首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The secretory response of hepatic bile and exocrine pancreas to gastrointestinal peptides has been studied in chronically cannulated sheep. Pancreatic juice flow and protein output were evoked dose dependently by intraportal injection of secretin, CCK-8, caerulein, VIP and neurotensin. However, biliary secretion was evoked by only secretin. Biliary and pancreatic exocrine secretions were enhanced by delivered gastric juice into the duodenum as followed by the increased plasma concentration of immunoreactive secretin (IRS). Results suggest that secretin is the major peptide that regulates pancreatic exocrine secretion and hepatic bile production in the sheep.  相似文献   

2.
The effects of neurotensin on pancreatic exocrine secretion were examined in fasted, conscious White Leghorn hens. A cannula was surgically implanted in the central duct serving the ventral lobe of the pancreas in order to collect pure pancreatic juice. Following recovery, neurotensin was infused intravenously at 3.6 or 10.8 pmol/kg*min. The volume and pH of the pancreatic secretions were recorded and total pancreatic protein concentration, amylase, lipase, trypsin, and chymotrypsin activity were measured every 30 min for 2 hr and compared to secretions following the infusion of 0.9% saline. Our results demonstrated that neurotensin did not affect the pH nor the pancreatic juice protein concentration, but did increase secretion rate following neurotensin infusion at 3.6 pmol/kg*min. Amylase activity was significantly depressed during neurotensin infusions, while lipase (both pancreatic and carboxylester lipase) activity was significantly elevated. The ratio of amylase to lipase activity was especially depressed by neurotensin infusion at 10.8 pmol/kg*min. Insufficient secretory activity prevented a balanced statistical analysis of chymotrypsin activity, but from a pooled analysis, neurotensin had no effect on protease activity in the pancreatic juice. These results support our current research indicating that neurotensin may be a hormonal regulator of postprandial lipid digestion in chickens.  相似文献   

3.
A secretin releasing peptide exists in dog pancreatic juice   总被引:1,自引:0,他引:1  
Li P  Song Y  Lee KY  Chang TM  Chey WY 《Life sciences》2000,66(14):1307-1316
Canine pancreatic juice has been shown to stimulate exocrine pancreatic secretion in the dog. In the present study we investigated whether there is a secretin-releasing peptide in canine pancreatic juice. Pancreatic juice was collected from the dogs with Thomas gastric and duodenal cannulas while pancreatic secretion was stimulated by intravenous administration of secretin at 0.5 microg/kg/h and CCK-8 at 0.2 microg/kg/h, respectively. The pancreatic juice was separated into three different molecular weight (MW) fractions (Fr) by ultrafiltration (Fr 1; MW > 10,000, Fr 2; MW=10,000-4,000 and Fr 3; MW < 4,000), respectively. All the fractions were bioassayed in anesthetized rats. Fraction 3 dose-dependently and significantly stimulated pancreatic juice flow volume from 78.0% to 99.4% (p<0.05) and bicarbonate output from 128.9% to 202.1% (p<0.01), respectively. Plasma secretin concentration also increased from 1.2 +/- 0.5 pM to 5.0 +/- 0.8 pM and 6.0 +/- 1.0 pM (p<0.05). None of these fractions increased pancreatic protein secretion or plasma CCK level. The stimulatory effect of Fraction 3 on pancreatic secretion and the release of secretin was completely abolished by treatment with trypsin (1 mg/ml for 60 min at 37 degrees C) but not by heating (100 degrees C, 10 min). Intravenous injection of a rabbit anti-secretin serum, which rendered plasma secretin almost undetectable in rat plasma, also abolished Fr 3-stimulated pancreatic secretion of fluid and bicarbonate secretion. These observations suggest that a secretin-releasing peptide exists in the canine pancreatic juice. It is trypsin-sensitive and heat-resistant. This peptide may play a significant physiological role on the release of secretin and regulation of exocrine pancreatic secretion.  相似文献   

4.
The gastric exocrine inhibitory activities of neurotensin were characterized in conscious cats prepared with gastric fistulae. Neurotensin was a potent inhibitor of pentagastrin-stimulated pepsin secretion (ID50, approx. 0.3 mumol . kg-1 . h-1) but was approximately 60 times less potent against acid secretion. Neurotensin did not significantly reduce submaximal histamine-stimulated acid or pepsin secretions. the total 2 h acid and pepsin outputs in response to insulin-hypoglycaemia were not reduced by neurotensin, although the peak 15-min outputs were reduced. The reduction in peak secretion was possibly related to neurotensin antagonism of the ability of insulin to lower blood glucose concentrations. Neurotensin alone was not hyperglycaemic when given as an intravenous infusion. Two C-terminal fragments of neurotensin, the dodecapeptide and nonapeptide, inhibited pentagastrin-stimulated pepsin secretion, but were less potent than neurotensin. The observations with the C-terminal fragments indicate that the major determinants of gastric exocrine inhibitory activity of neurotensin reside in its C-terminal; this agrees with observations on other biological activities of neurotensin. The reduced potency of the dodecapeptide indicates the importance of the N-terminal pyroglutamyl residue for full gastric exocrine inhibitory activity.  相似文献   

5.
In the present investigation the effect of neurotensin on pancreatic secretion of isolated pancreatic lobules from the rat was examined. We found a dose- and time-dependent stimulation of amylase release beginning with a concentration of 10(-9) M neurotensin. This response was potentiated by the cholinergic agonist carbachol, the gastrointestinal peptide secretin, and the CCK analogue caerulein. As we found neurotensin-immunoreactive nerves within the pancreas and as neurotensin-like immunoreactivity is present in the circulation (found previously), neurotensin may well be a further peptide taking part in the regulation of exocrine pancreatic secretion either as a hormone or a neurotransmitter. Neurotensin would then cooperate with cholinergic mechanisms, secretin, and CCK.  相似文献   

6.
Vasoactive intestinal polypeptide (VIP) in the pig pancreas is localized to nerves, many of which travel along the pancreatic ducts. VIP stimulates pancreatic fluid and bicarbonate secretion like secretin. Electrical vagal stimulation in the pig causes an atropine-resistant profuse secretion of bicarbonate-rich pancreatic juice. In an isolated perfused preparation of the pig pancreas with intact vagal nerve supply, electrical vagal stimulation caused an atropine-resistant release of VIP, which accurately parallelled the exocrine secretion of juice and bicarbonate. Perfusion of the pancreas with a potent VIP-antiserum inhibited the effect of vagal stimulation on the exocrine secretion. It is concluded, that VIP is responsible for (at least part of) the neurally controlled fluid and bicarbonate secretion from the pig pancreas.  相似文献   

7.
We examined the effects of atrial natriuretic polypeptide (hANP) on exocrine function in the isolated and blood-perfused dog pancreas in situ. Intra-arterial injection of hANP (1-10 micrograms) resulted in the dose-dependent increases of the pancreatic juice secretion. The secretory activity of 3 micrograms of hANP was approximately equal to one third of the secretory activity of 0.1 units of secretin. The use of hANP increased the concentration of bicarbonate but not that of sodium and protein in the pancreatic juice as compared with the basal values. These secretory responses to hANP were not inhibited by treatment with haloperidol, sulpiride, phentolamine, propranolol, atropine, cimetidine or ethacrynic acid. These results suggest that hANP acts directly on the pancreatic exocrine gland to stimulate pancreatic secretion; without, however, increasing sodium excretion. The mechanism of this effect remains to be elucidated.  相似文献   

8.
《Regulatory peptides》1988,22(3):275-284
Because neurotensin may potentiate exocrine pancreatic secretory responses to cholecystokinin and secretin, we examined interactions of neurotensin with caerulein or secretin on growth of pancreas, stomach, small intestine, and colon. Rats were injected with saline, neurotensin (100 μg/kg), caerulein (0.67 μg/kg), secretin (100 μg/kg), or neurotensin plus caerulein or secretin every 8 h for 5 days. Pancreas, stomach, small intestine, and colon were weighed and assayed for DNA, protein, and digestive enzymes. Although neurotensin increased pancreatic weight (P < 0.01), DNA (P < 0.01), and protein content (P < 0.05) by 20–30%, it had less than additive effects on responses to caerulein and secretin. Neurotensin had no effects on pancreatic enzymes or on responses to caerulein or secretin. Neurotensin alone had no effects on growth of the oxyntic gland area or antrum but inhibited increases in antral weight, DNA, and protein caused by secretin. Neurotensin increased small intestine weight (9%, P < 0.05) and protein content (23%, P < 0.01). Secretin also increased weight (22%), DNA (29%), and protein content (48%) of the small intestine (all P < 0.01), but neurotensin and secretin together had less than additive effects. Our results suggest that neurotensin inhibits rather than potentiates certain growth effects of caerulein or secretin on the pancreas and other organs.  相似文献   

9.
The effects of intravenous parathyroid hormone (PTH) on steady state Secretin-induced pancreatic secretion were studied in seven dogs before and after parathyroidectomy. Free flow of pancreatic juice was obtained by direct cannulation of the main pancreatic duct (the minor duct being ligated) : a gastric fistula prevented the entry of gastric acid into the duodenum. In the normal dog PTH caused a significant increase in volume and bicarbonate concentration, reciprocal change in chloride and no change in total protein concentration. The stimulatory effect of PTH was dose-dependent. In the parathyroidectomized dog, the basic Secretin-induced secretion was lower than the preoperative values, but PTH infusion caused a significant increase in volume of fluids and bicarbonate concentration, reciprocal change in chloride and no change in protein concentration. These results were not dependent on calcium blood level, and did not change after calcium injection to the hypocalcemic parathyroidectomized dog. It is suggested, that PTH may have a direct effect on pancreatic exocrine secretion.  相似文献   

10.
Neurotensin stimulates pancreatic secretion directly and by potentiating the effect of secretin. Neurotensin also inhibits gastric secretion. Secretin inhibits gastric secretion as well, but whether it also interacts with neurotensin is not known. Secretin is known to inhibit gastric mucosal blood flow (GMBF). The effect of neurotensin on GMBF is not known. Acid secretion (triple lumen perfused orogastric tube) and GMBF ([14C]aminopyrine clearance) were therefore measured in 6 subjects during neurotensin, secretin and neurotensin plus secretin infusions. Neurotensin plus secretin reduced acid secretion by a median 130 (range 34-394) mumol/min which was significantly greater than either neurotensin at 36 (7-67) mumol/min or secretin 54 (20-347) mumol/min alone (P less than 0.05). This effect appeared independent of GMBF. Neurotensin plus secretin reduced GMBF by 14 (12-27) ml/min but not significantly more than neurotensin at 11 (3-20) ml/min or secretin 18 (2-27) ml/min alone. Further, there was no correlation between changes in acid output and GMBF during infusion of the peptides. We conclude that the inhibitory effects of neurotensin and secretin on gastric secretion are at least additive and together they may function as an 'enterogastrone'.  相似文献   

11.
In this study the effect of 10 and 20 μg · kg?1 · h?1 atropine sulfate on release and pancreatic effects of neurotensin was studied in 4 dogs. Neurotensin plasma levels rose significantly when a liquid fat preparation was infused intraduodenally. This rise was almost completely abolished by simultaneous infusion of atropine. Atropine further suppressed basal and fat-stimulated output of pancreatic volume, protein, and bicarbonate; it also reduced pancreatic secretion stimulated by an intravenous infusion of low doses (2.5 to 20 pmol · kg?1 · min?1) neurotensin. The effect of higher doses (80 and 240 pmol · kg?1 · min?1) of neurotensin was less affected.As neurotensin plasma levels in contrast to normal oral feeding did not rise after sham feeding, our findings suggest that release and action of neurotensin may at least in part be dependent on a cholinergic, non-cephalic mechanism.  相似文献   

12.
Since the gastrointestinal peptide neurotensin has a stimulatory effect on the secretion of the exocrine pancreas and an inhibitory effect on secretion and motility of the stomach, we investigated whether chronic parenteral administration of neurotensin would affect pancreatic and gastric growth. We therefore infused synthetic neurotensin subcutaneously (dose, 43 and 282 pmol X kg-1 X min-1) in 20 Wistar rats for 2 weeks using Alzet osmotic minipumps and compared pancreatic weight, DNA, RNA, protein, lipase, amylase, pancreatic polypeptide and insulin with these parameters in 10 control rats from the same litter with subcutaneously implanted plastic cylinders approximately the size of the minipumps. In another experiment, synthetic neurotensin (836 pmol X kg-1) was injected intraperitoneally three times a day for 3 days in 12 rats. Thereafter, we measured pancreatic DNA and in vitro incorporation of [3H]thymidine into pancreatic DNA. These effects were compared with the actions of caerulein and normal saline. Long term infusion of the high neurotensin dose induced an increase of pancreatic weight (control: 0.87 g, neurotensin: 1.02 g) and of DNA (control: 2.5 micrograms; neurotensin: 3.5 micrograms) and pancreatic polypeptide (control: 2.4 ng; neurotensin: 7.4 ng) contents, whereas pancreatic protein, RNA, amylase and lipase contents were not stimulated. In relation to DNA, these parameters even were significantly depressed. Insulin remained unchanged. Intraperitoneal injection of neurotensin induced an increase of pancreatic DNA content and stimulated [3H]thymidine incorporation into DNA (control: 11 000 dpm/g; neurotensin: 15 800 dpm/g pancreas). Moreover, long-term neurotensin infusion with the high dose led to a rise in protein concentration and an increase in the thickness of the gastric antrum; antral DNA concentration was insignificantly stimulated. Parenteral neurotensin in the doses and at the times administered, led therefore, to hyperplasia of the pancreas and induced growth of the gastric antrum. It is concluded that neurotensin can act as a trophic factor on pancreas and gastric antrum of the rat. It remains to be determined whether this represents a physiological effect of neurotensin.  相似文献   

13.
We investigated the mechanism of action of methionine enkephalin (MEK) on HCl-stimulated secretin release and pancreatic exocrine secretion. Anesthetized rats with pancreatobiliary cannulas and isolated upper small intestinal loops were perfused intraduodenally with 0.01 N HCl while bile and pancreatic juice were diverted. The effect of intravenous MEK on acid-stimulated secretin release and pancreatic exocrine secretion was then studied with or without coinfusion of naloxone, an anti-somatostatin (SS) serum, or normal rabbit serum. Duodenal acid perfusate, which contains secretin-releasing peptide (SRP) activity, was collected from donor rats with or without pretreatment with MEK, MEK + naloxone, or MEK + anti-SS serum, concentrated by ultrafiltration, and neutralized. The concentrated acid perfusate (CAP), which contains SRP bioactivity, was infused intraduodenally into recipient rats. MEK increased plasma SS concentration and inhibited secretin release and pancreatic fluid and bicarbonate secretion dose-dependently. The inhibition was partially reversed by naloxone and anti-SS serum but not by normal rabbit serum. In recipient rats, CAP increased plasma secretin level and pancreatic secretion. CAP SRP bioactivity decreased when it was collected from MEK-treated donor rats; this was partially reversed by coinfusion with naloxone or anti-SS serum. These results suggest that in the rat, MEK inhibition of acid-stimulated pancreatic secretion and secretin release involves suppression of SRP activity release. Thus the MEK inhibitory effect appears to be mediated in part by endogenous SS.  相似文献   

14.
The regulatory response of the exocrine pancreas was examined in rats under unanesthetized and unrestrained conditions. The previous study demonstrated that the pancreatic protease secretion increased 2-fold after spontaneous feeding of a low protein diet in chronically bile-pancreatic cannulated rats (normal rats) whose bile-pancreatic juice (BPJ) was returned to the duodenum. In the present study, we observed the response of the exocrine pancreatic secretion to spontaneous feeding of a low protein diet in rats with chronic diversion of BPJ from the proximal small intestine for 6 days (bypass rat) whose diverted BPJ was returned to the upper ileum. During BPJ diversion, the dry weight and the protein content of the pancreas were increased 2-fold, compared with normal rats. Also, the levels of trypsinogen and chymotrypsinogen in the pancreas were increased several times, but amylase was decreased. The basal secretion of enzymes after a 24-hr fast was enhanced in bypass rats in proportion to the pancreatic enzyme contents. After spontaneous feeding of 8% casein fat-free diet, the increases in the pancreatic secretion of bypass rats were much smaller than those of normal rats. In contrast, the increase of BPJ flow of bypass rats after feeding was greater than that of normal rats. These findings represent that the chronic diversion of BPJ exerts hypergrowth of pancreas and hypersecretion of proteases in the fasting state, and less sensitivity of pancreatic enzyme secretion to dietary feeding.  相似文献   

15.
The effect of glucagon on exocrine pancreatic secretion stimulated by a test meal was studied in three dogs with a chronic gastric fistula and a modified Thomas duodenal fistula which allows easier collection of pure pancreatic juice after a meal. Glucagon was given by continuous intravenous infusion in doses of 5, 10, 15, or 30 microgram/kg per hour, before and during a test meal. At each dose level glucagon significantly reduced the water and electrolyte secretion of the pancreas. At 15 and 30 microgram/kg per hour glucagon inhibited protein output; this effect was absent at lower doses. These findings demonstrate a dose-dependent inhibition by glucagon of the pancreatic bicarbonate and protein response to a meal. Inhibition of bicarbonate output was more sensitive to glucagon than that of protein output.  相似文献   

16.
Four patients with pancreatic disease received glucagon intravenously. In two a definite decrease in the volume of pancreatic exocrine secretion was shown, and in one of these pancreatic juice protein and bicarbonate levels also fell. Two patients with acute pancreatitis had pronounced relief of epigastric pain associated with falls in plasma amylase after intravenous glucagon.Several mechanisms could account for the possible beneficial effect of glucagon in pancreatitis, and further studies of its use in this disease are justified.  相似文献   

17.
The effect of intraduodenal sodium bicarbonate, 0.1 M, on exocrine pancreatic secretion and the release of two peptides, secretin and VIP, was studied in anesthetized rats and rabbits, two species largely used in the gastroenterology laboratories. In the rabbit, intraduodenal sodium bicarbonate perfusion had no effect either on exocrine pancreatic secretion or on portal plasma levels of secretin and VIP. By contrast, in the rat, intraduodenal sodium bicarbonate perfusion significantly increased hydroelectrolyte exocrine pancreatic secretion and portal plasma secretin levels. A clear interspecific difference reflecting the different gastrointestinal physiology of both species is observed.  相似文献   

18.
The effects of sodium oleate infused into either the duodenum or the terminal ileum on bile and pancreatic secretion were examined in the conscious rat. Rats were prepared with cannulae draining pure bile and pancreatic juice separately, and with an ileal and two duodenal cannulae. A 40 mM taurocholate solution containing 7 mg/ml bovine trypsin was infused into the duodenum throughout the experiment to replace diverted bile-pancreatic juice to maintain the normal regulation of pancreatic secretion. The intraduodenal infusion of sodium oleate significantly increased pancreatic juice flow, protein, and bicarbonate outputs, whereas it did not affect bile secretion. Intravenous infusion of proglumide (300 mg/kg/hr) did not inhibit pancreatic secretion stimulated by intraduodenal infusion of sodium oleate. An intravenous infusion of atropine (100 micrograms/kg/hr) attenuated protein and fluid secretions but not that of bicarbonate in response to intraduodenal oleate. In contrast, the intraileal infusion of oleate had no effect on pancreatic secretion, whereas it decreased bile flow, bicarbonate, and bile salt outputs. In conclusion, sodium oleate introduced in the duodenum stimulates pancreatic secretion but oleate in the terminal ileum inhibits bile secretion.  相似文献   

19.
Effects of synthetic rat pancreastatin C-terminal fragment on both exocrine and endocrine pancreatic functions were examined in rats, in vivo and in vitro. Pancreastatin (20, 100 pmol, 1 nmol/kg/h) significantly inhibited CCK-8-stimulated pancreatic juice flow and protein output in a dose-related manner, in vivo. The inhibitory effect on bicarbonate output was not statistically significant. Pancreastatin did not significantly inhibit basal pancreatic secretions in vivo, and did not inhibit amylase release from the dispersed acini, in vitro. Insulin release stimulated by intragastric administration of glucose (5 g/kg) was significantly inhibited by pancreastatin (1 nmol/kg/h), in vivo. Plasma glucose concentrations were increased by pancreastatin infusion, but the increase was not statistically significant. Furthermore, pancreastatin inhibited insulin release from isolated islets, in vitro. Synthetic rat C-terminal pancreastatin fragment has bioactivities on both exocrine and endocrine pancreatic functions in rats.  相似文献   

20.
This investigation characterised the effects of exogenous insulin on exocrine pancreatic secretion in anaesthetised healthy and diabetic rats. Animals were rendered diabetic by a single injection of streptozotocin (STZ, 60 mg kg(-1) I.P.). Age-matched controls were injected citrate buffer. Rats were tested for hyperglycaemia 4 days after STZ injection and 7-8 weeks later when they were used for the experiments. Following anaesthesia (1 g kg(-1) urethane I.P.), laparotomy was performed and the pancreatic duct cannulated for collection of pure pancreatic juice. Basal pancreatic juice flow rate in diabetic rats was significantly (p < 0.001) increased whereas protein and amylase outputs were significantly (p < 0.001) decreased compared to control rats. Insulin (1 IU, I.P.) produced in healthy rats significant increases in pancreatic flow rate, amylase secretion and protein output compared to basal (p < 0.05). Insulin action also included a reduction in blood glucose (152.7 +/- 16.9 mg dl(-1), n = 6, prior to insulin and 42.0 +/- 8.4 mg dl(-1), n = 4, 100 min later). In fact, flow rate and glycaemia showed a strong negative correlation (p < 0.01, Pearson). Pretreatment with atropine (0.2 mg kg(-1), I.V.) abolished the effects of insulin on secretory parameters despite a similar reduction in glycaemia; in this series of experiments the correlation between flow rate and blood glucose was lost. In diabetic rats, insulin (4 IU, I.P.) did not modify exocrine pancreatic secretion. There was a fall in blood glucose (467.6 +/- 14.0 mg dl(-1), n = 10, prior to insulin and 386.6 +/- 43.6 mg dl(-1), n = 7, 120 min later). Rats, however, did not become hypoglycaemic. Similar results were observed in diabetic atropinized rats. The results of this study indicate that the effects of insulin on exocrine pancreatic secretion in anaesthetised healthy rats are mediated by hypoglycaemia-evoked vagal cholinergic activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号