首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
A derivative of fuculose-1-phosphate aldolase, immobilized with high loading on glyoxal–agarose gels, has been characterized and evaluated as a biocatalyst for an aldol addition reaction. The reaction of the solid biocatalyst was diffusion-controlled for conversion of its natural substrate. Nevertheless, when catalyzing the synthesis of a biologically active aminopolyol, the lower reaction rate with non-natural substrates led to a process controlled by the intrinsic enzyme kinetics. The resulting biocatalyst has high synthetic specific activity and has been successfully used in batch synthesis reactions with high conversion. In addition, the immobilized aldolase has been employed in fed-batch synthesis, increasing the selectivity of the reaction and obtaining high conversion (88%).  相似文献   

2.
The selectivity of preparations of alpha-chymotrypsin immobilized on Celite or polyamide and carrying out syntheses of di- and tripeptides in acetonitrile medium were studied. The study concerns the effect of mass-transfer limitations on three different kinds of selectivity: acyl donor, stereo- and nucleophile selectivities, defined respectively as the ratio of initial rates with different acyl donors; the enantioselectivity factor (E); and the ratio of initial rates of peptide synthesis and hydrolysis of the acyl donor. Strong mass-transfer limitations caused by increased enzyme loading had a very strong effect on acyl donor selectivity, with reductions of up to 79%, and on stereoselectivity, with reductions of up to 77% in relation to optimum values, both on Celite. Nucleophile selectivity was not affected as strongly by mass-transfer limitations. Using a small molecule (AlaNH(2)) as nucleophile, the onset of these limitations caused only minor reductions in selectivity, while when using a larger nucleophilic species (AlaPheNH(2)) it was reduced by up to 60% when increasing enzyme loading on Celite from 2 to 100 mg/g. The different way these kinds of selectivity are affected by the onset of mass-transfer limitations can be explained by a combination of different aspects: the kinetic behavior of the enzyme toward nucleophile and acyl donor concentrations, the relative concentrations of reagents used in the reaction media, and their relative diffusion coefficients. In short, higher concentrations of nucleophile than acyl donor are generally used, and the nucleophile most often used in the experiments hereby described (AlaNH(2)) diffuses faster than the acyl donors employed. These factors combined are expected to give rise to concentration gradients inside porous biocatalyst particles higher for acyl donor than for nucleophile under conditions of mass-transfer limitations. This explains why acyl donor selectivity and stereoselectivity are much more influenced by mass transfer limitations than nucleophile selectivity.  相似文献   

3.
Glucoamylase and glucose oxidase have been immobilized on carbodiimide-treated activated carbon particles of various sizes. Loading data indicate nonuniform distribution of immobilized enzyme within the porous support particles. Catalysts with different enzyme loading and overall activities have been prepared by varying enzyme concentration in the immobilizing solution. Analysis of these results by a new method based entirely upon experimentally observable catalyst properties indicates that intrinsic catalytic activity is reduced by immobilization of both enzymes. Immobilized glucoamylase intrinsic activity decreases with increasing enzyme loading, and similar behavior is suggested by immobilized glucose oxidase data analysis. The overall activity data interpretation method should prove useful in other immobilized enzyme characterization research, especially in situations where the intraparticle distribution of immobilized enzyme is nonuniform and unknown.  相似文献   

4.
A diffusion model based on the random pore model is derived for immobilized cell biocatalysts and verified with 19 sets of experimental diffusion data. The predicted effective diffusivity relative to that for the support matrix reflects a quadratic dependence on the cell loading and contains a single parameter that depends on the intracellular diffusivity and the chemical partitioning coefficient. The model is used to predict optimal cell loadings that maximize the total reaction rate in an immobilized cell biocatalyst. A rule of thumb based on the diffusion model is obtained to the effect that the cell loading should be at least (1/3) for single reactions regardless of the kinetics and diffusional resistances. A means of calculating improved lower bounds is provided for cases where the cellular diffusional resistance is known but the kinetics are not. The optimal cell loadings for reversible first-order and for Michaelis-Menten kinetics are presented and demonstrated to be within the range of conditions of practical interest.  相似文献   

5.
Bacillus subtilis SHS0133 cephalosporin-C deacetylase (CAH) overexpressed in Escherichia coli was immobilized on an anion-exchange resin, KA-890, using glutaraldehyde. The activity yield of immobilized enzyme was approximately 55% of the free enzyme. The pH range for stability of the immobilized enzyme (pH 5–10) was broader than that for free enzyme. The Kmapp value of immobilized enzyme for 7-aminocephalosporanic acid (7-ACA) was similar to that of the free enzyme. This immobilized enzyme obeyed Michaelis–Menten kinetics similar to those of the free enzyme. A batch-type reactor with a water jacket was employed for deacetylation of 7-ACA using CAH immobilized on KA-890. Ten kilograms of 7-ACA were completely converted to deacetyl 7-ACA at pH 8.0 within 90 min. The reaction kinetics agreed well with a computer simulation model. Moreover, the immobilized enzyme exhibited only a slight loss of the initial activity even after repeated use (52 times ) over a period of 70 days. This reaction will thus be useful for the production of cephalosporin-type antibiotics.  相似文献   

6.
The present study explores the efficiency of Talaromyces thermophilus β-xylosidase, in the production of xylose and xylooligosaccharides. The β-xylosidase was immobilized by different methods namely ionic binding, entrapment and covalent coupling and using various carriers. Chitosan, pre-treated with glutaraldehyde, was selected as the best support material for β-xylosidase immobilization; it gave the highest immobilization and activity yields (94%, 87%, respectively) of initial activity, and also provided the highest stability, retaining 94% of its initial activity even after being recycled 25 times. Shifts in the optimal temperature and pH were observed for the immobilized β-xylosidase when compared to the free enzyme. The maximal activity obtained for the immobilized enzyme was achieved at pH 8.0 and 53 °C, whereas that for the free enzyme was obtained at pH 7.0 and 50 °C. The immobilized enzyme was more thermostable than the free β-xylosidase. We observed an increase of the Km values of the free enzyme from 2.37 to 3.42 mM at the immobilized state. Native and immobilized β-xylosidase were found to be stimulated by Ca2+, Mn2+ and Co2+ and to be inhibited by Zn2+, Cu2+, Hg2+, Fe2+, EDTA and SDS. Immobilized enzyme was found to catalyze the reverse hydrolysis reaction, forming xylooligosaccharides in the presence of a high concentration of xylose. In order to examine the synergistic action of xylanase and β-xylosidase of T. thermophilus, these two enzymes were co-immobilized on chitosan. A continuous hydrolysis of 3% Oat spelt xylan at 50 °C was performed and better hydrolysis yields and higher amount of xylose was obtained.  相似文献   

7.
Lipase from Candida rugosa was immobilized by adsorption onto a macroporous copolymer support. Under optimum conditions the maximum amount of protein bound was 15.4 mg/g and the immobilization efficiency was 62%. The kinetics of lipase binding to the selected polymer carrier was assessed by using a general model of topochemical reactions. The effect of temperature on adsorption was thoroughly investigated, as was the adsorption mechanism itself. Analysis of the proposed kinetic model and the specific kinetic parameters measured suggest that surface kinetics control the adsorption process. According to the activation energy (E a) and the rate constant, k, the enzyme has rather a high affinity for the support's active sites. The immobilized enzyme was used to catalyse the hydrolysis of palm oil in a lecithin/isooctane reaction system, in which the enzyme's activity was 70% that of the free enzyme. Kinetic parameters such as maximum velocity (V max) and the Michaelis constant (K m) were determined for the free and the immobilized lipase. Following repeated use, the immobilized lipase retained 56% of its initial activity after the fifth hydrolysis cycle. Received: 3 April 1998 / Received revision: 28 July 1998 / Accepted: 29 July 1998  相似文献   

8.
Attempts have been made to use manganese peroxidase (MnP) for chlorine-free pulp biobleaching, but they have not been commercially viable because of the enzyme's low stability. We developed a new pulp biobleaching method involving mesoporous material-immobilized manganese peroxidase from Phanerochaete chrysosporium. MnP immobilized in FSM-16, a folded-sheet mesoporous material whose pore size is nearly the same as the diameter of the enzyme, had the highest thermal stability and tolerance to H2O2. MnP immobilized in FSM-16 retained more than 80% of its initial activity even after 10 days of continuous reaction. We constructed a thermally discontinuous two-stage reactor system, in which the enzyme (39°C) and pulp-bleaching (70°C) reactions were performed separately. When the treatment of pulp with MnP by means of the two-stage reactor system and alkaline extraction was repeated seven times, the brightness of the pulp increased to about 88% within 7 h after completion of the last treatment.  相似文献   

9.
This paper reviews the immobilization of a thermophilic esterase, AFEST from the archaeon Archaeoglobus fulgidus, on a hydrophobic macroporous resin and its application in polyester synthesis using the ring-opening polymerization of ?-caprolactone as a model. Using the physical adsorption technique, the AFEST loading concentration after 24 h was 152 mg AFEST per g of support. Particle size and surface morphology of the immobilized enzyme were investigated using laser scattering analysis and scanning electron microscopy. The effects of enzyme concentration, temperature, reaction time and reaction medium on monomer conversion and product molecular weight were systematically investigated. Through the optimization of reaction parameters, poly(?-caprolactone) was obtained at an almost 100% monomer conversion rate and with a low average molecular weight (< 1,100 g/mol). Finally, the immobilized enzyme exhibited good operational stability, with a monomer conversion value of more than 55% after four batch reactions.  相似文献   

10.
A rugged sample-preparation method for comprehensive affinity enrichment of phosphopeptides from protein digests has been developed. The method uses a series of chemical reactions to incorporate efficiently and specifically a thiol-functionalized affinity tag into the analyte by barium hydroxide catalyzed β-elimination with Michael addition using 2-aminoethanethiol as nucleophile and subsequent thiolation of the resulting amino group with sulfosuccinimidyl-2-(biotinamido) ethyl-1,3-dithiopropionate. Gentle oxidation of cysteine residues, followed by acetylation of α- and ε-amino groups before these reactions, ensured selectivity of reversible capture of the modified phosphopeptides by covalent chromatography on activated thiol sepharose. The use of C18 reversed-phase supports as a miniaturized reaction bed facilitated optimization of the individual modification steps for throughput and completeness of derivatization. Reagents were exchanged directly on the supports, eliminating sample transfer between the reaction steps and thus, allowing the immobilized analyte to be carried through the multistep reaction scheme with minimal sample loss. The use of this sample-preparation method for phosphopeptide enrichment was demonstrated with low-level amounts of in-gel-digested protein. As applied to tryptic digests of α-S1- and β-casein, the method enabled the enrichment and detection of the phosphorylated peptides contained in the mixture, including the tetraphosphorylated species of β-casein, which has escaped chemical procedures reported previously. The isolates proved highly suitable for mapping the sites of phosphorylation by collisionally induced dissociation. β-Elimination, with consecutive Michael addition, expanded the use of the solid-phase-based enrichment strategy to phosphothreonyl peptides and to phosphoseryl/phosphothreonyl peptides derived from proline-directed kinase substrates and to their O-sulfono- and O-linked β-N-acetylglucosamine (O-GlcNAc)-modified counterparts. Solid-phase enzymatic dephosphorylation proved to be a viable tool to condition O-GlcNAcylated peptide in mixtures with phosphopeptides for selective affinity purification. Acetylation, as an integral step of the sample-preparation method, precluded reduction in recovery of the thiolation substrate caused by intrapeptide lysine-dehydroalanine cross-link formation. The solid-phase analytical platform provides robustness and simplicity of operation using equipment readily available in most biological laboratories and is expected to accommodate additional chemistries to expand the scope of solid-phase serial derivatization for protein structural characterization.  相似文献   

11.
Pancreatic lipase has been immobilized onto stainless steel beads by adsorption followed by crosslinking, and onto polyacrylamide by covalent bonding. The activities of the two types of immobilized enzyme toward the particulate substrate, tributyrin emulsion droplets, were determined experimentally, and rate constants based on Michaelis-Menten kinetics were calculated. The activity of the stainless steel-lipase was determined for various flow conditions and for various support sizes by the use of a differential fluidized bed recycle reactor. The rate constants calculated indicate that the experimental reaction rate is free from mass transfer influences, since the observed Michaelis constant does not vary with the fluidization velocity or with the support particle size. In addition, the Michaelis constant of the stainless steel-lipase was found to be equal to that of the free enzyme, suggesting that adsorption and subsequent crosslinking does not alter the enzyme-substrate affinity. The emulsion substrate mass transfer rates, calculated from the filtration theory, indicate that each substrate particle which contact the immobilized enzyme is hydrolyzed to a significant extent. The experimentally determined kinetic rate constants may be used directly to predict the size of integral fluidized bed reactors.  相似文献   

12.
Models of membrane systems containing immobilized glucose oxidase and catalase operating together or independently have been developed. A rotated disk electrode apparatus was employed with novel electrochemical operating conditions to experimentally determine mass transfer and intrinsic kinetic parameters of enzyme-containing membranes. The value of a mass transfer parameter that describes internal and external diffusion was first determined under conditions that do not permit the enzyme reactions. In a subsequent experiment with the reaction allowed, kinetic parameters corresponding to the intrinsic maximal velocity and Michaelis constants of the immobilized enzymes were estimated by regression analysis of data based on an appropriate two- or three- parameter model. It was found that immobilization reduced the maximal intrinsic velocity but had no detectable effect on the Michaelis constants. In all but one case- these methods for membrane characterization are nondestructive and can be used repeatedly on a given membrane. These techniques provide the means for quantitative comparisons of immobilization methods and make possible temporal studies of immobilized enzyme inactivation.  相似文献   

13.
Enzymatic transesterification of soybean oil with methanol and ethanol was studied. Of the nine lipases that were tested in the initial screening, lipase PS from Pseudomonas cepacia resulted in the highest yield of alkyl esters. Lipase from Pseudomonas cepacia was further investigated in immobilized form within a chemically inert, hydrophobic sol-gel support. The gel-entrapped lipase was prepared by polycondensation of hydrolyzed tetramethoxysilane and iso-butyltrimethoxysilane. Using the immobilized lipase PS, the effects of water and alcohol concentration, enzyme loading, enzyme thermal stability, and temperature in the transesterification reaction were investigated. The optimal conditions for processing 10 g of soybean oil were: 35 degrees C, 1:7.5 oil/methanol molar ratio, 0.5 g water and 475 mg lipase for the reactions with methanol, and 35 degrees C, 1:15.2 oil/ethanol molar ratio, 0.3 g water, 475 mg lipase for the reactions with ethanol. Subject to the optimal conditions, methyl and ethyl esters formation of 67 and 65 mol% in 1h of reaction were obtained for the immobilized enzyme reactions. Upon the reaction with the immobilized lipase, the triglycerides reached negligible levels after the first 30 min of the reaction and the immobilized lipase was consistently more active than the free enzyme. The immobilized lipase also proved to be stable and lost little activity when was subjected to repeated uses.  相似文献   

14.
Enzymatic synthesis of ethyl glucoside lactate in non-aqueous system   总被引:1,自引:0,他引:1  
Ethyl glucoside lactate, a novel α-hydroxy acid derivative, was synthesized by transesterification in non-aqueous phase using immobilized lipase as biocatalyst. Parameters such as solvent type, substrate concentration, reaction temperature, and enzyme concentration were investigated to optimize the lipase-catalyzed transesterification. In solvent-free system with butyl lactate as both acyl donor and solvent, a 71% conversion was achieved. In order to investigate the effect of initial water content, the reactions were carried out in the mediums treated with molecular sieves. The results showed that conversion and initial rate decreased with the increase of water content. The conversion and initial rate reached to 95% and 67.4 mM/h, respectively, by carrying out the reaction under reduced pressure, which was employed to eliminate butanol and the initial water.  相似文献   

15.
A simple method is presented that establishes intrinsic rate parameters when slow pore diffusion of substrate limits immobilized enzyme reactions that obey Michaelis-Menten kinetics. The Aris-Bischoff modulus is employed. Data at high substrate concentrations, where the enzyme would be saturated in the absence of diffusion limitation, and at low substrate concentrations, where effectiveness factors are inversely proportional to reaction modulus, are used to determine maximum rate and Michaelis constant, respectively. Because Michaelis-Menten and Langmuir-Hinshelwood kinetics are formally identical, this method may be used to estimate intrinsic rate parameters of many heterogeneous catalysts. The technique is demonstrated using experimental data from the hydrolysis of maize dextrin with diffusion-limited immobilized glucoamylase. This system yields a Michaelis constant of 0.14%, compared to 0.11% for soluble glucoamylase and 0.24% for immobilized glucoamylase free of diffusional effects.  相似文献   

16.
The influences of nonuniform activity distribution within a porous solid support on the apparent kinetic parameters, Vmapp and Kmapp, of immobilized enzyme reactions following the Michaelis-Menten kinetics were theoretically investigated. As the enzyme is distributed to the neighborhood of the external surface of the support, Vmapp and Kmapp approach their respective intrinsic values over a wide range of substrate concentration. There is a close relationship between the nonuniform distribution and internal diffusional resistance. Changes in these two factors provide similar effects on Vmapp and Kmapp. As long as the immobilized enzyme reaction follows Michaelis-Menten kinetics, the nonuniform activity distribution never makes Kmapp less than its intrinsic value.  相似文献   

17.
Galactooligosaccharides (GOS) are prebiotics produced from lactose through an enzymatic reaction. Employing an immobilized enzyme may result in cost reductions; however, the changes in its kinetics due to immobilization has not been studied. This study experimentally determined the optimal reaction conditions for the production of GOS from lactose by β‐galactosidase (EC 3.2.1.23) from Kluyveromyces lactis covalently immobilized to a polysiloxane‐polyvinyl alcohol (POS‐PVA) polymer activated with glutaraldehyde (GA), and to study the transgalactosylation kinetics. Yield immobilization was 99 ± 1.1% with 78.5 ± 2.4% enzyme activity recovery. An experimental design 24 with 1 center point and 2 replicates was used. Factors were lactose [L], enzyme concentration [E], pH and temperature (T). Response variables were glucose and galactose as monosaccharides [G1], residual lactose [Lac]r and GOS as disaccharides [G2] and trisaccharides [G3]. Best conditions were pH 7.1, 40 °C, 270 gL?1 initial lactose concentration and 6 U mL?1 enzyme concentration, obtaining 25.46 ± 0.01 gL?1 yield of trisaccharides. Although below the HPLC‐IR detection limit, tetrasaccharides were also identified after 115 min of reaction. The immobilization protocol was then optimized by diminishing total reactant volumes : support ratio, resulting in improved enzyme activity synthesizing 43.53 ± 0.02 gL?1 of trisaccharides and 13.79 ± 0.21 gL?1 of tetrasaccharides, and after four cycles remaining relative activity was 94%. A reaction mechanism was proposed through which a mathematical model was developed and rate constants were estimated, considering a pseudo steady‐state hypothesis for two concomitant reactions, and from this simplified analysis, the reaction yield could eventually be improved. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1568–1578, 2017  相似文献   

18.
Polyacrylonitrile (PAN) nanofibers could be fabricated by electrospinning with fiber diameter in the range of 150–300 nm, providing huge surface area for enzyme immobilization and catalytic reactions. Lipase from Candida rugosa was covalently immobilized onto PAN nanofibers by amidination reaction. Aggregates of enzyme molecules were found on nanofiber surface from field emission scanning electron microscopy and covalent bond formation between enzyme molecule and the nanofiber was confirmed from FTIR measurements. After 5 min activation and 60 min reaction with enzyme-containing solution, the protein loading efficiency was quantitative and the activity retention of the immobilized lipase was 81% that of free enzyme. The mechanical strength of the NFM improved after lipase immobilization where tensile stress at break and Young's modulus were almost doubled. The immobilized lipase retained >95% of its initial activity when stored in buffer at 30 °C for 20 days, whereas free lipase lost 80% of its initial activity. The immobilized lipase still retained 70% of its specific activity after 10 repeated batches of reaction. This lipase immobilization method shows the best performance among various immobilized lipase systems using the same source of lipase and substrate when considering protein loading, activity retention, and kinetic parameters.  相似文献   

19.
Inversion of sucrose with β- -fructofuranosidase (EC 3.2.1.26) immobilized by the ionic bond on bead DEAHP-cellulose has been studied under flow conditions. Under these conditions, the inversion of sucrose is affected by the concentration and flow rate of the substrate and by the reaction temperature. The effect of substrate concentration on the reaction was investigated in the range 19.5–64.2 wt %; the effect of flow rate was examined in the range 0.25–5.57 g solution per min, and the temperature range used was 25–50°C. It was found that the activities of immobilized β- -fructofuranosidase in stirred and flow reactors were the same. The lower activities of β- -fructofuranosidase in the case of concentrated solutions, and of immobilized β- -fructofuranosidase compared with the native enzyme are attributed to more difficult diffusion through the beads of the ion exchanger, especially of the strongly viscous substrate. A long-term investigation of the enzyme activity over a period of three months demonstrated the stability of the β- -fructofuranosidase immobilized by the ionic bond on bead DEAHP-cellulose; the half-life of the enzyme was 215 days. It was also found that the immobilization of the enzyme on a carrier was more effective under flow conditions, i.e. through an ion exchanger in the column, than under the equilibrium conditions of a stirred reactor.  相似文献   

20.
Lipase from Arthrobacter sp. was immobilized onto low-cost diatomite materials using different protocols for the resolution of 4-hydroxy-3-methyl-2-(2-propenyl)-2-cyclopenten-1-one (HMPC) by asymmetric acylation. The support surface was grafted various functional groups including methacryloxypropyl, vinyl, octyl, dodecyl and γ-(aminopropyl)-glutaraldehyde. These modifications resulted in various mechanisms during the immobilization and thus introduced different characteristics to the prepared lipases. The interfacially adsorbed lipase onto dodecyl-modified support exhibited both higher activity and stability among these immobilized preparations. The modified enzyme-aggregate coating method was performed based on interfacial adsorption in our work, and the characteristics of this immobilized lipase were investigated and compared with those by cross-linking and interfacial adsorption methods. It was shown that the enzyme-aggregate coated lipase yielded the highest activity with a recovered activity of 8.5-fold of the free enzyme, and the highest operational stability with 85% of initial activity remained after 10 recycles. Excellent enantioselectivity (E ≥ 400, with e.e. = 99% of S-HMPC) was obtained for most lipase preparations in our paper (E = 85 for the free enzyme).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号