首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The Candida albicans LEU2 gene was disrupted by substituting lambda DNA for a small deletion within the LEU2 gene. Cotransformation with a selectable URA3 ARS vector was used to introduce a linear fragment containing the disruption into the genome of a C. albicans ura3 deletion mutant. Cotransformants containing the lambda DNA were identified by colony hybridization and the URA3 plasmid was subsequently cured. Leu2 disrupted heterozygotes were detected by Southern hybridization and one disruptant was subsequently treated with UV irradiation. Only one leu2 ura3 mutant (SGY-484) was isolated out of 11,000 mutagenized cells. SGY-484 was transformed to Leu+ with either the C. albicans or Saccharomyces cerevisiae LEU2 gene. Southern hybridization analysis revealed that the mutant is not homozygous for the disruption; the leu2 mutation reverts and is most likely a point mutation. Unexpectedly, an ade2 ura3 mutant was isolated from the same mutagenesis.  相似文献   

2.
3.
J. B. Keeney  J. D. Boeke 《Genetics》1994,136(3):849-856
Homologous integration into the fission yeast Schizosaccharomyces pombe has not been well characterized. In this study, we have examined integration of plasmids carrying the leu1(+) and ura4(+) genes into their chromosomal loci. Genomic DNA blot analysis demonstrated that the majority of transformants have one or more copies of the plasmid vector integrated via homologous recombination with a much smaller fraction of gene conversion to leu1(+) or ura4(+). Non-homologous recombination events were not observed for either gene. We describe the construction of generally useful leu1(+) and ura4(+) plasmids for targeted integration at the leu1-32 and ura4-294 loci of S. pombe.  相似文献   

4.
酿酒酵母是基因工程产品研究和生产的一个重要表达系统,表达载体和宿主细胞是构成表达系统的两大要素,虽然外源基因表达的方式、强度主要由表达载体控制.但宿主细胞的选择对最终获取产品的质量和数量也具有十分关键的作用。酿酒酵母基因工程宿主菌除要求具有高的DNA转化效率、细胞生长密度和稳定性、低的内源蛋白水解酶活性外,还必须具备与表达载体相对应的营养缺陷筛选标记,用传统随机诱变方法得到的营养缺陷变异株,因含有本底和隐性突变,在细胞生长密度和稳定性方面往往不能满足基因工程产品研究和生产的要求,甚至不能有效地表达外源基因。本文报道用重组技术,通过非随机方法构建了酿酒酵母基因工程宿主茁。研究表明用该方法得到的宿主菌在细胞生长密度、稳定性和表达外源基因方面优于用传统随机诱变方法得到的宿主菌。  相似文献   

5.
J. B. Virgin  J. Metzger    G. R. Smith 《Genetics》1995,141(1):33-48
The ade6-M26 mutation of the fission yeast Schizosaccharomyces pombe creates a meiotic recombination hotspot that elevates ade6 intragenic recombination ~10-15-fold. A heptanucleotide sequence including the M26 point mutation is required but not sufficient for hotspot activity. We studied the effects of plasmid and chromosomal context on M26 hotspot activity. The M26 hotspot was inactive on a multicopy plasmid containing M26 embedded within 3.0 or 5.9 kb of ade6 DNA. Random S. pombe genomic fragments totaling ~7 Mb did not activate the M26 hotspot on a plasmid. M26 hotspot activity was maintained when 3.0-, 4.4-, and 5.9-kb ade6-M26 DNA fragments, with various amounts of non-S. pombe plasmid DNA, were integrated at the ura4 chromosomal locus, but only in certain configurations relative to the ura4 gene and the cointegrated plasmid DNA. Several integrations created new M26-independent recombination hotspots. In all cases the non-ade6 DNA was located >1 kb from the M26 site, and in some cases >2 kb. Because the chromosomal context effect was transmitted over large distances, and did not appear to be mediated by a single discrete DNA sequence element, we infer that the local chromatin structure has a pronounced effect on M26 hotspot activity.  相似文献   

6.
A series of yeast shuttle vectors and host strains has been created to allow more efficient manipulation of DNA in Saccharomyces cerevisiae. Transplacement vectors were constructed and used to derive yeast strains containing nonreverting his3, trp1, leu2 and ura3 mutations. A set of YCp and YIp vectors (pRS series) was then made based on the backbone of the multipurpose plasmid pBLUESCRIPT. These pRS vectors are all uniform in structure and differ only in the yeast selectable marker gene used (HIS3, TRP1, LEU2 and URA3). They possess all of the attributes of pBLUESCRIPT and several yeast-specific features as well. Using a pRS vector, one can perform most standard DNA manipulations in the same plasmid that is introduced into yeast.  相似文献   

7.
New yeast episomal vectors having a high degree of utility for cloning and expression in Saccharomyces cerevisiae are described. One vector, pYEULlacZ, is based on pUC19 and employs the pUC19 multiple cloning site for the selection of recombinants in Escherichia coli by lacZ inactivation. In addition, the vector contains two genes, URA3 and leu2-d, for selection of the plasmid in ura3 or leu2 yeast strains. The presence of the leu2-d gene appears to promote replication at high copy numbers. The introduction of CUP1 cassettes allows these plasmids to direct Cu(2+)-regulated production of foreign proteins in yeast. We show the production of a helminth antigen as an example of the vector application.  相似文献   

8.
Abstract Large-scale production of electrically fused yeast protoplasts from Saccharomyces cerevisiae AH 22[pADH 040-2] and S. cerevisiae AH215 was achieved by the use of the so-called helical fusion chamber. Both strains were of the same mating type a and carried the following auxotrophic markers: his4 in the case of AH22 and leu2, his3 in the case of AH215.
AH22 also is a carrier of the plasmid pADH 040-2. This plasmid confers the leu2 gene of yeast and the β-lactamase gene from Escherichia coli , and this feature enables quick detection of plasmid-positive cells.
After dielectrophoresis (275 V/cm, 800 kHz) fusion was induced by two field pulses (10 kV/cm, 10 μs duration) applied at an interval of 0.5 s. 50 to 60 hybrids per run were isolated after regeneration on selection medium.  相似文献   

9.
Baur M  Hartsuiker E  Lehmann E  Ludin K  Munz P  Kohli J 《Genetics》2005,169(2):551-561
The meiotic recombination hot spot ura4A (formerly ura4-aim) of Schizosaccharomyces pombe was observed at the insertion of the ura4+ gene 15 kb centromere-proximal to ade6 on chromosome III. Crosses heterozygous for the insertion showed frequent conversion at the heterology with preferential loss of the insertion. This report concerns the characterization of 12 spontaneous ura4A mutants. A gradient of conversion ranging from 18% at the 5' end to 6% at the 3' end was detected. A novel phenomenon also was discovered: a mating-type-related bias of conversion. The allele entering with the h+ parent acts preferentially as the acceptor for conversion (ratio of 3:2). Tetrad analysis of two-factor crosses showed that heteroduplex DNA is predominantly asymmetrical, enters from the 5' end, and more often than not covers the entire gene. Restoration repair of markers at the 5' end was inferred. Random spore analyses of two-factor crosses and normalization of prototroph-recombinant frequencies to physical distance led to the demonstration of map expansion: Crosses involving distant markers yielded recombinant frequencies higher than the sum of the frequencies measured in the subintervals. Finally, marker effects on recombination were defined for two of the ura4A mutations.  相似文献   

10.
Bacteriophages induced by mitomycin treatment of Erwinia chrysanthemi KS612 produced plaques on lawns of E. chrysanthemi EC183 and KS605. Bacteriophage Erch-12, purified from one such plaque, transferred an array of chromosomal genes (arg, leu, his, ser, thr, trp, ura) to appropriate recipient strains derived from E. chrysanthemi EC 183. Recombinants were formed in the absence of cellular contact between donor and recipient bacteria and in the presence of deoxyribonuclease. Ultraviolet irradiation of the bacteriophage stimulated transductional frequency. Linkage was detected in two-factor crosses between the loci thr and ser and between rif and ade; several closely linked mutations in ser were mapped with respect to thr.  相似文献   

11.
By using two chimeric plasmids containing yeast ura3 gene and 2-micron yeast DNA linked to the bacterial plasmid pCR1, yeast transformation of a high frequency has been achieved. The first plasmid is such that the 2-micron DNA part, in which the ura3 gene is incorporated, can be removed in one step and thus the 2-micron-ura3 sequence can be considered as a "transposable" block. In contrast, the second one bears the entire 2-micron plasmid and the ura3 gene is inserted in the bacterial plasmid part. As shown through hybridization experiments and genetic studies, the ura3 gene was maintained as a cytoplasmic element. Plasmids recovered from the yeast transformants were used to transform Escherichia coli. Their analysis by EcoRI showed that in many cases the vector had recombined with the endogenous 2-micron DNA of the recipient strain. The specific activity of orotidine 5'-monophosphate decarboxylase (coded by ura3) in yeast transformants was 10- to 30-fold higher than in the wild type.  相似文献   

12.
The site-specific recombination system used by the Streptomyces bacteriophage phiC31 was tested in the fission yeast Schizosaccharomyces pombe. A target strain with the phage attachment site attP inserted at the leu1 locus was co-transformed with one plasmid containing the bacterial attachment site attB linked to a ura4+ marker, and a second plasmid expressing the phiC31 integrase gene. High-efficiency transformation to the Ura+ phenotype occurred when the integrase gene was expressed. Southern analysis revealed that the attB-ura4+ plasmid integrated into the chromosomal attP site. Sequence analysis showed that the attBxattP recombination was precise. In another approach, DNA with a ura4+ marker flanked by two attB sites in direct orientation was used to transform S. pombe cells bearing an attP duplication. The phiC31 integrase catalyzed two reciprocal cross-overs, resulting in a precise gene replacement. The site-specific insertions are stable, as no excision (the reverse reaction) was observed on maintenance of the integrase gene in the integrant lines. The irreversibility of the phiC31 site-specific recombination system sets it apart from other systems currently used in eukaryotic cells, which reverse readily. Deployment of the phiC31 recombination provides new opportunities for directing transgene and chromosome rearrangements in eukaryotic systems.  相似文献   

13.
Yévenes A  Cardemil E 《Biochimie》2000,82(2):123-127
Plasmid pTbp60B (Kueng et al., J. Biol. Chem. 264 (1989) 5203-5209) was employed to obtain, through the polymerase chain reaction, the Trypanosoma brucei gene coding for phosphoenolpyruvate (PEP) carboxykinase, and then cloned into the yeast expression plasmid pYES2. The cloned gene was completely sequenced and the expression plasmid transformed into Saccharomyces cerevisiae PUK-3B (MATalpha pck1 ura3 ade1) competent cells. Gene expression took place upon induction with 2% galactose, and the recombinant T. brucei PEP carboxykinase was purified to near homogeneity. The basic molecular and catalytic characteristics of the recombinant enzyme were determined, and they showed to be essentially similar to those reported for wild type T. brucei PEP carboxykinase (Hunt and K?hler, Biochim. Biophys. Acta 1249 (1995) 15-22). The expression system here described is a reliable non-pathogenic source of T. brucei PEP carboxykinase.  相似文献   

14.
To facilitate the functional genomic analysis of an archaeon, we have developed a homologous gene replacement strategy for Halobacterium salinarum based on ura3, which encodes the pyrimidine biosynthetic enzyme orotidine-5'-monophosphate decarboxylase. H. salinarum was shown to be sensitive to 5-fluoroorotic acid (5-FOA), which can select for mutations in ura3. A spontaneous 5-FOA-resistant mutant was found to contain an insertion in ura3 and was a uracil auxotroph. Integration of ura3 at the bacterioopsin locus (bop ) of this mutant restored 5-FOA sensitivity and uracil prototrophy. Parallel results were obtained with a Deltaura3 strain constructed by gene replacement and with derivatives of this strain in which ura3 replaced bop. These results show that H. salinarum ura3 encodes functional orotidine-5'-monophosphate decarboxylase. To demonstrate ura3-based gene replacement, a Deltabop strain was constructed by transforming a Deltaura3 host with a bop deletion plasmid containing a mevinolin resistance marker. In one approach, the host contained intact ura3 at the chromosomal bop locus; in another, ura3 was included in the plasmid. Plasmid integrants selected with mevinolin were resolved with 5-FOA, yielding Deltabop recombinants at a frequency of > 10-2 in both approaches. These studies establish an efficient new genetic strategy towards the systematic knockout of genes in an archaeon.  相似文献   

15.
The LEU3 gene of the yeast Saccharomyces cerevisiae, which is involved in the regulation of at least two LEU structural genes (LEU1 and LEU2), has been cloned by complementation of leu3 mutations and shown to reside within a 5.6-kb fragment. Transformation of leu3 mutants with LEU3-carrying multicopy plasmids restored normal, leucine-independent growth behavior in the recipients. It also restored approximately wild-type levels of isopropylmalate isomerase (LEU1) and beta-isopropylmalate dehydrogenase (LEU2), which were strongly reduced when exogenous leucine was supplied. Strains containing a disrupted leu3 allele were constructed by deleting 0.7-kb of LEU3 DNA and inserting the yeast HIS3 gene in its place. Like other leu3 mutants, these strains were leaky leucine auxotrophs, owing to a basal level of expression of LEU1 and LEU2. Southern transfer and genetic analyses of strains carrying a disrupted leu3 allele demonstrated that the cloned gene was LEU3, as opposed to a suppressor. Disruption of LEU3 was performed also with a diploid and shown to be nonlethal by tetrad analysis. Northern transfer experiments showed that the LEU3 gene produces mRNA approximately 2.9 kilonucleotides in length. The leu3 marker was mapped to chromosome XII by the spo11 method. Linkage to ura4 by about 44 centiMorgans places leu3 on the right arm of this chromosome.  相似文献   

16.
The autonomously replicating sequences (ARSs) of pSR1, a cryptic circular DNA plasmid detected in a strain of Zygosaccharomyces rouxii, were delimited by subcloning and deletion analysis and by the isolation of nucleotide substitution mutations. A 30 base-pair (bp) sequence from inverted repeat 1 (IR1) and presumably the same region from IR2 of pSR1 functions as an ARS in the native host, Z. rouxii, and in a heterologous host, Saccharomyces cerevisiae. Thus, pSR1 has two ARSs per molecule, either of which is sufficient for replication of the plasmid molecule in both hosts. These hosts, however, respond differently to nucleotide substitutions in the 30 bp sequence, suggesting that the sequences required for ARS function in the two organisms are not exactly the same. In addition, a 137 bp sequence that overlaps the 30 bp sequence by 11 bp also functions as an ARS in Z. rouxii but not in S. cerevisiae. However, this 137 bp sequence enhances the stability of plasmids carrying the pSR1 ARS in S. cerevisiae. The 30 bp and 137 bp sequences each contain a single copy of the 11 bp ARS consensus sequence, which is essential for ARS function in S. cerevisiae. Small insertions between the 11 bp overlapping region and the 11 bp ARS consensus sequence showed that a proper distance between these two 11 bp sequences is essential for the ARS function of the 30 bp sequence. Point mutations that inactivate ARS function show that the ARS consensus sequence, as well as a short A:T segment in the overlapping sequence, is required for the ARS function of the 30 bp sequence.  相似文献   

17.
A circular DNA plasmid, pSR1, isolated from Zygosaccharomyces rouxii has a pair of inverted repeats consisting of completely homologous 959-base pair (bp) sequences. Intramolecular recombination occurs frequently at the inverted repeats in cells of Saccharomyces cerevisiae, as well as in Z. rouxii, and is catalyzed by a protein encoded by the R gene of its own genome. The recombination is, however, independent of the RAD52 gene of the host genome. A site for initiation of the intramolecular recombination in the S. cerevisiae host was delimited into, at most, a 58-bp region in the inverted repeats by using mutant plasmids created by linker insertion. The 58-bp region contains a pair with 14-bp dyad symmetry separated by a 3-bp spacer sequence. The recombination initiated at this site was accompanied by a high frequency of gene conversion (3 to 50% of the plasmid clones examined). Heterogeneity created by the linker insertion or by a deletion (at most 153 bp so far tested) at any place on the inverted repeats was converted to a homologous combination by the gene conversion, even in the rad52-1 mutant host. A mechanism implying branch migration coupled with DNA replication is discussed.  相似文献   

18.
We analyzed sequences of the D1D2 domain of the 26S ribosomal RNA gene (26S rDNA sequence), the internal transcribed spacer 1, the 5.8S ribosomal RNA gene, and the internal transcribed spacer 2 (the ITS sequence) from 46 strains of miso and soy sauce fermentation yeast, Zygosaccharomyces rouxii and a closely related species, Z. mellis, for typing. Based on the 26S rDNA sequence analysis, the Z. rouxii strains were of two types, and the extent of sequence divergence between them was 2.6%. Based on the ITS sequence analysis, they were divided into seven types (I-VII). Between the type strain (type I) and type VI, in particular, a 12% difference was detected. The occurrence of these nine genotypes with a divergence of more than 1% in these two sequences suggests that Z. rouxii is a species complex including novel species and hybrids. Z. mellis strains were of two types (type alpha and type beta) based on the ITS sequence. Z. rouxii could clearly be distinguished from Z. mellis by 26S rDNA and ITS sequence analyses, but not by the 16% NaCl tolerance, when used as the sole key characteristic for differentiation between the two species.  相似文献   

19.
20.
The plasmid pSB3 of yeast Zygosacharomyces bisporus has been sequenced. It contains 6,615 base pairs, including a pair of inverted repeats (IR) consisting of 391 base pairs and 3 large open reading frames (ORF). One of the ORFs (A gene) participates in the recombination at the IRs and the other two (B and C genes) are necessary for the stable maintenance of this plasmid. The ARS sequence, which functions in a Saccharomyces cerevisiae host, was localized within 168 base pairs consisting of part of one of the IRs and a unique sequence contiguous to it. pSB3 can be maintained as stably in Z. rouxii as in the natural host Z.bisporus. In contrast, pSB3 is maintained fairly unstably in S.cerevisiae. The reason for this instability was found to be inefficient partitioning of pSB3 in S.cerevisiae. The molecular construction of pSB3 resembles that of 2-micron DNA, however, sequence homology at the DNA level was very poor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号