-2 protein levels, suggesting that the increasedsynthesis of prostaglandins in response to drug treatments may resultfrom increased activity of COX-2. These results, together with studies demonstrating a vasoprotective role for prostaglandins, suggest thatthe cytoskeleton plays an important role in maintenance of endothelialbarrier function by regulating prostaglandin synthesis and release from HUVEC.

  相似文献   

3.
This study investigates the ways in which two proinflammatory cytokines, tumor necrosis factor α (TNF) and interleukin-1β (IL1), cause increased production of prostaglandin E2(PGE2) in rabbit articular chondrocytes (RAC). Rabbit articular chondrocytes in primary culture were incubated with IL1, TNF, or both. Arachidonic acid (AA) release, PGE2production, and the activities of cytosolic phospholipase A2(cPLA2), secreted phospholipase A2(sPLA2), and cyclooxygenase (COX) were measured. The mRNA levels of cPLA2, sPLA2, and COX-2 were also measured by Northern blotting, using specific complementary DNA probes. Incubation of IL1-stimulated RAC with TNF further increased PGE2production. This synergy did not involve PLA2stimulation, as there were no increases in AA release, cPLA2and sPLA2activities, or mRNA. In contrast, TNF increased the effect of IL1 on COX-2 activity and mRNA level. These results show that TNF and IL1 act in synergy in PGE2production in articular chondrocytes. As sPLA2and cPLA2do not seem to be involved, COX-2 appears to be the best target for a specific anti-inflammatory strategy against cartilage degradation.  相似文献   

4.
COX-2 expression and cell cycle progression in human fibroblasts   总被引:4,自引:0,他引:4  
Cyclooxygenase-2 (COX-2) is continuously expressed in mostcancerous cells where it appears to modulate cellular proliferation andapoptosis. However, little is known about the contribution oftransient COX-2 induction to cell cycle progression or programmed celldeath in primary cells. In this study we determined whether COX-2regulates proliferation or apoptosis in human fibroblasts. COX-2 mRNA, protein, and prostaglandin E2(PGE2) were not detected in quiescent cells but wereexpressed during the G0/G1 phase of the cellcycle induced by serum. Inhibition of COX-2 did not alter G0/G1 to S phase transition or induceapoptosis at concentrations that diminished PGE2.Addition of interleukin-1 to serum enhanced COX-2 expression andPGE2 synthesis over that by serum alone but had no effecton the progression of these cells into S phase. Furthermore,platelet-derived growth factor drove the G0 fibroblasts into the cell cycle without inducing detectable levels of COX-2 orPGE2. Collectively, these data show that transient COX-2expression in primary human fibroblasts does not influence cell cycle progression.

  相似文献   

5.
Subepithelial myofibroblast-derivedprostaglandin E2 (PGE2) regulatesepithelial chloride secretion in the intestine. Thrombin is elevated ininflammatory conditions of the bowel. Therefore, we sought to determinea role for thrombin in regulating PGE2 synthesis by colonicmyofibroblasts. Incubation of cultured CCD-18Co colonic myofibroblastswith thrombin, the proteinase-activated receptor 1 (PAR1)-activating peptide (Cit-NH2), andpeptides corresponding to 2 noncatalytic regions of thrombin (TP367 andTP508) for 18 h increased both cyclooxygenase (COX)-2 expression(immunocytochemistry) and PGE2 synthesis (enzymeimmunoassay). Inhibition of thrombin byD-Phe-Pro-Arg-chloromethylketone (PPACK) did not significantly reducePGE2 synthesis, which remained elevated compared withcontrol. We also investigated the basic fibroblast growth factor (bFGF) dependence of thrombin-induced PGE2 elevations. Recombinanthuman bFGF concentration dependently increased PGE2synthesis, and a bFGF neutralizing antibody inhibited PGE2synthesis induced by TP367 and TP508 (~40%) and by thrombin(~20%) (but not Cit-NH2). Thrombin, therefore,upregulates COX-2-derived PGE2 synthesis by both catalyticcleavage of PAR1 and bFGF-dependent noncatalytic activity.This presents a novel mechanism by which intestinal myofibroblastsmight regulate epithelial chloride secretion.

  相似文献   

6.
Cyclooxygenase-2 (COX-2)-mediated prostaglandin E2 (PGE2) biosynthesis by macrophages downregulates microbicidal activities in innate and acquired immune responses against intracellular bacteria. Previous studies in mice showed that intraperitoneal administration of heat-killed Mycobacterium bovis bacillus Calmette-Guérin (HK-BCG) resulted in induction of splenic PGE2-releasing macrophages in 7–14 days. In contrast, HK-BCG induced catalytically inactive COX-2 at relatively high levels in the macrophages within 1 day. In the present study, we found that COX-2 was localized subcellularly in the nuclear envelope (NE) 7 and 14 days after HK-BCG treatment, whereas COX-2 was dissociated from the NE 1 day after treatment. At 1 day after treatment, the majority of COX-2-positive macrophages had phagocytosed HK-BCG. In contrast, no intracellular HK-BCG was detected 7 and 14 days after treatment in COX-2-positive macrophages, where COX-2 was associated with the NE. However, when macrophages phagocytosed HK-BCG in vitro, all COX-2 was associated with the NE. Thus the administration of HK-BCG induces the biphasic COX-2 expression of an NE-dissociated catalytically inactive or an NE-associated catalytically active form in splenic macrophages. The catalytically inactive COX-2-positive macrophages develop microbicidal activities effectively, since they lack PGE2 biosynthesis. nuclear envelope; autoimmune disease; prostaglandin E2  相似文献   

7.
Upregulation and activation of phospholipases A2 (PLA2) and cyclooxygenases (COX) leading to prostaglandin E2(PGE2) production have been implicated in a number of neurodegenerative diseases. In this study, we investigated PGE2 production in primary rat astrocytes in response to agents that activate PLA2 including pro-inflammatory cytokines (IL-1β, TNFα and IFNγ), the P2 nucleotide receptor agonist ATP, and oxidants (H2O2 and menadione). Exposure of astrocytes to cytokines resulted in a time-dependent increase in PGE2 production that was marked by increased expression of secretory sPLA2 and COX-2, but not COX-1 and cytosolic cPLA2. Although astrocytes responded to ATP or phorbol ester (PMA) with increased cPLA2 phosphorylation and arachidonic acid release, ATP or PMA only caused a small increase in levels of PGE2. However, when astrocytes were first treated with cytokines, further exposure to ATP or PMA, but not H2O2 or menadione, markedly increased PGE2 production. These results suggest that ATP release during neuronal excitation or injury can enhance the inflammatory effects of cytokines on PGE2 production and may contribute to chronic inflammation seen in Alzheimer's disease.  相似文献   

8.
Wound healing involves multiple cell signaling pathways, including those regulating cell-extracellular matrix adhesion. Previous work demonstrated that arachidonate oxidation to leukotriene B4 (LTB4) by 5-lipoxygenase (5-LOX) signals fibroblast spreading on fibronectin, whereas cyclooxygenase-2 (COX-2)-catalyzed prostaglandin E2 (PGE2) formation facilitates subsequent cell migration. We investigated arachidonate metabolite signaling in wound closure of perturbed NIH/3T3 fibroblast monolayers. We found that during initial stages of wound closure (0–120 min), all wound margin cells spread into the wound gap perpendicularly to the wound long axis. At regular intervals, between 120 and 300 min, some cells elongated to project across the wound and meet cells from the opposite margin, forming distinct cell bridges spanning the wound that act as foci for later wound-directed cell migration and resulting closure. 5-LOX inhibition by AA861 demonstrated a required LTB4 signal for initial marginal cell spreading and bridge formation, both of which must precede wound-directed cell migration. 5-LOX inhibition effects were reversible by exogenous LTB4. Conversely, COX inhibition by indomethacin reduced directed migration into the wound but enhanced early cell spreading and bridge formation. Exogenous PGE2 reversed this effect and increased cell migration into the wound. The differential effects of arachidonic acid metabolites produced by LOX and COX were further confirmed with NIH/3T3 fibroblast cell lines constitutively over- and underexpressing the 5-LOX and COX-2 enzymes. These data suggest that two competing oxidative enzymes in arachidonate metabolism, LOX and COX, differentially regulate sequential aspects of fibroblast wound closure in vitro. leukotriene B4; prostaglandin E2; spreading; migration; bridges  相似文献   

9.
We previouslyshowed that increased macrophage andPGE2 production with age is due toenhanced cyclooxygenase (COX) activity and COX-2 expression. This studydetermined the effect of vitamin E supplementation on macrophagePGE2 synthesis in young and old mice and its underlying mechanism. Mice were fed 30 or 500 parts permillion vitamin E for 30 days. Lipopolysaccharide (LPS)-stimulated macrophages from old mice produced significantly morePGE2 than those from young mice.Vitamin E supplementation reversed the increasedPGE2 production in old mice buthad no effect on macrophage PGE2production in young mice. In both LPS-stimulated and unstimulated macrophages, COX activity was significantly higher in old than in youngmice at all intervals. Vitamin E supplementation completely reversedthe increased COX activity in old mice to levels comparable to those ofyoung mice but had no effect on macrophage COX activity of young miceor on COX-1 and COX-2 protein or COX-2 mRNA expression in young or oldmice. Thus vitamin E reverses the age-associated increase in macrophagePGE2 production and COX activity.Vitamin E exerts its effect posttranslationally, by inhibiting COXactivity.

  相似文献   

10.
The COX-2/PGE2 pathway has been implicated in the occurrence and progression of cancer. The underlying mechanisms facilitating the production of COX-2 and its mediator, PGE2, in cancer survival remain unknown. Herein, we investigated PGE2-induced COX-2 expression and signaling in HL-60 cells following menadione treatment. Treatment with PGE2 activated anti-apoptotic proteins such as Bcl-2 and Bcl-xL while reducing pro-apoptotic proteins, thereby enhancing cell survival. PGE2 not only induced COX-2 expression, but also prevented casapse-3, PARP, and lamin B cleavage. Silencing and inhibition of COX-2 with siRNA transfection or treatment with indomethacin led to a pronounced reduction of the extracellular levels of PGE2, and restored the menadione-induced cell death. In addition, pretreatment of cells with the MEK inhibitor PD98059 and the PKA inhibitor H89 abrogated the PGE2-induced expression of COX-2, suggesting involvement of the MAPK and PKA pathways. These results demonstrate that PGE2 signaling acts in an autocrine manner, and specific inhibition of PGE2 will provide a novel approach for the treatment of leukemia. [BMB Reports 2015; 48(2): 109-114]  相似文献   

11.
Akey role exists for prostaglandins (PGs) in reproductive health,including fertility and parturition. However, the cellular sources andregulation of PG production by cyclooxygenase (COX) in the human femalereproductive tract remain poorly understood. We recently reported thathuman female reproductive tract fibroblasts are divisible into distinctsubsets based on their Thy-1 surface expression. Herein, we demonstratethat the expression, induction, and subcellular localization of COX-1and COX-2 and the downstream PG biosynthesis are markedly differentbetween these subsets. Specifically, Thy-1+ fibroblastshighly express COX-1, which is responsible for high-level PGE2 production, a feature usually attributed to the COX-2isoenzyme. In contrast, COX-2, generally considered an inducibleisoform, is constitutively expressed in the Thy-1 subset,which only minimally produces PGE2. The intracellular signaling pathways for COX regulation also differ between the subsets.Determination of differences in signal transduction, COX expression andlocalization, and PG production by human reproductive fibroblastsubtypes supports the concept of fibroblast heterogeneity and thepossibility that these subsets may play unique roles in tissuehomeostasis and in inflammation.

  相似文献   

12.
Knee osteoarthritis (OA) results, at least in part, from overloading and inflammation leading to cartilage degradation. Prostaglandin E2 (PGE2) is one of the main catabolic factors involved in OA. Its synthesis is the result of cyclooxygenase (COX) and prostaglandin E synthase (PGES) activities whereas NAD+-dependent 15 hydroxy prostaglandin dehydrogenase (15-PGDH) is the key enzyme implicated in the catabolism of PGE2. For both COX and PGES, three isoforms have been described: in cartilage, COX-1 and cytosolic PGES are constitutively expressed whereas COX-2 and microsomal PGES type 1 (mPGES-1) are inducible in an inflammatory context. COX-3 (a variant of COX-1) and mPGES-2 have been recently cloned but little is known about their expression and regulation in cartilage, as is also the case for 15-PGDH. We investigated the regulation of the genes encoding COX and PGES isoforms during mechanical stress applied to cartilage explants. Mouse cartilage explants were subjected to compression (0.5 Hz, 1 MPa) for 2 to 24 hours. After determination of the amount of PGE2 released in the media (enzyme immunoassay), mRNA and proteins were extracted directly from the cartilage explants and analyzed by real-time RT-PCR and western blotting respectively. Mechanical compression of cartilage explants significantly increased PGE2 production in a time-dependent manner. This was not due to the synthesis of IL-1, since pretreatment with interleukin 1 receptor antagonist (IL1-Ra) did not alter the PGE2 synthesis. Interestingly, COX-2 and mPGES-1 mRNA expression significantly increased after 2 hours, in parallel with protein expression, whereas COX-3 and mPGES-2 mRNA expression was not modified. Moreover, we observed a delayed overexpression of 15-PGDH just before the decline of PGE2 synthesis after 18 hours, suggesting that PGE2 synthesis could be altered by the induction of 15-PGDH expression. We conclude that, along with COX-2, dynamic compression induces mPGES-1 mRNA and protein expression in cartilage explants. Thus, the mechanosensitive mPGES-1 enzyme represents a potential therapeutic target in osteoarthritis.  相似文献   

13.
Polyunsaturated fatty acids (PUFAs) as well as oestrogen (E2) and parathyroid hormone (PTH) affect bone cells. The aim of the study was to determine whether arachidonic acid (AA), E2, and PTH increase prostaglandin E2 (PGE2) synthesis in MG-63 and MC3T3-E1 osteoblastic cells and the level of mediation by COX-1 and COX-2. PGE2 levels were determined in the conditioned culture media of MG-63 and MC3T3-E1 osteoblasts after exposure to AA, PTH and E2. Cells were pre-incubated in some experiments with the unselective COX inhibitor indomethacin or the COX-2 specific blocker NS-398. Indirect immunofluorescence was performed on MG-63 cells to detect the presence and location of the two enzymes involved. AA increased PGE2 secretion in both cell lines; production by MC3T3-E1 cells, however, was significantly higher than that of MG-63 cells. This could be due to autoamplification via the EP1 subtype of PGE receptors in mouse MC3T3-E1 osteoblasts. Both COX-1 and COX-2 affected the regulation of PGE2 synthesis in MG-63 cells. E2 had no effect on PGE2 secretion in both cell lines, while PTH caused a slight increase in PGE2 synthesis in the MG-63 cell line.  相似文献   

14.
15.
Platelet-derived growth factor-BB (PDGF-BB) and transforming growth factor-β1 (TGF-β1) are critically involved in idiopathic pulmonary fibrosis by inducing the proliferation and transdifferentiation of lung fibroblasts. In the present study, we examined the impact of diallyl disulfide (DADS), a garlic-derived compound, on such pathological conditions. DADS showed profound inhibitory effects on the PDGF-BB-induced proliferation of human and mouse lung fibroblasts. DADS also abrogated the TGF-β1-induced expression of α-smooth muscle actin, type I collagen and fibronectin. Following treatment with DADS, the expression of cyclooxygenase-2 (COX-2) and the synthesis of prostaglandin E2 (PGE2) were found to be markedly enhanced, which in turn led to elevated cAMP levels in lung fibroblasts. Notably, the effect of DADS was largely abolished in the presence of either COX inhibitor indomethacin or siRNA-targeting COX-2, or in the absence of the PGE2 receptor EP2, supporting an essential role for the COX-2–PGE2–cAMP autocrine loop. Furthermore, we demonstrated that the upregulated expression of COX-2 was a result of increased level of histone 3 acetylation at COX-2 locus in DADS-treated cells. Together, these results suggest that DADS, by inducing COX-2 expression, may have therapeutic potential in treating lung fibrosis.  相似文献   

16.
The upregulation of PGE2 by mesangial cells has been observed under chronic inflammation condition. In the present work, renal mesangial cells were stimulated to trigger a huge increase of PGE2 synthesis and were treated in the absence or presence of known PLA2 inhibitors. A variety of synthetic inhibitors, mainly developed in our labs, which are known to selectively inhibit each of GIVA cPLA2, GVIA iPLA2, and GIIA/GV sPLA2, were used as tools in this study. Synthetic sPLA2 inhibitors, such as GK115 (an amide derivative based on the non-natural amino acid (R)-γ-norleucine) as well as GK126 and GK241 (2-oxoamides based on the natural (S)-α-amino acid leucine and valine, respectively) presented an interesting effect on the suppression of PGE2 formation.  相似文献   

17.
18.
19.
Lipopolysaccharide (LPS) stimulated prostaglandin E2 (PGE2) formation and induction of cyclooxygenase-2 (COX-2) expression without changing the levels of COX-1 protein in rat peritoneal macrophages. Non-steroidal anti-inflammatory drugs (NSAIDs) (nimesulide, indomethacin and ibuprofen) strongly inhibited LPS-stimulated PGE2 production without any effect on COX-2 protein expression, suggesting that NSAIDs are active in inhibiting the ability of COX-2 to convert arachidonic acid (AA) endogenously released in response to LPS stimulation. Exogenous AA can be converted to PGE2 by both COX isoforms even in LPS-stimulated macrophages. NSAIDs inhibited PGE2 production from exogenous AA mediated by both COX-1 and COX-2. However, the two isoforms interacted differentially with different NSAIDs. Furthermore, NSAIDs were distinctly more active in inhibiting PGE2 production from endogenous AA than that from exogenous AA. These data suggest that PGE2 production through COX-2 from exogenous AA may not be subject to the same regulatory processes as that from endogenous AA and the two metabolic processes may be differentially sensitive to different NSAIDs.  相似文献   

20.
Vasopressin and prostaglandinE2 (PGE2) are involved in regulating NaClreabsorption in the thick ascending limb (TAL) of the rat kidney. Inthe present study, we used the patch-clamp technique to study theeffects of vasopressin and PGE2 on the apical 70 pSK+ channel in the rat TAL. Addition of vasopressinincreased the channel activity, defined asNPo, from 1.11 to 1.52 (200 pM) and 1.80 (500 pM),respectively. The effect of vasopressin can be mimicked by eitherforskolin (1-5 µM) or 8-bromo-cAMP/dibutyryl-cAMP (8-Br-cAMP/DBcAMP) (200-500 µM). Moreover, the effects of cAMP and vasopressin were not additive and application of 10 µM H-89 abolished the effect of vasopressin. This suggests that the effect ofvasopressin is mediated by a cAMP-dependent pathway. Applying 10 nMPGE2 alone had no significant effect on the channelactivity. However, PGE2 (10 nM) abolished thestimulatory effect of vasopressin. The PGE2-inducedinhibition of the vasopressin effect was the result of decreasing cAMPproduction because addition of 200 µM 8-Br-cAMP/DBcAMPreversed the PGE2-induced inhibition. In addition toantagonizing the vasopressin effect, high concentrations of PGE2 reduced channel activity in the absence of vasopressinby 33% (500 nM) and 51% (1 µM), respectively. The inhibitory effect of high concentrations of PGE2 was not the result ofdecreasing cAMP production because adding the membrane-permeant cAMPanalog failed to restore the channel activity. In contrast, inhibiting protein kinase C (PKC) with calphostin C (100 nM) abolished the effectof 1 µM PGE2. We conclude that PGE2 inhibitsapical K+ channels by two mechanisms: 1) lowconcentrations of PGE2 attenuate the vasopressin-inducedstimulation mainly by reducing cAMP generation, and 2) highconcentrations of PGE2 inhibit the channel activity by aPKC-dependent pathway.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号