首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synopsis Collections from a natural population of mosquitofish,Gambusia affinis, in southern Indiana showed that males born early in the breeding season mature rapidly at a small body size, while males born later in the breeding season delay maturation and achieve larger body sizes. A field experiment, involving removal of males from pond populations, was conducted to test the hypothesis that delayed maturation by late summer males is, at least in part, under social control. Mean total length (TL) of adult and maturing males in late summer in ponds from which large numbers of males had previously been removed was significantly lower than mean TL of males in control ponds. These data support the hypothesis of social control and support Sohn's competition-predation hypothesis for control of adult male body size inGambusia.  相似文献   

2.
L. Higgins 《Oecologia》2000,122(1):51-59
An end-of-season penalty, with late-maturing individuals being smaller than early-maturing individuals, has been observed in a variety of univoltine terrestrial arthropods. The current study extends these observations, utilizing multiple populations of a single sexually dimorphic species to examine the ecological correlates and fitness consequences of late maturation at a small size. The orb-weaving spider, Nephila clavipes, inhabits a broad range of habitats that vary from mild to strong seasonality. Because males mature several instars earlier than females, they can reach maturity much earlier in the growing season. Within a cohort, I found that female size at maturity was negatively correlated with timing of maturation in strongly seasonal sites. At a less seasonal site, there was no correlation between female size and timing of maturation within a cohort. In most populations studied, male size was not correlated with the timing of maturation within a cohort. Within populations in strongly seasonal sites, late-maturing females had reduced fecundity. The probability of copulation, survivorship from maturity to first clutch, clutch size relative to female size, and the number of possible clutches were all reduced with delayed maturation. The probability of pre-reproductive death for late-maturing females was strongly affected by stochasticity in the timing of the end of the growing season. Received: 30 December 1998 / Accepted: 1 September 1999  相似文献   

3.
Seasonal variation of egg size and number in a Daphnia pulex population   总被引:4,自引:4,他引:0  
Seasonal variation of egg size and number was examined in a Daphnia pulex population inhabiting a vernal pond. In this population, size at maturity declines at midseason, probably as an adaptive response to size-selective predation by larvae of the salamander Ambystoma. The larger early season individuals produce more and larger eggs than the smaller late season individuals. Age at maturity does not vary between seasons. Laboratory experiments indicate that temperature may affect egg size, egg number and size at maturity. However, field data suggest that temperature accounts for only a small fraction of the total variation in egg size and number. Indirect measures of nutrition indicate that food limitation does not cause the seasonal decline in egg size and number. The seasonal change in reproductive traits is well correlated with changes in invertebrate and vertebrate predation. Examination of predator feeding preferences and their impact on Daphnia mortality indicate that variation of reproductive traits is most likely a complex adaptation to changing predation regimes.  相似文献   

4.
No seasonal cycle was found in either the prevalence or the intensity of natural Pomphorhynchus laevis infections in Leuciscus cephalus . There was a slight seasonal change in female maturity distribution but only irregular fluctuations in the size structure of the adult parasite population throughout the year. Cystacanths were available in all seasons. Rates of parasite growth, maturation and mortality, but not establishment, increased with water temperature (or factors indirectly associated with elevated water temperature) in laboratory-infected Salmo gairdneri . Increased rates of parasite growth and maturation mask any marked shifts in the size and maturity structure of the adult parasite population which might otherwise be due to the higher turnover of adult parasites in the summer months.  相似文献   

5.
Rabbit numbers are rising in most parts of Britain. Previous research in southern England has indicated that the rate of increase in spring due to breeding may vary according to soil type. This has serious implications for the likely rate of invasion into new habitats and for planning control operations. To investigate the hypothesis, post-mortem examinations of over 2500 rabbits from 14 sites on sand, chalk or clay were made. The length of the breeding season and percentage of females breeding differed significantly between soil types but litter size and intra-uterine mortality did not. The product of breeding season length and litter size results in an estimate of annual productivity per adult female. This was 22, 20, and 14 young born per female on clay, chalk, and sandy sites, respectively. Rabbits may invade new habitats, such as set-aside, at different rates according to soil type and therefore require different levels of control regime for population management.  相似文献   

6.
1. Trade-offs between reproduction and growth are central assumptions of life-history theory, but their implications for sexual size dimorphism (SSD) are poorly understood. 2. Adult male Yarrow's spiny lizards Sceloporus jarrovii average 10% larger than adult females. In a low-altitude (1700 m) population, this SSD develops because males grow more quickly than females during the first year of life, particularly during the first female reproductive season. This study tests the hypothesis that SSD develops because female growth is constrained by energetic costs of reproduction. 3. To test for a growth cost of reproduction, I compared growth rates of free-living females that differed, either naturally or experimentally, in reproductive status. Females that naturally delayed reproduction until their second year grew more quickly than females that reproduced as yearlings, and ovariectomized yearlings grew more quickly and to larger sizes than reproductive controls. 4. To determine whether SSD develops in the absence of this inferred reproductive cost, I also studied a high-altitude (2500 m) population in which all females delay reproduction until their second year. Sex differences in growth trajectories were similar to those observed at low altitude, such that males averaged 10% larger than females even prior to female reproduction. 5. Although female growth may be constrained by reproduction, multiple lines of evidence indicate that this cost is insufficient to explain the full magnitude of SSD in S. jarrovii. First, differences in growth of reproductive and nonreproductive females are not observed until the final month of gestation, by which time SSD is already well developed. Second, the growth benefit accruing from experimental inhibition of reproduction accounts for only 32% of the natural sex difference in body size. Finally, SSD develops well in advance of female reproduction in a high-altitude population with delayed maturation.  相似文献   

7.
The evolution of seasonal delayed implantation   总被引:2,自引:0,他引:2  
Seasonal delayed implantation has been described in 47 mammalian species in ten families, and has evolved independently at least 17 times. After reviewing earlier explanations for the phenomenon I present a hypothesis to explain the evolution of seasonal delay. I have assumed that females can increase their fitness by choosing their mates. Consequently, mating should take place during that time of year when the possibilities for female choice or male competition are greatest. Time of birth is determined by ecological factors promoting survival of the young, thereby setting certain constraints on the scheduling of the mating season. In certain situations, however, the possibilities for female choice or male competition can be increased by mating earlier; delay will increase female fitness, and will thereby evolve. The hypothesis has been applied to all cases of seasonal delayed implantation.  相似文献   

8.
Numerous studies have assessed the adaptive value of protandry for males in several insect species, considering that male emergence is determined by female availability. However, the possible advantage of the time of emergence for females on their mating success in protandrous insect species has only been explored theoretically. By studying the grasshopper Sphenarium purpurascens we evaluated the hypothesis that late emergence could be adaptive for females. If female maturation occurs when the population density is higher and the sex ratio (males/females) is biased to males, their probability of mating increases. Thus, in this study we estimated (1) the opportunity for mating in females as a function of their sexual maturation time, population density, and sex ratio at the moment they reached sexual maturity. In addition, (2) an analysis incorporating female body size and the total number of female matings was performed. Both analyses support the occurrence of protandry in the studied population. Under the first approach, females with intermediate maturation time had a higher probability of being mated than earlier and late matured females. Thus, it suggests that stabilising selection is acting on female maturation time and this may affect selection on male maturation time. Furthermore, the proportion of mated females increased when the sex ratio was biased to males, and stabilising selection on maturation time was detected also. However, the number of matings of a female depended on her body size. Females with larger body size had more matings than smaller ones at the beginning of the reproductive season. Because selection acts differently on maturation time in males and females of S. purpurascens this result is consistent with a condition for the maintenance of protandry in the population. The present results are discussed in the light of the models for the evolution of protandry.  相似文献   

9.
The reproductive ecology of the swamp antechinus Antechinus minimus , a small dasyurid (Dasyuridae) marsupial with obligate male semelparity, was investigated in populations inhabiting the mainland coast and on a nearby offshore island in south-eastern Australia. The size and sex ratios of litters, individual body mass and size, timing of births and female longevity were determined from live-trapped animals. The island population had significantly smaller litter sizes and greater adult body mass in comparison with the mainland population. This is consistent with features of the 'island syndrome', which predicts directional selection for these traits in high-density populations with reduced extrinsic mortality. However, inter-annual variability in litter sizes in the island population suggests that litter size is more responsive to fluctuating local conditions, such as population density, which is likely to affect food availability, rather than directional genetic changes. In contrast with other antechinus species, biased sex ratios were not evident. In addition, large variations of the timing of births were estimated at both sites and these appear to be related to seasonal conditions such as autumn rainfall and female body mass before mating.  相似文献   

10.
Understanding the evolutionary pressures that may have led to the development and retention of delayed implantation in mammals remains an enigmatic puzzle for evolutionary ecologists. Recent studies suggest a strong role of environmental conditions but other attributes of species, notably body size and life history traits, may obscure primary mechanisms. Following the recommendation of Lindenfors et al., we examined environmental correlates related to the evolution of delayed implantation and its subsequent maintenance or loss in the family Mustelidae (Mammalia: Carnivora). We focused on the Mustelidae because evolution and subsequent loss of delayed implantation occurred most commonly within this group. Data on 34 species of mustelids from around the world suggest that delayed implantation may have evolved when optimal times for mating and birthing are separated by more than a gestation period, characteristic of environments with long winters that reduce the opportunities to find mates. Environmental characteristics (seasonality, temperature, snow, latitude, and primary productivity) were highly intercorrelated but seasonality was the best predictor of the evolution or loss of delayed implantation via population traits. Here, structural equations on phylogenetic independent contrasts revealed that high seasonality was correlated with low population density and large individual home range size, which in turn was correlated with presence/absence of delayed implantation. We argue that the evolution of delayed implantation provides the reproductive means to mate during the season (summer) with the greatest prospects for females to ‘choose’ mates when living in high‐latitude seasonal environments that generally reduce these opportunities (i.e. low population density and large ranges). Body mass of female mustelids did not differ between species with and without delayed implantation, refuting the hypothesis that loss of delayed implantation is an evolutionary by‐product of evolving to smaller size. We conclude that understanding the environmental selection pressures responsible for the evolution of life history traits related to density and spacing behaviour allows for a more complete picture of the evolution and subsequent loss of delayed implantation.  相似文献   

11.
L. Luiselli    M. Capula    R. Shine 《Journal of Zoology》1997,241(2):371-380
A five-year mark-recapture study at Sella Nevea, a montane (1100 m a.s.1.) site in the Carnic Alps, provided information on diets, growth rates, and reproductive output in an Italian population of the wide-ranging grass snake, Natrix natrix. Our snakes resembled a previously-studied population in lowland Sweden in terms of body size at sexual maturation in females (70 cm) and mean adult female body length (82 cm). However, growth rates were lower in our population, and sexual maturation was delayed (6–8 years, versus 4–5 years in Sweden), perhaps because of the cool climate and relatively brief growing period each year. Females produced a single clutch of 4–24 eggs in late July each year. Larger females produced larger clutches, but clutch size relative to maternal size was lower than in Swedish grass snakes. Hatchling sizes and Relative Clutch Masses (RCMs) did not shift with increasing female size. RCMs may provide a useful index of 'costs of reproduction' in this population, because females with high RCMs were very emaciated after oviposition, and hence may experience a greater risk of mortality, as well as a high energy expenditure. Prolonged incubation gave rise to longer, thinner hatchlings, but the low environmental temperatures at the study site may favour early hatching (and hence, result in a shorter fatter hatchling emerging from the egg, with more of its energy stores unused). Compared to sympatric viviparous snakes ( Coronella austriaca and Vipera berus ), the oviparous grass snakes can achieve a much higher reproductive output owing to a larger clutch size and more frequent reproduction (annual, rather than biennial or triennial). The abundant prey resource used by grass snakes (amphibians) may also enable them to recoup energy more rapidly after reproduction; dietary composition shifts ontogenetically in both sexes, with the largest prey (mice and adult toads) taken primarily by large female snakes.  相似文献   

12.
Organisms living in seasonal environments are often limited by the time available to complete their development. Especially individuals in northern populations may face severe time constraints in their need of completing development before the end of the growth season. Larval amphibians have been widely used in studies of phenotypic plasticity. However, their responses to changes in photoperiod, the main seasonal cue in many organisms, are unknown. In a laboratory experiment, we studied whether common frog (Rana temporaria) tadpoles originating from two populations (separated latitudinally by 1600 km) adjust their growth and development according to the progress of the season by using photoperiodic cues, and whether these responses are temperature dependent. We hypothesised that if frogs use photoperiod as a cue, they should increase growth and development rates as a response to photoperiodic treatments mimicking progressing season. Although our predictions were not verified in either of the populations, photoperiod manipulations had effects on larval life history in both populations. When exposed to progressing season treatments and high temperature, tadpoles from the southern population ceased feeding, which led to delayed metamorphosis and increased mortality. In the northern population, age at metamorphosis was unaffected by the photoperiod treatments, but growth rate until metamorphosis and metamorphic size were slightly larger in the treatments with shorter (increasing or decreasing) day length. Irrespective of photoperiod treatments, growth and development rates, size at metamorphosis and food consumption were higher in the northern as compared to the southern population. These results indicate that in contrast to several insect species, the critical life history decisions in amphibian larvae may not be strongly influenced by photoperiodic cues, but different populations seem to differ in this respect. However, the strong temperature×photoperiod interactions in several traits in the southern population suggest that the role of photoperiodic cues may be affected by other environmental factors, although the ecological significance of these differences remains unclear.  相似文献   

13.
The magnitude of sexual size dimorphism can be affected by sex differences in environmental sensitivity early in ontogeny that result in differential growth rates of male and female nestlings. Here, the larger sex might either be more sensitive because of higher food demands or less sensitive due to greater competitive ability. When environmental conditions deteriorate during the breeding season, this “environmental stress” hypothesis predicts differential seasonal declines in the performance of male and female offspring. Based on a sample of molecularly sexed Coal Tit (Periparus ater) nestlings from 2 years, we investigated sexual size dimorphism in body mass, condition (i.e. size-corrected mass), tarsus and wing length and whether its magnitude changed from early to late broods. Male offspring were heavier, larger (in terms of tarsus and wing length) and had higher size-corrected mass than their female nest mates (the same was evident in adult breeders). In 2002 (the year with the longer effective breeding season), body mass and condition declined with progressing hatching date and this effect was significantly more pronounced in male than in female nestlings. There was also a seasonal decline in male wing length, while female wing length remained relatively constant, which resulted in males having shorter wings than females in late broods. Tarsus length was unaffected by time of breeding, except that the difference between males and females was relatively smaller in late (i.e. second) broods in 2002. While these results are in accordance with the idea of an increased environmental sensitivity of the larger males, confounding effects of sex-differential hatching order cannot be ruled out. Dedicated to Doris Winkel.  相似文献   

14.
Seasonal fecundity is a composite metric that is determined by component parameters such as clutch size, nest survival and re‐nesting probability. Many of these component parameters are known to vary with environmental conditions, in particular rainfall prior to or during the breeding season. In some species, seasonal fecundity is positively related to rainfall, but little is known about which component parameters of seasonal fecundity respond most strongly to rainfall. We used intensive nest monitoring of a multi‐brooded tropical forest passerine, the Montserrat Oriole Icterus oberi, to examine the effects of rainfall during the pre‐breeding season on component parameters of annual fecundity. We monitored all nests of a total of 42 pairs over 5 years in which rainfall varied substantially. We then related clutch size, nest survival, onset and length of the breeding season, re‐nesting probability and re‐nesting interval to pre‐breeding season rainfall using generalized linear mixed models that accounted for random variation across sites and individual pairs, and incorporated other variables known to affect the response. Higher pre‐breeding season rainfall led to an increase in clutch size and a decrease in re‐nesting interval, but nest survival, re‐nesting probability and length of the breeding season were not affected by variation in rainfall. The onset of the breeding season was delayed in very dry years. We conclude that higher rainfall is likely to increase food availability and thus body condition of female Montserrat Orioles, leading to an increase in fecundity due to larger clutch sizes.  相似文献   

15.
On a population level, individual plasticity in reproductive phenology can provoke either anticipations or delays in the average reproductive timing in response to environmental changes. However, a rigid reliance on photoperiodism can constraint such plastic responses in populations inhabiting temperate latitudes. The regulation of breeding season length may represent a further tool for populations facing changing environments. Nonetheless, this skill was reported only for equatorial, nonphotoperiodic populations. Our goal was to evaluate whether species living in temperate regions and relying on photoperiodism to trigger their reproduction may also be able to regulate breeding season length. During 10 years, we collected 2,500 female reproductive traits of a mammal model species (wild boar Sus scrofa) and applied a novel analytical approach to reproductive patterns in order to observe population-level variations of reproductive timing and synchrony under different weather and resources availability conditions. Under favorable conditions, breeding seasons were anticipated and population synchrony increased (i.e., shorter breeding seasons). Conversely, poor conditions induced delayed and less synchronous (i.e., longer) breeding seasons. The potential to regulate breeding season length depending on environmental conditions may entail a high resilience of the population reproductive patterns against environmental changes, as highlighted by the fact that almost all mature females were reproductive every year.  相似文献   

16.
Within‐population studies are needed to investigate the extent of, and the factors underlying, intraspecific variation in home range size. We used data from 12 female and 8 male adult lions instrumented with GPS radio‐collars to describe the ranging behaviour of lions in a population from a dystrophic semi‐arid savanna, Hwange National Park, Zimbabwe. We measured prey availability at the home range scale in 2003, 2004, and 2005. For females, home range size increased as pride biomass increased, which is strongly suggestive of expansionism. Once controlled for pride biomass, home range size decreased as prey biomass increased. Pride ranges responded to changes in food abundance on an annual timescale rather than on a seasonal timescale. Female home range size was influenced by the abundance of kudu in the early dry season, whereas it was influenced by buffalo and young elephant abundance in the late dry season. This study shows that female home range size is mainly driven by the size of the pride, but also by prey abundance. Furthermore, female seasonal home range size may be determined, not only by prey abundance, but also by prey dispersion in the landscape. Home range size of males was driven by both prey biomass and the density of female prides.  相似文献   

17.
Aspects of the reproductive and maturation biology of the brown shrimp Crangon crangon (L.) were studied in various subareas of the German Bight (North Sea). The size-specific sex ratio of C. crangon was examined based on length frequency distribution data. The sex ratio for the smallest size groups at which sex was determined was typically around 0.5, indicating an even ratio between males and females. The proportion of females decreased in the 30–45 mm size range. In length classes larger than 50 mm, the proportion of females constantly increases to 100% at around 60 mm total length. We concluded that sex reversal from male to female may not occur in C. crangon. Size at sexual maturity was determined from the proportion of ovigerous females. Size at maturity (L 50) was estimated as 55.4 and 62.0 mm total length for spring and winter data, respectively. The seasonal spawning cycle was studied over the period 1958–2005. Between mid February and late June and for size classes larger than 65 mm ovigerous shrimps exceeded 80% and reached up to 100% of the females in the population. This period can be seen as the core spawning season. From early August to early December the proportion of ovigerous shrimps in the female population is very low. Interannual differences in the seasonal process are obvious with a dramatic decline in C. crangon reproductive success in the late 1980s. Various options are discussed for the reasons of the decline and recovery of the reproductive performance.  相似文献   

18.
The population of Crepidula convexa inhabiting the eelgrass beds of the lower Mystic Estuary, Connecticut, exhibits large seasonal fluctuations in size. The population is largest in the middle of the summer following the emergence of juveniles and then rapidly declines. Oviposition occurs from May into September with maximal egg production taking place in June. Within this habitat the life span of Crepidula is short (ca. 1 yr), female size is small and individual fecundity is low.  相似文献   

19.
In 1985 and 1990, we manipulated the hatching date of Herring Gulls Larus argentatus by exchanging complete clutches between pairs which had started egg laying on different dates in the season. The aim was to investigate whether the observed seasonal decline in Hedging success can be explained by laying date. In both years, fledging success of advanced pairs followed the natural seasonal trend, supporting the date hypothesis. However, in both years, Hedging success of delayed pairs remained as high as that of control pairs with the same original hatching date as the foster parents, supporting the parental quality hypothesis. These data suggest that the delayed pairs may have compensated for less favourable environmental conditions. Although conspecific predation was the main direct cause of chick mortality, food shortage probably indirectly determined the mortality rate. A model of fledging success in relation to the timing of egg laying predicts that when food is abundant the optimal hatching date coincides with the mean hatching date of the colony (synchronization advantage). When food is less abundant, early breeders have the highest fledging success.  相似文献   

20.
Body size is implicated in individual fitness and population dynamics. Mounting interest is being given to the effects of environmental change on body size, but the underlying mechanisms are poorly understood. We tested whether body size and body condition are related to ambient temperature (heat maintenance hypothesis), or/and explained by variations in primary production (food availability hypothesis) during the period of body growth in songbirds. We also explored whether annual population‐level variations of mean body size are due to changes of juvenile growth and/or size‐dependent mortality during the first year. For 41 species, from 257 sites across France, we tested for relationships between wing length (n = 107 193) or body condition (n = 82 022) and local anomalies in temperature, precipitation and net primary production (NDVI) during the breeding period, for juveniles and adults separately. Juvenile body size was best explained by primary production: wings were longer in years with locally high NDVI, but not shorter in years with low NDVI. Temperature showed a slightly positive effect. Body condition and adult wing length did not covary with any of the other tested variables. We found no evidence of climate‐driven size‐dependent mortality for the breeding season. In our temperate system, local climatic anomalies explained little of the body size variation. A large part of wing length variance was site‐specific, suggesting that avian size was more dependent on local drivers than global ones. Net primary production influenced juvenile size the most through effects on body growth. We suggest that, during the breeding season in temperate systems, thermoregulatory mechanisms are less involved in juvenile growth than food assimilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号