首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic AMP dependent protein kinase (PKA) from Pichia pastoris yeast cells was found to be activated by either cAMP or cGMP. Analogs of cAMP such as 8-chloro-cAMP and 8-bromo-cAMP were as potent as cAMP in PKA activation while N6,2'-O-dibutyryl-cAMP did not stimulate the enzyme activity. It was shown that protamine sulfate was almost equally phosphorylated in the presence of 1-2 x 10(-6)M cAMP or cGMP while other substrates such as Kemptide, ribosomal protein S6, were phosphorylated to a lower extent in the presence of cGMP. It was demonstrated that pyruvate kinase is a substrate of PKA which co-purified with the P.pastoris enzyme. Moreover, pyruvate kinase was phosphorylated by PKA in the presence of cAMP and cGMP to comparable levels.  相似文献   

2.
Studies on the level of cyclic nucleotides (cAMP and cGMP) in human and animal glial tumours showed that the content of both nucleotides, especially that of cAMP, decreases in all the tumours. The cAMP/cGMP ratio also drops down. Concurrently it appears to be the most consistent parameter of nucleotide metabolism both in brain tissue and in human or animal glial tumours. The growing tumour affects cAMP and cGMP metabolism not only in the involved but also in the other hemisphere. No principal differences between human and animal tumours have been revealed in the content of cyclic nucleotides and its variation in tumour tissue.  相似文献   

3.
Kyoi T  Oka M  Noda K  Ukai Y 《Life sciences》2004,75(15):1833-1842
The effect of irsogladine [2,4-diamino-6-(2,5-dichlorophenyl)-s-triazine maleate], an antiulcer drug, on contents of cyclic nucleotides including cAMP and cGMP was investigated in rat stomachs. Irsogladine concentration-dependently increased cAMP content in rat glandula stomach. However, irsogladine at higher concentration (10(-5) M) was unable to further increase cAMP level in the presence of non-selective phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methylxanthine, although 3-isobutyl-1-methylxanthine by itself increased cAMP level. On the other hand, irsogladine had no effect on the glandula cGMP content. Subsequently, the effect of irsogladine on the cyclic nucleotide degradation by purified bovine brain and heart PDEs was investigated. The cAMP degradation by purified bovine brain PDE was partially suppressed by PDE1 inhibitor vinpocetin, PDE2 inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine hydrochloride and PDE4 inhibitor rolipram but not by PDE3 inhibitor cilostamide, and completely inhibited by 3-isobutyl-1-methylxanthine, suggesting that is attributed almost exclusively to PDE1, PDE2 and PDE4. Meanwhile, cGMP degradation by purified bovine brain PDE was partially suppressed by erythro-9-(2-hydroxy-3-nonyl)adenine hydrochloride. Irsogladine preferentially inhibited the response to cAMP degradation compared with cGMP degradation by this brain PDE. The cAMP degradation by bovine heart PDE was almost completely inhibited by the combination with vinpocetine and cilostamide, indicating that is mediated almost exclusively by PDE1 and PDE3. Irsogladine suppressed this cAMP degradation measured in the presence of vinpocetine to almost the same extent as that determined in the presence of cilostamide. These results indicate that irsogladine produces the increase of intracellular cAMP content via non-selective inhibition of PDE isozymes, which may be a key mechanism involved in its gastroprotective actions.  相似文献   

4.
The intracellular level of cGMP was independent of the rate of cell division in cells derived from virally infected brain tissue. The phosphodiesterase inhibitor R07-2956 (4-dimethoxybenzyl-2-imidazolidinone) increased the intracellular level of cGMP in virally infected brain cells, but it did not effect the level of cAMP. There was no correction between the increase in cGMP levels following addition of R07-2956 and changes in mitotic activity in the brain cell cultures. Experimental manipulations which increased the cAMP level were accompanied by a decreased mitotic rate indicating there was a correlation between mitotic activity and the level of cAMP in the same cells. Raising the intracellular level of cAMP by exogenous db-cAMP or cAMP or the use of other phosphodiesterase inhibitors routinely increased the level of cGMP as well. Conversely increasing the intracellular cGMP level by adding the exogenous cGMP increased the level of both cGMP and cAMP.A tissue culture system was used with the cell line derived from viral infected human brain tissue originally obtained from a patient with subacute sclerosing panencephalitis (SSPE). The intracellular levels of cAMP and cGMP were monitored by radioimmunoassay following manipulation of the system by addition of exogenous cGMP (0.05 mM), addition of exogenous db-cAMP (0.5 mM), or cAMP (0.5 mM) and the use of phosphodiesterase inhibitors: theophylline (1.0 mM), papaverine (50 μg/ml), 4-3-butoxy-4-methoxy benzyl-2-imidozalidinone (R020-1724) and R07-2956. Cell division was monitored in treated and non-treated cultures at 24 h intervals by analyzing the cell number and mitotic index.High levels of cGMP were found in cells which were not actively dividing but high levels were just as apt to be present in dividing cells. There was an inverse relationship between cell division and the level of cAMP.  相似文献   

5.
3':5'-Cyclic nucleotide phosphodiesterase was isolated from human brain and characterized. After the first stage of purification on phenyl-Sepharose, the enzyme activity was stimulated by Ca2+ and micromolar concentrations of cGMP. High pressure liquid chromatography on a DEAE-TSK-3SW column permitted to identify three ranges of enzymatic activity designated as PDE I, PDE II and PDE III. Neither of the three enzymes possessed a high selectivity for cAMP and cGMP substrates. The catalytic activity of PDE I and PDE II increased in the presence of Ca2+-calmodulin (up to 6-fold); the degradation of cAMP was decreased by cGMP. The Ca2+-calmodulin stimulated PDE I and PDE II activity was decreased by W-7. PDE I and PDE II can thus be classified as Ca2+-calmodulin-dependent phosphodiesterases. With cAMP as substrate, the PDE III activity increased in the presence of micromolar concentrations of cGMP (up to 10-fold), Ca2+ and endogenous calmodulin (up to 2-3-fold). No additivity in the effects of saturating concentrations of these compounds on PDE III was observed. Ca2+ did not influence the rate of cGMP hydrolysis catalyzed by PDE III. In comparison with PDE I and PDE II, the inhibition of PDE III was observed at higher concentrations of W-7 and was not limited by the basal level of the enzyme. These results do not provide any evidence in favour of the existence of several forms of the enzyme in the PDE III fraction. The double regulation of PDE III creates some difficulties for its classification.  相似文献   

6.
In this study, we report the cloning of the rat cGMP-specific phosphodiesterase type 9 (PDE9A) and its localization in rat and mouse brain by non-radioactive in situ hybridization. Rat PDE9A was 97.6% identical to mouse PDE9A1 and showed 92.1% similarity on the amino acid level to the human homologue. PDE9A mRNA was widely distributed throughout the rat and mouse brain, with the highest expression observed in cerebellar Purkinje cells. Furthermore, strong staining was detected in areas such as cortical layer V, olfactory tubercle, caudate putamen and hippocampal pyramidal and granule cells. Comparison of PDE9A mRNA expression by double staining with the cellular markers NeuN and glial fibrillary acidic protein demonstrated that PDE9A expression was mainly detected in neurons and in a subpopulation of astrocytes. Using cGMP-immunocytochemistry, the localization of cGMP was investigated in the cerebellum in which the highest PDE9 expression was demonstrated. Strong cGMP immunoreactivity was detected in the molecular layer in the presence of the non-selective PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX). After treatment with soluble guanylyl cyclase activators the granular layer also showed cGMP staining, whereas no clear immunostaining was detected in Purkinje cells under all conditions investigated, which might be due to the presence of the IBMX-insensitive PDE9A in these cells. The present findings indicate that PDE9A is highly conserved between species and is widely distributed throughout the rodent brain. PDE9A is probably involved in maintenance of low cGMP levels in cells and might play an important role in a variety of brain functions involving cGMP-mediated signal transduction.  相似文献   

7.
Leboulle G  Müller U 《FEBS letters》2004,576(1-2):216-220
The high cGMP sensitivity of cAMP-dependent protein kinase A (type II) (PKAII) from invertebrates led to the hypothesis that cGMP directly activates PKAII under physiological conditions. We tested this idea using PKAII holoenzyme purified from the honeybee brain in an assay with short stimulation times. In the presence of very low cAMP concentrations, we found a synergistic increase in PKAII activation by physiological cGMP concentrations. Cloning honeybee regulatory subunit RII and phylogenetic comparison of the two cyclic nucleotide-binding sites of RII reveal a high relation of domain A of insect RII with cGMP-binding domains of cGMP-dependent protein kinases.  相似文献   

8.
In continuing studies on cyclic nucleotide involvement in the regulation of gonadotropin release, we have measured the cyclic nucleotide content and rate of LH and FSH release during stimulation by LHRH of dispersed overnight cultured cells from the pituitaries of adult female rats. The minimal effective concentration of LHRH was 0.1 nM and half maximal stimulation of gonadotropin release was observed in the presence of 1.0 nM LHRH. Significant release of both LH and FSH was detectable after only 10 min in the presence of 5 nM LHRH. The presence of fetal calf serum (FCS) in the overnight culture medium increased basal cGMP levels significantly, whereas horse serum (HS) had no effect, therefore all experiments were conducted on cells cultured in the presence of HS. Treatment of the cultured cells with the phosphodiesterase inhibitors theophylline (TH) or isobutyl-methyl-xanthine (MIX) revealed a preferential stimulatory effect of TH on basal cAMP levels and of MIX on cGMP levels. Throughout these experiments, LHRH had no effect on cAMP levels. In the presence of MIX, concentrations of the releasing hormone as low as 1 nM induced a significant rise in the level of cGMP whereas in its absence, cGMP levels appeared to be unchanged by LHRH. The increase was detectable after 10 min of incubation. MIX alone slightly increased LH and FSH release and significantly potentiated the response of the cells to increasing doses of LHRH up to, but not beyond, 10 nM. The data support the possibility that cGMP may be involved in the mechanism of action of LHRH.  相似文献   

9.
Rats with increased alcohol motivation have been found to have a rise in enkephalin levels in limbic cortex and a decrease in met-enkephalin levels in the brain basal ganglia. Reduction of met-enkephalin to leu-enkephalin ratio in basal ganglia, limbic cortex and hypothalamus may serve as an index of increased inclination to ethanol in these animals. Alcohol dependence is characterized by reduced cAMP content in the majority of brain structures studied, sharply decreased met-enkephalin levels in limbic cortex and hypothalamus, and diminished cAMP and cGMP content in hypothalamus. In the third stage of experimental alcoholism the partial normalization of met-enkephalin and cAMP levels is observed in brain structures, with cGMP content increased in hypothalamus and considerably reduced in basal ganglia.  相似文献   

10.
The effects of dibutyryl cAMP, 1-methyl-3-isobutyl xanthine (MIX), cGMP, dibutyryl cGMP, and 8-bromo cGMP on the rate of lipid synthesis in mouse mammary gland explants were studied. Dibutyryl cAMP at 10(-4) M selectively inhibited the effect of prolactin on the rate of [14C]acetate incorporation into lipids. At 10(-3) M, dB-cAMP inhibited the effects of insulin, insulin plus cortisol, and prolactin. The phosphodiesterase inhibitor, MIX, inhibited both basal and prolactin-stimulated incorporation rates in a concentration-dependent fashion. These data suggest an inhibitory role for cAMP in the regulation of lipogenesis in the mammary gland. Cyclic GMP, db-cGMP, and 8-bromo cGMP were all without effect on either basal or prolactin-stimulated incorporation rates. Therefore, it appears that cGMP, by itself, is not involved in the regulation of lipogenesis in the mammary gland.  相似文献   

11.
Analysis of Saccharomyces cerevisiae genome revealed no sequence homologous to cyclic GMP (cGMP) dependent protein kinase from other organisms. Here we demonstrate that cyclic AMP (cAMP) dependent protein kinase purified from S. cerevisiae was almost equally activated by cAMP and cGMP in 3 x 10(-6) M concentrations of either nucleotide in the presence of Mg2+ ions. Interestingly, if Mn2+ ions were used instead of Mg2+, cGMP was only 30% as effective as cAMP in the activation of cAMP-dependent protein kinase. Analogs of cAMP such as 8-chloro-cAMP and 3':5'-cyclic monophosphate of ribofuranosylbenzimidazole were as potent as cAMP in the enzyme activation, while N6,2'-O-dibutyryl-cAMP activated the enzyme to a lower extent. It was also found that yeast cAMP-dependent protein kinase can be activated by limited proteolytic digestion. The results presented were obtained with protamine and ribosomal protein S10 used as phosphorylation substrates.  相似文献   

12.
The effect of C-type natriuretic peptide (CNP), a novel member of the natriuretic peptide family, on cyclic GMP (cGMP) generation was studied in primary cultures of mouse astrocytes. CNP stimulated cGMP production by mouse astrocytes in a dose-dependent fashion, with an EC50 of 32 nM and a maximal stimulatory concentration of greater than 1 microM, which induced a rise of cGMP level from a baseline of 1.0 +/- 0.1 pmol/mg of protein to 196.2 +/- 22.0 pmol/mg of protein. Compared with our previously reported atrial and brain natriuretic peptide-induced cGMP responses, CNP had a lower EC50 and was 10-20 times more efficacious in its maximal effect on cGMP stimulation. These data lend support to the concept of a significant role of CNP in neuromodulation/neurotransmission.  相似文献   

13.
The insulin-sensitive cAMP phosphodiesterase (phosphodiesterase) in rat adipocytes is a membrane-bound low Km enzyme that can be recovered in a crude microsomal fraction (Fraction P-2). The action of this enzyme to hydrolyze cAMP is known to be inhibited by cGMP; nevertheless, it was found in our present study that under selected conditions, the enzyme can also be stimulated by cGMP as well as some other nucleotide derivatives. The maximum cGMP-dependent stimulation was observed when the enzyme in Fraction P-2 was incubated with 10 microM cGMP for 5-20 min at 37 degrees C in the presence of Mg2+, washed, and then assayed in the absence of added cGMP. The level of this stimulation was close to, but less than, that achieved by insulin in intact cells. The actions of the cGMP- and insulin-stimulated enzymes to hydrolyze labeled cAMP were inhibited in an identical manner by cilostamide (Ki = 0.10 microM), griseolic acid (Ki = 0.19 microM), unlabeled cAMP (Km = 0.20 microM), and cGMP (Ki = 0.16 microM), all added to the assay system. Also, the basal, insulin-stimulated, and cGMP-activated enzymes were identically inhibited by a polyclonal antibody raised against a purified membrane-bound low Km phosphodiesterase from bovine adipose tissue. When the same antibody was used for the Western blot analysis of Fraction P-2, it immunoreacted with a single band of protein (165 kDa). These observations indicate that the insulin-sensitive phosphodiesterase in rat adipocytes can be stimulated with 10 microM cGMP and that this stimulation is detectable only after the nucleotide has been eliminated since the enzyme would be strongly inhibited by the nucleotide if the latter exists in the assay system. It is proposed that the insulin-sensitive phosphodiesterase, which is often referred to as a Type IV enzyme, is functionally similar to the Type II enzymes that are known to be stimulated by a low concentration of cGMP and inhibited by higher concentrations of the same nucleotide.  相似文献   

14.
The present studies were performed in order to examine the possible role of cyclic GMP-stimulated phosphodiesterase (cGMP-PDE) activity in the inhibitory action of the inflammatory peptide bradykinin on cyclic AMP (cAMP) accumulation in D384 cells. Bradykinin decreased the forskolin-stimulated cAMP accumulation in the presence of the phosphodiesterase inhibitor rolipram, and caused a transient 50% rise in cellular cGMP in the presence of the nonselective PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX). Both basal and bradykinin-stimulated cGMP accumulation were about 8 times higher in the presence of IBMX than in the presence of rolipram. Sodium nitroprusside, which caused a 20-70-fold increase in cGMP levels reduced forskolin stimulated cAMP accumulation, whereas hydroxylamine, which maximally caused a 16-fold increase in cGMP, did not. 8-bromo-cGMP or dibutyryl cGMP had no effect on cAMP accumulation induced by forskolin. The inhibitory effect of nitroprusside was totally reversed by blocking the soluble guanylate cyclase activity by methylene blue treatment; however, the inhibitory action of bradykinin on cAMP accumulation was not changed by this treatment. Additionally, inhibition of nitric oxide synthesis, which is known to be regulated by Ca2+ and in turn stimulates cGMP production, by N omega-nitro-L-arginine (L-NAME) treatment did not alter the inhibitory effect of bradykinin on forskolin-induced cAMP accumulation. These results indicate that large increases in cGMP may regulate cAMP via cGMP-PDE whereas the small increase induced by bradykinin is insufficient and that cGMP is not involved in the inhibitory action of bradykinin on cAMP levels in D384 cells.  相似文献   

15.
本文利用人工刺激蜕膜形成的动物模型,测定蜕膜反应早期子宫 cAMP 和 cGMP 的含量变化。实验结果表明刺激后 cAMP 含量随即上升,30分钟达到高峰,为对照侧(未刺激)同期增加3倍,1小时恢复至基础值。这种变化趋势可能对子宫细胞的分化与蜕膜细胞的增殖具有一定生理意义。刺激侧与对照侧 cGMP 含量的变化出现几乎重叠的图形,说明 cGMP 的变化与蜕膜反应无直接关系。  相似文献   

16.
When retinas from dark-adapted C57BL/6 mice were incubated in the dark for 5 min at 37 degrees C in Earle's medium, they contained 80-120 pmol/mg protein of cGMP and about 13 pmol/mg protein of cAMP. When the incubation in darkness was in calcium-deficient Earle's medium with 3 mM EGTA, a 10-20 fold increase occurred in the cGMP level, peaking at 2-3 min, but no change occurred in cAMP. This elevated level fell in 3 min to normal dark levels on return to normal Earle's medium, but was still about three times that of control levels after 15 min in EGTA-containing solution. Bright light after 2 min of dark incubation of dark-adapted retinas resulted in a 40-50% fall in cGMP, and bright light sharply reduced the elevated dark cGMP level of retinas in calcium-deficient media with 3 mM EDTA. However, no depression of normal dark levels of cGMP has thus far been obtained by increasing external calcium levels, even in the presence of the ionophore A23187. All the above phenomena involving dark cGMP levels and calcium are similar in Earle's medium with 100 mM of K+ substituted for Na+. Congenic rodless (rd/rd) mouse retinas have less than 5% of control cGMP and show only traces of calcium sensitivity. Thus, the above phenomena in controls are likely to be largely occurring in rods. The data suggest a dependency of the dark cGMP level on the calcium level, but that the light-induced fall in cGMP may largely be calcium insensitive.  相似文献   

17.
In the present study the activities of three different protein kinase were determined in squamous cell carcinoma from the upper aero-digestive tract, and compared with the activities in normal oral mucosa. The protein kinases investigated are: a) cAMP-dependent protein kinase; b) cGMP-dependent protein kinase, and c) casein kinase II. The basal protein kinase activity, when histone IIa was used as substrate, was about 3-fold higher in tumors, as compared to normal mucosa, in the soluble fraction (32.0 +/- 4.2 and 10.9 +/- 2.4 pmol 32P/mg prot. X min, respectively). In the particulate fraction the basal protein kinase activity was about 9 times higher in tumors as compared to normal mucosa (19.4 +/- 5.2 and 2.1 +/- 0.3 pmol 32P/mg prot X min, respectively). The protein kinase activity in the presence of cyclic nucleotide (cAMP/cGMP) minus the basal protein kinase activity was taken as the cAMP- and the cGMP-dependent protein kinase activity, respectively. Maximal protein kinase activity was obtained in the presence of 0.5 microM of cyclic nucleotide both in squamous cell carcinoma and normal mucosa. In the cytosolic fraction the cAMP-dependent protein kinase activity was 33.9 +/- 13.0 pmol 32P/mg prot. X min in tumors, and 28.2 +/- 5.8 pmol 32P/mg prot. X min in normal tissue, after stimulation with 0.5 microM cAMP. The cGMP-dependent protein kinase activity was 5-10% of the cAMP-dependent protein kinase activity, and no concentration-dependent stimulation with cGMP was seen. The cGMP-dependent protein kinase activity in the presence of 0.5 microM cGMP was 2.4 +/- 1.3 and 1.8 +/- 0.6 pmol 32P/mg prot. X min in tumors and normal mucosa, respectively. Casein kinase II activity was determined only in the cytosolic fraction and was found to be 3-fold higher in tumors as compared to normal mucosa (31.8 +/- 5.2 and 8.6 +/- 3.5 pmol 32P/mg prot X min, respectively). This study shows a general increase in histone phosphorylation and casein kinase activity in neoplastic squamous epithelia compared to normal epithelia. No evidence for an increase in cyclic nucleotide dependent protein kinase activities in neoplastic squamous epithelia was found. This study thus supports the idea that phosphorylation/dephosphorylation reactions may play an important role in the control of cell growth, differentiation and proliferation.  相似文献   

18.
Cyclic nucleotide levels in the oocytes of the surf clam Spisula solidissima were measured during germinal vesicle breakdown (GVBD) induced by fertilization. The level of cAMP and cGMP in untreated oocytes was 8.23 ± 0.95 and 4.89 ± 0.39 pmol/106 oocytes. The ratio of cAMP to cGMP ranged from 1.5 to 2.0. The cAMP level in Spisula oocytes fluctuated after fertilization and before GVBD. The cGMP level showed minimal fluctuation, with a tendency to decrease initially followed by a subsequent rise to the basal level in a nonsynchronous manner. These changes were not statistically significant. There was a general increase in protein phosphorylation during the period after fertilization and before GVBD. The greatest increase occurred with proteins of estimated molecular weights of 52, 18, and 12 kD, analyzed by gel electrophoresis and autoradiography.  相似文献   

19.
Chemoattractants added to cells of the cellular slime mold dictyostelium discoideum induce a transient elevation of cyclic GMP levels, with a maximum at 10 s and a recovery of basal levels at approximately 25 s after stimulation. We analyzed the kinetics of an intracellular cGMP binding protein in vitro and in vivo. The cyclic GMP binding protein in vitro at 0 degrees C can be described by its kinetic constants K(1)=2.5 x 10(6) M(- 1)s(-1), k(-1)=3.5 x 10(-3)s(-1), K(d)=1.4 x 10(-9) M, and 3,000 binding sites/cell. In computer simulation experiments the occupancy of the cGMP binding protein was calculated under nonequilibrium conditions by making use of the kinetic constants of the binding protein and of the shape of the cGMP accumulations. These experiments show that under nonequilibrium conditions by making use of the kinetic constants of the binding protein and the shape of the cGMP accumulations. These experiments show that under nonequilibrium conditions the affinity of the binding protein for cGMP is determined by the rate constant of association (k(1)) and not by the dissociation constant (k(d)). Experiments in vivo were performed by stimulation of aggregative cells with the chemoattractant cAMP, which results in a transient cGMP accumulation. At different times after stimulation with various cAMP concentrations, the cells were homogenized and immediately thereafter the number of binding proteins which were not occupied with native cGMP were determined. The results of these experiments in vivo are in good agreement with the results of the computer experiments. This may indicate that: (a) The cGMP binding protein in vivo at 22 degrees C can be described by its kinetic constants: K(1)=4x10(6)M(-1)s(-1) and K(-1)=6x10(-3)s(-1). (b) Binding the cGMP to its binding protein is transient with a maximum at about 20-30 s after chemotactic stimulation, followed by a decay to basal levels, with a half-life of approximately 2 min. (c) The cGMP to its binding proteins get half maximally occupied at a cGMP accumulation of δ[cGMP](10)=2x10(-8) M, which corresponds to an extracellular stimulation of aggregative cells by 10(-10) M cAMP. (d) Since the mean basal cGMP concentration is approximately 2x10(-7) M, the small increase of cGMP cannot be detected accurately. Therefore the absence of a measurable cGMP accumulation does not argue against a cGMP function. (e) There may exist two compartments of cGMP: one contains almost all the cGMP of unstimulated cells, and the other contains cGMP binding proteins and the cGMP which accumulates after chemotactic stimulation. (f) From the kinetics of binding, the cellular responses to the chemoattractant can be divided into two classes: responses which can be mediated by this binding protein (such as light scattering, proton extrusion, PDE induction, and chemotaxis) and responses which cannot be (solely) mediated by this binding protein such as rlay, refractoriness, phospholipids methylation, and protein methylation.  相似文献   

20.
10(-6) M cAMP were shown to induce a 61% and 21% increase in 45Ca binding to sarcolemma proteins in intact and injured (circulatory hypoxia) hearts, respectively. The addition of exogenous protein kinase equalized 45Ca-binding levels in normal and impaired sarcolemma. The decrease in 45Ca-binding capacity by 16 and 36% was detected in the presence of 10(-7) and 10(-6) M of cGMP, respectively. In impaired hearts, cAMP and Ca-ATPase activity levels remain constant, while cGMP content increases, as compared to normal myocardial level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号