首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bovine and rat liver acyl-CoA-binding proteins (ACBP) were found to exhibit a much higher affinity for long-chain acyl-CoA esters than both bovine hepatic and cardiac fatty-acid-binding proteins (hFABP and cFABP respectively). In the Lipidex 1000- as well as the liposome-binding assay, bovine and rat hepatic ACBP effectively bound long-chain acyl-CoA ester, h- and c-FABP were, under identical conditions, unable to bind significant amounts of long-chain acyl-CoA esters. When FABP, ACBP and [1-14C]hexadecanoyl-CoA were mixed, hexadecanoyl-CoA could be shown to be bound to ACBP only. The experimental results give strong evidence that ACBP, and not FABP, is the predominant carrier of acyl-CoA in liver.  相似文献   

2.
A detailed analysis of the subcellular distribution of acyl-CoA esters in rat liver revealed that significant amounts of long-chain acyl-CoA esters are present in highly purified nuclei. No contamination of microsomal or mitochondrial marker enzymes was detectable in the nuclear fraction. C16:1 and C18:3-CoA esters were the most abundant species, and thus, the composition of acyl-CoA esters in the nuclear fraction deviates notably from the overall composition of acyl-CoA esters in the cell. After intravenous administration of the non-beta-oxidizable [(14)C]tetradecylthioacetic acid (TTA), the TTA-CoA ester could be recovered from the nuclear fraction. Acyl-CoA esters bind with high affinity to the ubiquitously expressed acyl-CoA binding protein (ACBP), and several lines of evidence suggest that ACBP functions as a pool former and transporter of acyl-CoA esters in the cytoplasm. By using immunohistochemistry, immunofluorescence microscopy, and immunoelectron microscopy we demonstrate that ACBP localizes to the nucleus as well as the cytoplasm of rat liver cell and rat hepatoma cells, suggesting that ACBP may also be involved in regulation of acyl-CoA-dependent processes in the nucleus.  相似文献   

3.
The affinity of recombinant rat acyl-CoA binding protein (ACBP) towards acyl-CoAs was investigated using both fluorimetric analysis and isothermal titration microcalorimetry, neither of which requires the physical separation of bound and free ligand for determining the dissociation constants (K(d)). The displacement of 11-(dansylamino)undecanoyl-CoA (DAUDA-CoA) from ACBP yielded binding parameters for the competing acyl-CoAs that compared favourably with those obtained using ultra-sensitive microcalorimetric titration. The K(d) values of ACBP for oleoyl-CoA and docosahexaenoyl-CoA are 0.014 and 0.016 microM, respectively. Under identical experimental conditions, carnitine palmitoyltransferase I (CPT I) of purified rat liver mitochondria has K(d) values of 2.4 and 22.7 microM for oleoyl-CoA and docosahexaenoyl-CoA, respectively. Given that CPT I was not only present at a much lower concentration but also has an appreciably lower affinity for acyl-CoAs than ACBP, it is proposed that CPT I is capable of interacting directly with ACBP-acyl-CoA binary complexes. This is supported by the fact that the enzyme activity correlated with the concentration of ACBP-bound acyl-CoA but not the free acyl-CoA. A transfer of acyl-CoA from ACBP-acyl-CoA binary complexes to CPT I could be a result of the enzyme inducing a conformational alteration in the ACBP leading to the release of acyl-CoA.  相似文献   

4.
Ischemia of the heart is accompanied by the tissue accumulation of long-chain fatty acids and their metabolic derivatives such as -hydroxy fatty acids and fatty acyl-CoA and acyl-L-carnitine esters. These substances might be detrimental for proper myocardial function. Previously, it has been suggested that intracellular lipid binding proteins like cytoplasmic fatty acid-binding protein (FABP) and acyl-CoA binding protein (ACBP) may bind these accumulating fatty acyl moieties to prevent their elevated levels from potentially harmful actions. In addition, the suggestion has been made that the abundantly present FABP may scavenge free radicals which are generated during reperfusion of the ischemic heart. However, these protective actions are challenged by the continuous physico-chemical partition of fatty acyl moieties between FABP and membrane structures and by the rapid release of FABP from ischemic and reperfused cardiac muscle. Careful evaluation of the available literature data reveals that at present no definite conclusion can be drawn about the potential protective effect of FABP on the ischemic and reperfused heart. Biochem123: 167–173, 1993)Abbreviations FABP Fatty Acid-Binding Protein - ACBP Acyl-CoA Binding Protein - MDGI Mammary-Derived Growth Inhibitor - CK Creatine Kinase - LDH Lactate Dehydrogenase  相似文献   

5.
Similar to those of other species, the Harderian glands of armadillo produce an abundant lipid secretion, most of which is composed of 1-alkyl-2,3-diacylglycerol. Biosynthesis of this component is apparently performed with the participation of one cytosolic pool of acyl-CoA and another of free fatty acids. The acyl-CoA-binding protein (ACBP) is present at a concentration at least 7-fold that of the heart-type fatty acid-binding protein (H-FABP), though lower than that in other armadillo organs such as liver and brain. The ACBP complete amino acid sequence was determined by Edman degradation of peptides generated by cleavage of the protein with cyanogen bromide, endopeptidase Glu-C, and trypsin. ACBP consists of 86 residues and has a calculated molecular mass of 9783 Da, taking into account that an acetyl group is blocking the N-terminus. Identity percentages between armadillo Harderian gland ACBP and other known ACBPs show that the protein belongs to the liver-specific ACBP isoform (L-ACBP). The fact that the ACBP concentration is higher than that of FABP suggests that the Harderian gland is able to store acyl-CoA amounts in ACBP larger than those of fatty acids in H-FABP for 1-alkyl-2,3-diacylglycerol synthesis.  相似文献   

6.
Acyl-CoA-binding protein has been isolated independently by five different groups based on its ability to (1) displace diazepam from the GABAA receptor, (2) affect cell growth, (3) induce medium-chain acyl-CoA-ester synthesis, (4) stimulate steroid hormone synthesis, and (5) affect glucose-induced insulin secretion. In this survey evidence is presented to show that ACBP is able to act as an intracellular acyl-CoA transporter and acyl-CoA pool former. The rat ACBP genomic gene consists of 4 exons and is actively expressed in all tissues tested with highest concentration being found in liver. ACBP consists of 86 amino acid residues and contains 4 -helices which are folded into a boomerang type of structure with -helices 1, 2 and 4 in the one arm and -helix 3 and an open loop in the other arm of the boomerang. ACBP is able to stimulate mitochondrial acyl-CoA synthetase by removing acyl-CoA esters from the enzyme. ACBP is also able to desorb acyl-CoA esters from immobilized membranes and transport and deliver these for mitochondrial -oxidation. ACBP efficiently protects acetyl-CoA carboxylase and the mitochondrial ADP/ATP translocase against acyl-CoA inhibition. Finally, ACBP is shown to be able to act as an intracellular acyl-CoA pool former by overexpression in yeast. The possible role of ACBP in lipid metabolism is discussed.  相似文献   

7.
Defatted liver fatty acid binding protein (FABP) reverses the inhibitory effect of palmitoyl-CoA on adenine nucleotide transport in rat liver mitochondria; addition of titrating amounts of FABP to mitochondria pretreated with palmitoyl-CoA stimulates nucleotide transport and that activation parallels the removal of the inhibitor from mitochondria. This effect is specific only for FABP; all other cytosolic proteins which do not bind fatty acids do not influence nucleotide transport activity. Addition of free fatty acids (which can compete for ligand binding sites on FABP) to mitochondria pretreated with palmitoyl-CoA interferes with the reversal activity of FABP. Adding FABP alone to freshly isolated mitochondria also activates nucleotide transport activity suggesting that the originally submaximal activity is probably due to the presence of endogenous long-chain acyl-CoA esters in the mitochondrial preparation. Because FABP is present in relatively high concentration in most mammalian cells, these observations offer a likely explanation of why the potent inhibitory effects of long-chain acyl-CoA esters on adenine nucleotide transport in isolated mitochondria are not seen in the intact cell.  相似文献   

8.
Acyl-CoAs are present at high concentrations within the cell, yet are strongly buffered by specific binding proteins in order to maintain a low intracellular unbound acyl-CoA concentration, compatible with their metabolic role, their importance in cell signaling, and as protection from their detergent properties. This intracellular regulation may be disrupted by nonmetabolizables acyl-CoA esters of xenobiotics, such as peroxisome proliferators, which are formed at relatively high concentration within the liver cell. The low molecular mass acyl-CoA binding protein (ACBP) and fatty acyl-CoA binding protein (FABP) have been proposed as the buffering system for fatty acyl-CoAs. Whether these proteins also bind xenobiotic-CoA is not known. Here we have identified new liver cytosolic fatty acyl-CoA and xenobiotic-CoA binding sites as glutathione S-transferase (GST), using fluorescent polarization and a acyl-etheno-CoA derivative of the peroxisome proliferator nafenopin as ligand. Rat liver GST and human liver recombinant GSTA1-1, GSTP1-1 and GSTM1-1 were used. Only class alpha rat liver GST and human GSTA1-1 bind xenobiotic-CoAs and fatty acyl-CoAs, with Kd values ranging from 200 nM to 5 microM. One mol of acyl-CoA is bound per mol of dimeric enzyme, and no metabolization or hydrolysis was observed. Binding results in strong inhibition of rat liver GST and human recombinant GSTA1-1 (IC50 at the nanomolar level for palmitoyl-CoA) but not GSTP1-1 and GSTM1-1. Acyl-CoAs do not interact with the GSTA1-1 substrate binding site, but probably with a different domain. Results suggest that under increased acyl-CoA concentration, as occurs after exposure to peroxisome proliferators, acyl-CoA binding to the abundant class alpha GSTs may result in strong inhibition of xenobiotic detoxification. Analysis of the binding properties of GSTs and other acyl-CoA binding proteins suggest that under increased acyl-CoA concentration GSTs would be responsible for xenobiotic-CoA binding whereas ACBP would preferentially bind fatty acyl-CoAs.  相似文献   

9.
The acyl-CoA-binding protein (ACBP)/diazepam binding inhibitor is an intracellular protein that binds C(14)-C(22) acyl-CoA esters and is thought to act as an acyl-CoA transporter. In vitro analyses have indicated that ACBP can transport acyl-CoA esters between different enzymatic systems; however, little is known about the in vivo function in mammalian cells. We have generated mice with targeted disruption of ACBP (ACBP(-/-)). These mice are viable and fertile and develop normally. However, around weaning, the ACBP(-/-) mice go through a crisis with overall weakness and a slightly decreased growth rate. Using microarray analysis, we show that the liver of ACBP(-/-) mice displays a significantly delayed adaptation to weaning with late induction of target genes of the sterol regulatory element-binding protein (SREBP) family. As a result, hepatic de novo cholesterogenesis is decreased at weaning. The delayed induction of SREBP target genes around weaning is caused by a compromised processing and decreased expression of SREBP precursors, leading to reduced binding of SREBP to target sites in chromatin. In conclusion, lack of ACBP interferes with the normal metabolic adaptation to weaning and leads to delayed induction of the lipogenic gene program in the liver.  相似文献   

10.
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that are activated by a number of fatty acids and fatty acid derivatives. By contrast, we have recently shown that acyl-CoA esters display PPAR antagonistic properties in vitro. We have also shown that the adipocyte lipid binding protein (ALBP), the keratinocyte lipid binding protein (KLBP) and the acyl-CoA binding protein (ACBP) exhibit a prominent nuclear localization in differentiating 3T3-L1 adipocytes. Similarly, ectopic expression of these proteins in CV-1 cells resulted in a primarily nuclear localization. We therefore speculated that FABPs and ACBP might regulate the availability of PPAR agonists and antagonists by affecting not only their esterification in the cytoplasm but also their transport to and availability in the nucleus. We show here that coexpression of ALBP or ACBP exerts a negative effect on ligand-dependent PPAR transactivation, when tetradecylthioacetic (TTA) is used as ligand but not when the thiazolidinedione BRL49653 is used as ligand. The results presented here do not support the hypothesis that ALBP facilitates the transport of the fatty acid-type ligands to the nucleus, rather ALBP appears to sequester or increase the turn-over of the agonist. Similarly, our results are in keeping with a model in which ACBP increase the metabolism of these ligands.  相似文献   

11.
The acyl-CoA binding protein (ACBP) is a 10 kDa intracellular protein expressed in all eukaryotic species and mammalian tissues investigated. It binds acyl-CoA esters with high specificity and affinity and is thought to act as an intracellular transporter of acyl-CoA esters between different enzymatic systems; however, the precise function remains unknown. ACBP is expressed at relatively high levels in the epidermis, particularly in the suprabasal layers, which are highly active in lipid synthesis. Targeted disruption of the ACBP gene in mice leads to a pronounced skin and fur phenotype, which includes tousled and greasy fur, development of alopecia and scaling of the skin with age. Furthermore, epidermal barrier function is compromised causing a ~ 50% increase in transepidermal water loss relative to that of wild type mice. Lipidomic analyses indicate that this is due to significantly reduced levels of non-esterified very long chain fatty acids in the stratum corneum of ACBP−/− mice. Here we review the current knowledge of ACBP with special focus on the function of ACBP in the epidermal barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

12.
Huang H  Atshaves BP  Frolov A  Kier AB  Schroeder F 《Biochemistry》2005,44(30):10282-10297
Although studies in vitro and in yeast suggest that acyl-CoA binding protein ACBP may modulate long-chain fatty acyl-CoA (LCFA-CoA) distribution, its physiological function in mammals is unresolved. To address this issue, the effect of ACBP on liver LCFA-CoA pool size, acyl chain composition, distribution, and transacylation into more complex lipids was examined in transgenic mice expressing a higher level of ACBP. While ACBP transgenic mice did not exhibit altered body or liver weight, liver LCFA-CoA pool size increased by 69%, preferentially in saturated and polyunsaturated, but not monounsaturated, LCFA-CoAs. Intracellular LCFA-CoA distribution was also altered such that the ratio of LCFA-CoA content in (membranes, organelles)/cytosol increased 2.7-fold, especially in microsomes but not mitochondria. The increased distribution of specific LCFA-CoAs to the membrane/organelle and microsomal fractions followed the same order as the relative LCFA-CoA binding affinity exhibited by murine recombinant ACBP: saturated > monounsaturated > polyunsaturated C14-C22 LCFA-CoAs. Consistent with the altered microsomal LCFA-CoA level and distribution, enzymatic activity of liver microsomal glycerol-3-phosphate acyltransferase (GPAT) increased 4-fold, liver mass of phospholipid and triacylglyceride increased nearly 2-fold, and relative content of monounsaturated C18:1 fatty acid increased 44% in liver phospholipids. These effects were not due to the ACBP transgene altering the protein levels of liver microsomal acyltransferase enzymes such as GPAT, lysophosphatidic acid acyltransferase (LAT), or acyl-CoA cholesterol acyltransferase 2 (ACAT-2). Thus, these data show for the first time in a physiological context that ACBP expression may play a role in LCFA-CoA metabolism.  相似文献   

13.
Long chain acylCoA esters (LCAs) act both as substrates and intermediates in intermediary metabolism and as regulators in various intracellular functions. AcylCoA binding protein (ACBP) binds LCAs with high affinity and is believed to play an important role in intracellular acylCoA transport and pool formation and therefore also for the function of LCAs as metabolites and regulators of cellular functions [1]. The major factors controlling the free concentration of cytosol long chain acylCoA ester (LCA) include ACBP [2], sterol carrier protein 2 (SCP2) [3] and fatty acid binding protein (FABP) [4]. Additional factors affecting the concentration of free LCA include feed back inhibition of the acylCoA synthetase [5], binding to acylCoA receptors (LCA-regulated molecules and enzymes), binding to membranes and the activity of acylCoA hydrolases [6].  相似文献   

14.
Acyl-CoA binding protein (ACBP) and fatty acid binding protein (FABP) are intracellular transporters of activated and free fatty acids, respectively. Unlike other tissues with active lipid metabolism, armadillo Harderian gland contains much more ACBP than FABP. To characterize armadillo ACBP structure and binding properties, we produced it in Escherichia coli and carried out detailed fluorescence and circular dichroism spectroscopy studies. The K(D) for palmitoyl-CoA, measured directly by fluorescence and rotatory power, was 34+/-12 and 75+/-39 nM, respectively. The structure of armadillo ACBP appears to be very similar to that of bovine and rat liver ACBPs.  相似文献   

15.
The liver specific protein phosphatase inhibiting toxin nodularin (from Nodularia spumigena) rapidly induces hepatocyte apoptosis. Incubation of freshly isolated hepatocytes with this toxin results in hyperphosphorylation of cellular proteins before any morphological signs of apoptosis appear. These phosphorylated proteins may play key roles in the early stage of apoptosis. Here, we identified one of the phosphoproteins to be acyl-CoA binding protein (ACBP), a highly conserved and ubiquitously expressed protein. Phosphorylation-site analysis by matrix-assisted laser desorption ionization time-of-flight MS/MS revealed that the observed phosphorylation is positioned on Ser1 in the N-terminal tryptic peptide Ac-SQADFDKAAE EVKRLK of the rat liver protein. Additionally, we observed a translocation of ACBP towards the cellular membrane in the apoptotic hepatocytes. Moreover, nodularin-induced apoptosis was highly dependent on calpain activation, an event that has previously been shown to be regulated by ACBP. Our findings introduce the possibility that reversible phosphorylation of ACBP regulates its ability to activate calpain in phosphatase inhibitor-induced apoptosis and controls the cellular accessibility of long-chain fatty acid-CoAs for cellular signaling.  相似文献   

16.
Fatty acyl-CoA esters are extremely important in cellular homeostasis. They are intermediates in both lipid metabolism and post-translational protein modifications. Among these modification events, protein palmitoylation seems to be unique by its reversibility which allows dynamic regulation of the protein hydrophobicity. The recent discovery of an enzyme family that catalyze protein palmitoylation has increased the understanding of the enzymology of the covalent attachment of fatty acids to proteins. Despite that, the molecular mechanism of supplying acyl-CoA esters to this reaction is yet to be established. Acyl-coenzyme A-binding proteins are known to bind long-chain acyl-CoA esters with very high affinity. Therefore, they play a significant role in intracellular acyl-CoA transport and pool formation. The purpose of this work is to explore the potential of one of the acyl-CoA-binding proteins to participate in the protein palmitoylation. In this study, a recombinant form of ACBP derived from human erythroid cells was expressed in E. coli, purified, and functionally characterized. We demonstrate that recombinant hACBP effectively binds palmitoyl-CoA in vitro, undergoing a shift from a monomeric to a dimeric state, and that this ligand-binding ability is involved in erythrocytic membrane phosphatidylcholine (PC) remodeling but not in protein acylation.  相似文献   

17.
Acyl-CoA-binding protein (ACBP) was purified from rat liver. The Mr was determined as 9932 +/- 10 by mass spectrometry and calculated as 9937.8 from the sequence. The protein binds acyl-CoA esters (C8-C16) with high affinity, but was unable to bind fatty acids. ACBP was found mainly (86%) in the soluble fraction, and the concentration was highest in liver, 5-6 micrograms/mg of soluble protein. The complete primary structure was determined by a combination of gas-phase Edman degradations and mass spectrometry. Extensive use of 252Cf plasma-desorption mass spectrometry facilitated the identification and verification of peptides. Comparison with the previously determined sequence of bovine acyl-CoA-binding protein revealed a very strong sequence similarity (83%), and all of the differences could be accounted for by single base changes.  相似文献   

18.
19.
The carnitine palmitoyltransferase activity of various subcellular preparations measured with octanoyl-CoA as substrate was markedly increased by bovine serum albumin at low M concentrations of octanoyl-CoA. However, even a large excess (500 M) of this acyl-CoA did not inhibit the activity of the mitochondrial outer carnitine palmitoyltransferase, a carnitine palmitoyltransferase isoform that is particularly sensitive to inhibition by low M concentrations of palmitoyl-CoA. This bovine serum albumin stimulation was independent of the salt activation of the carnitine palmitoyltransferase activity. The effects of acyl-CoA binding protein (ACBP) and the fatty acid binding protein were also examined with palmitoyl-CoA as substrate. The results were in line with the findings of stronger binding of acyl-CoA to ACBP but showed that fatty acid binding protein also binds acyl-CoA esters. Although the effects of these proteins on the outer mitochondrial carnitine palmitoyltransferase activity and its malonyl-CoA inhibition varied with the experimental conditions, they showed that the various carnitine palmitoyltransferase preparations are effectively able to use palmitoyl-CoA bound to ACBP in a near physiological molar ratio of 1:1 as well as that bound to the fatty acid binding protein. It is suggested that the three proteins mentioned above effect the carnitine palmitoyltransferase activities not only by binding of acyl-CoAs, preventing acyl-CoA inhibition, but also by facilitating the removal of the acylcarnitine product from carnitine palmitoyltransferase. These results support the possibility that the acyl-CoA binding ability of acyl-CoA binding protein and of fatty acid binding protein have a role in acyl-CoA metabolismin vivo.Abbreviations ACBP acyl-CoA binding protein - BSA bovine serum albumin - CPT carnitine palmitoyltransferase - CPT0 malonyl-CoA sensitive CPT of the outer mitochondrial membrane - CPT malonyl-CoA insensitive CPT of the inner mitochondrial membrane - OG octylglucoside - OMV outer membrane vesicles - IMV inner membrane vesicles Affiliated to the Department of Experimental Medicine, University of Montreal  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号