首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There is little information on the molecular events that control the subcellular distribution of protein kinase C during cardiac cell differentiation. We examined protein kinase C activity and the subcellular distribution of representatives of the "classical," "novel," and "atypical" protein kinase C's in P19 murine teratoma cells induced to undergo differentiation into cardiac myocytes by the addition of dimethylsulfoxide to the medium (Grepin et al., Development 124, 2387-2395, 1997). Differentiation was assessed by the presence of striated myosin, a morphological marker for cardiac cells. Addition of dimethyl sulfoxide to the medium resulted in the appearance of striated myosin by 10 days postincubation. Immunolocalization and Western blot studies revealed that a significant proportion of protein kinase Calpha, -epsilon, and -zeta were associated with the particulate fraction in P19 cells prior to differentiation. Differentiation into cardiac cells resulted in a translocation of protein kinase C activity from the particulate fraction to cytosol and localization of most of protein kinase Calpha, -epsilon, and -zeta to the cytoplasmic compartment. The total cellular protein kinase C activity was unaltered during differentiation. The translocation of protein kinase C activity during differentiation of P19 cells into cardiac myocytes was associated with a decrease in the levels of cellular 1, 2-diacyl-sn-glycerol. The cellular levels of phosphatidylserine and phosphatidylinositol did not change during differentiation. Addition of 1,2-dioctanoyl-sn-glycerol, a cell-permeant 1, 2-diacyl-sn-glycerol analog, reversed the differentiation-induced switch in the relative distribution of protein kinase C activity and dramatically increased the association of protein kinase Calpha with the particulate fraction. Addition of 1,2-dioctanoyl-sn-glycerol did not reverse the pattern of distribution for protein kinase Cepsilon or -zeta. The results indicate that protein kinase C activity and protein kinase Calpha, -epsilon and -zeta isoforms are redistributed from the particulate to the cytosolic fraction during differentiation of P19 cells into cardiomyocytes. The mechanism for the redistribution of protein kinase Calpha may be related to the reduction in the cellular 1,2-diacyl-sn-glycerol levels that accompany differentiation.  相似文献   

2.
Incubation of subcellular fractions isolated from rat cerebral cortex with [-32P]ATP results in the phosphorylation of a number of proteins including two with apparent molecular weights of approximately 50,000 and 60,000 daltons. These phosphoproteins were shown to be the autophosphorylated subunits of a calmodulin-stimulated protein kinase by a number of physicochemical criteria, including their mobility on non-equilibrium pH gradient electrophoresis, their phosphopeptide profiles and phosphorylation characteristics. When a crude membrane fraction obtained following osmotic lysis of a P2 fraction was labeled and subsequently fractionated on sucrose density gradients, approximately 80% of the autophosphorylated kinase was associated with fractions enriched in synaptic plasma membranes. Other substrates of calmodulin kinase(s) were similarly distributed. Detergent extraction of synaptic plasma membranes to produce synaptic junctions and post-synaptic densities indicated that the majority of the autophosphorylated kinase was solubilized, apparently as a holoenzyme. The major post synaptic density protein (mPSDp) was not readily extracted by detergents and was largely unlabeled under the conditions used for phosphorylation, and yet this protein is structurally closely related to the kinase subunit. It is possible that this lack of labeling is due to the mPSDp being attached to the PSD in a different way or being present there in a different isoenzymic form from that of the readily autophosphorylated enzyme subunit. Thus, the data suggest that, in vitro at least, a number of pools of calmodulin kinase exist in neuronal membranes.A preliminary account of part of this work has been published (1).  相似文献   

3.
The movement of proteins within cells can provide dynamic indications of cell signaling and cell polarity, but methods are needed to track and quantify subcellular protein movement within tissue environments. Here we present a semiautomated approach to quantify subcellular protein location for hundreds of migrating cells within intact living tissue using retrovirally expressed fluorescent fusion proteins and time-lapse two-photon microscopy of intact thymic lobes. We have validated the method using GFP-PKCζ, a marker for cell polarity, and LAT-GFP, a marker for T-cell receptor signaling, and have related the asymmetric distribution of these proteins to the direction and speed of cell migration. These approaches could be readily adapted to other fluorescent fusion proteins, tissues and biological questions.  相似文献   

4.
The cGMP-dependent protein kinases (PKGs) are ubiquitous effector enzymes that regulate a variety of physiological processes in response to nitric oxide and natriuretic agonists. We have constructed green fluorescent fusion proteins (GFP) using full-length (PKG-GFP) and truncations encoding either the regulatory domain of PKG1alpha (G1alphaR-GFP) or the catalytic domains of PKG1alpha (GFP-G1C) to examine the enzymatic properties and intracellular location. When transiently transfected into mammalian cells, these constructs were detected on Western blots at the expected sizes using anti-GFP antibodies. The GFP-G1C and the full-length PKG1alpha-GFP fusion proteins were found to have constitutive activity both in vivo and in vitro. The G1alphaR-GFP protein was found to dimerize with endogenous type 1 PKG and behaved in a dominant negative manner both in vivo and in vitro. When expressed transiently in either HEK-293 or A549 epithelial cells, the fusion proteins encoding the amino-terminal regulatory domains (PKG-GFP, G1alphaR-GFP) were present in the cytosol and were rarely observed in the nucleus. In contrast, the GFP-G1C (lacking regulatory domains) concentrated in the nucleus. Of the fusion proteins containing the regulatory region, the constitutive PKG-GFP protein was present in a more centralized location, whereas the G1alphaR-GFP protein colocalized with F-actin on stress fibers and in dynamic regions of the plasma membrane. Microscopic and immunoprecipitation studies indicated that both the G1alphaR-GFP and the PKG-GFP fusion proteins colocalized with vasodilator-stimulated phosphoprotein (VASP). These constructs thus represent novel tools with which to visualize inactive, and activated, PKG1alpha in vivo, and we have used them to demonstrate two functionally independent domains. In addition, we show for the first time in living cells that PKG is found in dynamic membrane regions in association with VASP.  相似文献   

5.
The distribution of the cAMP-dependent protein kinase activity in bull ejaculated sperm has been investigated. This activity proved to be mainly present in a soluble form inside the cell. Sperm fractionation into heads and flagellar fragments, using differential centrifugation or centrifugal elutriation, has shown that the particulate cAMP-dependent protein kinase activity was mainly associated with the flagellar structures. A much activity was shown to be associated with the head fraction. Some activity could also be detected in the purified plasma membrane fraction.  相似文献   

6.
Protein kinase Calpha (PKCalpha) is a critical component of pathways that govern cancer-related phenotypes such as invasion and proliferation. Proteins that serve as immediate substrates for PKCalpha offer potential targets for anticancer drug design. To identify specific substrates, a mutant of PKCalpha (M417A) was constructed at the ATP binding site such that it could bind a sterically large ATP analogue derivatized through the N6 amino group of adenosine ([gamma-32P]-N6-phenyl-ATP). Because this analogue could be utilized by the mutant kinase but not by wild-type PKCalpha (or presumably other protein kinase) to phosphorylate peptide or protein substrates, 32P-labeled products were the direct result of the mutant PKCalpha. Kinetic analysis with [gamma-32P]-N6-phenyl-ATP revealed that the mutant retained undiminished affinity for the peptide substrate (Km = 12.4 microM) and a Vmax value (10.3 pmol/min) that was only 3-fold lower than that exhibited by the wild-type enzyme with natural ATP. However, with [gamma-32P]ATP, the mutant had a somewhat lower affinity (Km = 82.8 microM) than the wild-type enzyme (Km = 9.3 microM) in vitro but was competent in causing aggressive motility in nonmotile MCF-10A human breast cells (with endogenous ATP), as previously described for wild-type PKCalpha. The FLAG-tagged PKCalpha mutant was expressed in MCF-10A cells and used to co-immunoprecipitate high-affinity substrates from lysates. Immunopellets were reacted with [gamma-32P]-N6-phenyl-ATP, and radiolabeled products were analyzed by SDS-PAGE and autoradiography. Mass spectrometry of selected bands identified several known substrates of PKC, thereby validating the methods used in these studies. These findings provide a foundation for future applications of this traceable PKCalpha mutant.  相似文献   

7.
All-trans-retinoic acid (atRA) is a derivative of vitamin A and possesses antitumor activity. We demonstrate that atRA is able to modulate the activity of protein kinase C alpha (PKCalpha), which is related to tumor development. In vitro, it was found that atRA activated PKCalpha in the presence of Ca(2+) and in the absence of phosphatidylserine, although such activity is considerably inhibited in mutations affecting residues D246 and D248 and also residue N189, all of which are known to be essential for the interaction with Ca(2+) and phosphatidylserine in the C2 domain. It was concluded that atRA substitutes phosphatidylserine although with lower specific activities. However, atRA had a biphasic effect on PKCalpha activity in the presence of activating phospholipids, such as phosphatidylserine and phosphatidylinositol 4,5-bisphosphate, yielding activation at low concentrations but inactivation at higher ones. This second inhibitory characteristic was not shown with K209 and K211 mutations (residues located in the Lys-rich cluster in the C2 domain) in PKCalpha. This interesting effect revealed the importance of phospholipid binding at this site to ensure maximum activity for the wild-type PKCalpha. The C1 domain was not related with the atRA effect on PKCalpha. It was concluded that whereas atRA may activate PKCalpha through the Ca(2+)-phosphatidylserine-binding site of the C2 domain, it may also inhibit the activity of this enzyme when displacing the phospholipid from the Lys-rich cluster also located in the C2 domain.  相似文献   

8.
In agreement with previous data, membrane protein phosphorylation was found to be altered in intact sickle cells (SS) relative to intact normal erythrocytes (AA). Similar changes were observed in their isolated membranes. The involvement of protein kinase C (PKC) in this process was investigated. The membrane PKC content in SS cells, measured by [3H]phorbol ester binding, was about 6-times higher than in AA cells. In addition, the activity of the enzyme, measured by histone phosphorylation was also found to be increased in SS cell membranes but decreased in their cytosol compared to the activity in AA cell membranes and cytosol. The increase in membrane PKC activity was observed mostly in the light fraction of SS cells, fractionated by density gradient, whereas the decrease in cytosolic activity was only observed in the dense fraction. PKC activity, measured in cells from the blood of reticulocyte-rich patients, exhibited an increase in both membranes and cytosol, thus explaining some of the effects observed in the SS cell light fraction, which is enriched in reticulocytes. The increase in PKC activity in the membranes of SS cells is partly explained by their young age but the loss of PKC activity in their cytosol, particularly in that of the dense fraction, seems to be specific to SS erythrocytes. The relative decrease in membrane PKC activity between the dense and the light fractions of SS cells might be related to oxidative inactivation of the enzyme.  相似文献   

9.
In previous studies, we isolated and identified a mu-calpain-PKCalpha complex from rabbit skeletal muscle. At the same time we pointed out that an association between mu-calpain and PKCalpha could occur at the level of the plasma membrane of muscle cells, and that PKCalpha could thus be considered as a potential mu-calpain substrate. In the present study, using the mu-calpain-PKCalpha complex as a model, we report that mu-calpain is activated in the combined presence of physiological calcium concentrations (less than 1 microM) and phosphatidylserine. Furthermore our data also show that: (1) there exists a correlation between the appearance of autolyzed mu-calpain forms and PKCalpha hydrolysis which leads to the formation of PKMalpha; (2) in certain experimental conditions, autolyzed mu-calpain forms are able to hydrolyze PKMalpha independently of the presence of diacylglycerol.  相似文献   

10.
It has been suggested that protein-protein interaction is important for protein kinase C (PKC) alpha to activate phospholipase D1 (PLD1). To determine the one or more sites on PKCalpha that are involved in binding to PLD1, fragments containing the regulatory domain, catalytic domain, and C1-C3 domain of PKCalpha were constructed and shown to be functional, but they all failed to bind and activate PLD1 in vivo and in vitro. A C-terminal 23-amino acid (aa) deletion mutant of PKCalpha was also found to be inactive. To define the binding/activation site(s) in the C terminus of PKCalpha, 1- to 11-aa deletion mutants were made in this terminus. Deletion of up to 9 aa did not alter the ability of PKCalpha to bind and activate PLDl, whereas a 10-aa deletion was inactive. The residue at position 10 was Phe(663). Mutations of this residue (F663D and F663A) caused loss of binding, activation, and phosphorylation of PLD1, indicating that Phe(663) is essential for these activities. Time course experiments showed that the activation of PLD1 by PMA was much faster than its phosphorylation, and its activity decreased as phosphorylation increased with time. Staurosporine, a PKC inhibitor, completely inhibited PLD1 phosphorylation in response to 4beta-phorbol 12-myristate 13-acetate PMA and blocked the later decrease in PLD activity. The same results were found with the D481E mutant of PKCalpha, which is unable to phosphorylate PLD1. These results indicate that neither the regulatory nor catalytic domains of PKCalpha alone can bind to or activate PLD1 and that a residue in the C terminus of PKCalpha (Phe(663)) is required for these effects. The initial activation of PLD1 by PMA is highly correlated with the binding of PKCalpha. Although PKCalpha can phosphorylate PLD1, this is a relatively slow process and is associated with inactivation of the enzyme.  相似文献   

11.
The activity of calcium, phospholipid-dependent protein kinase (PKc), which is thought to play an important role in cell proliferation, has been measured in the particulate and soluble fractions of cultured cells, under different proliferative conditions. Our results indicate that proliferating cells display higher PKc activity than quiescent cells. Furthermore, in both normal and transformed cells, PKc is preferentially associated with the particulate fraction when the cells are proliferating, while in mitotically quiescent cells the majority of the enzyme activity is found in the soluble fraction. These data suggest tha PKc activity and subcellular distribution undergo spontaneous changes according to the proliferative state of the cells.  相似文献   

12.
We have seen that protein kinase Calpha (PKCalpha) is transiently translocated to the plasma membrane by carbachol stimulation of neuroblastoma cells. This is induced by the Ca2+ increase, and PKCalpha does not respond to diacylglycerol (DAG). The unresponsiveness is dependent on structures in the catalytic domain of PKCalpha. This study was designed to investigate if and how the kinase activity and autophosphorylation are involved in regulating the translocation. PKCalpha enhanced green fluorescent protein translocation was studied in living neuroblastoma cells by confocal microscopy. Carbachol stimulation induced a transient translocation of PKCalpha to the plasma membrane and a sustained translocation of kinase-dead PKCalpha. In cells treated with the PKC inhibitor GF109203X, wild-type PKCalpha also showed a sustained translocation. The same effects were seen with PKCbetaI, PKCbetaII, and PKCdelta. Only kinase-dead and not wild-type PKCalpha translocated in response to 1,2-dioctanoylglycerol. To examine whether autophosphorylation regulates relocation to the cytosol, the autophosphorylation sites in PKCalpha were mutated to glutamate, to mimic phosphorylation, or alanine, to mimic the non-phosphorylated protein. After stimulation with carbachol, glutamate mutants behaved like wild-type PKCalpha, whereas alanine mutants behaved like kinase-dead PKCalpha. When the alanine mutants were treated with 1,2-dioctanoylglycerol, all cells showed a sustained translocation of the protein. However, neither carbachol nor GF109203X had any major effects on the level of autophosphorylation, and GF109203X potentiated the translocation of the glutamate mutants. We, therefore, hypothesize that 1) autophosphorylation of PKCalpha limits its sensitivity to DAG and 2) that kinase inhibitors augment the DAG sensitivity of PKCalpha, perhaps by destabilizing the closed conformation.  相似文献   

13.
Previously, we have shown that protein kinase C (PKC) forms a direct high-affinity, isozyme-specific and membrane lipid-independent interaction with Rho GTPases [Slater, S. J., Seiz, J. L., Stagliano, B. A., and Stubbs, C. D. (2001) Biochemistry 40, 4437-4445]. Since the cellular activation of PKCalpha involves an initial translocation from cytosolic to membrane compartments, the present study investigates the interdependence between the direct protein-protein interaction of PKCalpha with the Rho GTPase, Cdc42, and the protein-lipid interactions of PKCalpha with membranes. It was hypothesized that the interaction of PKCalpha with membrane-bound Cdc42 would contribute to the overall membrane-binding affinity of the kinase by providing an additional anchor. However, it was found that the incorporation of isoprenylated Cdc42 into membranes resulted in an apparent decrease in the membrane-binding affinity of PKCalpha, whereas the association of PKCbetaI, PKCdelta, PKCepsilon, and PKCzeta was each unaffected. The presence of membrane-bound Cdc42 resulted in a rightward shift in both the PS- and Ca2+-concentration response curves for PKCalpha membrane association and for the ensuing activation, whereas the maximal levels of binding and activation attained at saturating PS and Ca2+ concentrations were in each case unaffected. Overall, these findings suggest that PKCalpha undergoes a isozyme-specific interaction with membrane-bound Cdc42 to form a PKCalpha-Cdc42 complex, which possesses a membrane-binding affinity that is reduced relative to that of the individual components due to competition between Cdc42 and PS/Ca2+ for binding to PKCalpha. Consistent with this, it was found that the interaction of PKCalpha with membrane-bound Cdc42 was accompanied by the physical dissociation of the PKCalpha-Cdc42 complex from membranes. Thus, the study provides a novel mechanism by which the membrane association and activation of PKCalpha and Cdc42 may be regulated by competing protein-protein and protein-lipid interactions.  相似文献   

14.
Kook S  Exton JH 《Cellular signalling》2005,17(11):1423-1432
Phospholipase D (PLD) is regulated by many factors, including protein kinase C (PKC) and small G-proteins of the Rho and ADP-ribosylation factor families. Previous studies revealed that the activation of PLD1 by phorbol ester is associated with the binding of PKCalpha to a site in the N-terminus of PLD1. The purpose of the present study was to determine this site more precisely. Immunoprecipitation with a series of four PLD1 deletion mutants confirmed that PKCalpha strongly interacted with the amino acid sequence 1-318 at the N-terminus of PLD1 and weakly with the sequence 841-1036 at the C-terminus. Further immunoprecipitation studies with deletion mutants of the 1-318 and 1-215 PLD1 fragments revealed that there were binding sites in the 1-49 N-terminal sequence and also in the 216-318 sequence containing the PH domain. Studies of N-terminal deletion mutants of full-length PLD1 confirmed the presence of a binding site in the 1-49 sequence and a further site in the 1-318 sequence. Both deletion mutants showed impaired activation by PKCalpha in vivo, but unchanged activation by active V(14)RhoA. These findings identify the 1-49 sequence is a major binding/activation site for PKCalpha on PLD1, but also indicate involvement of the PH domain.  相似文献   

15.
16.
The effect of oleate on the subcellular distribution of protein kinase C (PKC) was studied in isolated hepatocytes and in perfused rat liver in the presence of physiological concentrations of serum albumin. A time- and dose-dependent translocation of PKC from the cytosol towards the membranes was observed at oleate concentrations that fell within the range of concentrations reached under several physiological conditions. Analysis of the membrane-bound isoenzymes of PKC by hydroxylapatite chromatography revealed that the beta isoenzyme was preferentially translocated to this compartment in hepatocytes incubated with oleate. Activation of PKC after incubation of hepatocytes with oleate involved at least three different effectors of the enzyme: the fatty acid itself, the diacylglycerol synthesized from oleate, and the rise in the cytosolic calcium concentration elicited by oleate. As a result of PKC activation, protein phosphorylation of intact hepatocytes in response to oleate exhibited an enhancement in the phosphate content of a protein of 82 kDa, similar to that phosphorylated in the presence of phorbol dibutyrate.  相似文献   

17.
Lymphocyte binding to VCAM-1 activates endothelial cell NADPH oxidase, resulting in the generation of 1 muM H(2)O(2). This is required for VCAM-1-dependent lymphocyte migration. In this study, we identified a role for protein kinase Calpha (PKCalpha) in VCAM-1 signal transduction in human and mouse endothelial cells. VCAM-1-dependent spleen cell migration under 2 dynes/cm(2) laminar flow was blocked by pretreatment of endothelial cells with dominant-negative PKCalpha or the PKCalpha inhibitors, R?-32-0432 or G?-6976. Phosphorylation of PKCalpha(Thr638), an autophosphorylation site indicating enzyme activity, was increased by Ab cross-linking of VCAM-1 on endothelial cells or by the exogenous addition of 1 muM H(2)O(2). The anti-VCAM-1-stimulated phosphorylation of PKCalpha(Thr638) was blocked by scavenging of H(2)O(2) and by inhibition of NADPH oxidase. Furthermore, anti-VCAM-1 signaling induced the oxidation of endothelial cell PKCalpha. Oxidized PKCalpha is a transiently active form of PKCalpha that is diacylglycerol independent. This oxidation was blocked by inhibition of NADPH oxidase. In summary, VCAM-1 activation of endothelial cell NADPH oxidase induces transient PKCalpha activation that is necessary for VCAM-1-dependent transendothelial cell migration.  相似文献   

18.
The Snf1/AMP-activated protein kinase family has diverse roles in cellular responses to metabolic stress. In Saccharomyces cerevisiae, Snf1 protein kinase has three isoforms of the beta subunit that confer versatility on the kinase and that exhibit distinct patterns of subcellular localization. The Sip1 beta subunit resides in the cytosol in glucose-grown cells and relocalizes to the vacuolar membrane in response to carbon stress. We show that translation of Sip1 initiates at the second ATG of the open reading frame, yielding a potential site for N myristoylation, and that mutation of the critical glycine abolishes relocalization. We further show that the cyclic AMP-dependent protein kinase (protein kinase A [PKA]) pathway maintains the cytoplasmic localization of Sip1 in glucose-grown cells. The Snf1 catalytic subunit also exhibits aberrant localization to the vacuolar membrane in PKA-deficient cells, indicating that PKA regulates the localization of Snf1-Sip1 protein kinase. These findings establish a novel mechanism of regulation of Snf1 protein kinase by the PKA pathway.  相似文献   

19.
Smooth muscle contraction regulated by myosin light chain phosphorylation is also regulated at the thin-filament level. Tropomyosin, a thin-filament regulatory protein, regulates contraction by modulating actin-myosin interactions. Present investigation shows that acetylcholine induces PKC-mediated and calcium-dependent phosphorylation of tropomyosin in colonic smooth muscle cells. Our data also shows that acetylcholine induces a significant and sustained increase in PKC-mediated association of tropomyosin with PKCalpha in the particulate fraction of colonic smooth muscle cells. Immunoblotting studies revealed that in colonic smooth muscle cells, there is no significant change in the amount of tropomyosin or actin in particulate fraction in response to acetylcholine, indicating that the increased association of tropomyosin with PKCalpha in the particulate fraction may be due to acetylcholine-induced translocation of PKCalpha to the particulate fraction. To investigate whether the association of PKCalpha with tropomyosin was due to a direct interaction, we performed in vitro direct binding assay. Tropomyosin cDNA amplified from colonic smooth muscle mRNA was expressed as GST-tropomyosin fusion protein. In vitro binding experiments using GST-tropomyosin and recombinant PKCalpha indicated direct interaction of tropomyosin with PKCalpha. PKC-mediated phosphorylation of tropomyosin and direct interaction of PKCalpha with tropomyosin suggest that tropomyosin could be a substrate for PKC. Phosphorylation of tropomyosin may aid in holding the slided tropomyosin away from myosin binding sites on actin, resulting in actomyosin interaction and sustained contraction.  相似文献   

20.
《Current biology : CB》2023,33(10):2063-2074.e4
  1. Download : Download high-res image (157KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号