首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genetic composition of the Russian population was investigated by analyzing both mitochondrial DNA (mtDNA) and Y-chromosome loci polymorphisms that allow for the different components of a population gene pool to be studied, depending on the mode of DNA marker inheritance. mtDNA sequence variation was examined by using hypervariable segment I (HVSI) sequencing and restriction analysis of the haplogroup-specific sites in 325 individuals representing 5 Russian populations from the European part of Russia. The Y-chromosome variation was investigated in 338 individuals from 8 Russian populations (including 5 populations analyzed for mtDNA variation) using 12 binary markers. For both uniparental systems most of the observed haplogroups fell into major West Eurasian haplogroups (97.9% and 99.7% for mtDNA and Y-chromosome haplogroups, respectively). Multidimensional scaling analysis based on pairwise F(ST) values between mtDNA HVSI sequences in Russians compared to other European populations revealed a considerable heterogeneity of Russian populations; populations from the southern and western parts of Russia are separated from eastern and northern populations. Meanwhile, the multidimensional scaling analysis based on Y-chromosome haplogroup F(ST) values demonstrates that the Russian gene pool is close to central-eastern European populations, with a much higher similarity to the Baltic and Finno-Ugric male pools from northern European Russia. This discrepancy in the depth of penetration of mtDNA and Y-chromosome lineages characteristic for the most southwestern Russian populations into the east and north of eastern Europe appears to indicate that Russian colonization of the northeastern territories might have been accomplished mainly by males rather than by females.  相似文献   

2.
Geographic Variation in Human Mitochondrial DNA from Papua New Guinea   总被引:34,自引:3,他引:31       下载免费PDF全文
High resolution mitochondrial DNA (mtDNA) restriction maps, consisting of an average of 370 sites per mtDNA map, were constructed for 119 people from 25 localities in Papua New Guinea (PNG). Comparison of these PNG restriction maps to published maps from Australian, Caucasian, Asian and African mtDNAs reveals that PNG has the lowest amount of mtDNA variation, and that PNG mtDNA lineages originated from Southeast Asia. The statistical significance of geographic structuring of populations with respect to mtDNA was assessed by comparing observed GST values to a distribution of GST values generated by random resampling of the data. These analyses show that there is significant structuring of mtDNA variation among worldwide populations, between highland and coastal PNG populations, and even between two highland PNG populations located approximately 200 km apart. However, coastal PNG populations are essentially panmictic, despite being spread over several hundred kilometers. Highland PNG populations also have more mtDNA variability and more mtDNA types represented per founding lineage than coastal PNG populations. All of these observations are consistent with a more ancient, restricted origin of highland PNG populations, internal isolation of highland PNG populations from one another and from coastal populations, and more recent and extensive population movements through coastal PNG. An apparent linguistic effect on PNG mtDNA variation disappeared when geography was taken into account. The high resolution technique for examining mtDNA variation, coupled with extensive geographic sampling within a single defined area, leads to an enhanced understanding of the influence of geography on mtDNA variation in human populations.  相似文献   

3.
The structure of human mitochondrial DNA variation   总被引:20,自引:0,他引:20  
Summary Restriction analysis of mitochondrial DNA (mtDNA) of 3065 humans from 62 geographic samples identified 149 haplotypes and 81 polymorphic sites. These data were used to test several aspects of the evolutionary past of the human species. A dendrogram depicting the genetic relatedness of all haplotypes shows that the native African populations have the greatest diversity and, consistent with evidence from a variety of sources, suggests an African origin for our species. The data also indicate that two individuals drawn, at random from the entire sample will differ at approximately 0.4% of their mtDNA nucleotide sites, which is somewhat higher than previous estimates. Human mtDNA also exhibits more interpopulation heterogeneity (GST=0.351±0.025) than does nuclear DNA (GST=0.12). Moreover, the virtual absence of intermediate levels of linkage disequilibrium between pairs of sites is consistent with the absence of genetic recombination and places constraints on the rate of mutation. Tests of the selective neutrality of mtDNA variation, including the Ewens-Watterson and Tajima tests, indicate a departure in the direction consistent with purifying selection, but this departure is more likely due to the rapid growth of the human population and the geographic heterogeneity of the variation. The lack of a good fit to neutrality poses problems for the estimation of times of coalescence from human mtDNA data.  相似文献   

4.
Russia and western Asia harbour trout populations that have been classified as distinct species and subspecies, most often on the basis of morphological and ecological variation. In order to assess their origins and to verify whether traditional taxonomy reflects their evolutionary distinctiveness, we documented their genetic relationships on the basis of mitochondrial DNA (mtDNA) RFLP, mtDNA sequence analysis, and allozyme variation. Both mtDNA and nuclear gene variation defined two ancient phylogenetic assemblages of populations distributed among northern (Baltic, White, Barents), and southern (Black, Caspian, Aral) sea basins, between which gene flow has been possible but limited in postglacial times. These results supported the traditional taxonomic differentiation between populations of these two regions. They provided weak support for the taxonomic distinction of southern brown trout (Salmo trutta) populations based on their basin of origin. They also refuted the hypothesis that L. Sevan trout (Salmo ischchan) diverged from a primitive brown trout ancestor. Nevertheless, all trout populations from southern sea basins possessed private alleles or mtDNA genotypes and were genetically distinct Therefore, they represent unique gene pools that warrant individual recognition for conservation and management.  相似文献   

5.
We analysed mitochondrial DNA (mtDNA) variation of lake sturgeon ( Adpenser fulvescens ) from the Moose River basin. Our objective was to address various proximate and ultimate factors which may influence the distribution of lake sturgeon mtDNA haplotype lineages in this watershed. The lake sturgeon sampled were characterized by only two mtDNA hapiotypes based on a restriction fragment length polymorphism analysis with 40 restriction endonucleases and direct sequencing of 275 nucleotides in the mtDNA control region. We detected no heterogeneity in the mtDNA haplotype frequencies of lake sturgeon captured from different sites within rivers including those separated by major hydroelectric installations. However, lake sturgeon from one tributary had significantly different haplotype frequencies than those from other tributaries suggesting that they composed a discrete genetic stock. These results suggest that gene flow among most sites is significant and is an important factor affecting the distribution of mtDNA variation in this species. The genetic structuring and diversity are discussed in relation to lake sturgeon management and conservation.  相似文献   

6.
mtDNA sequence variation was examined in 60 Native Americans (Mixtecs from the Alta, Mixtecs from the Baja, Valley Zapotecs, and Highland Mixe) from southern Mexico by PCR amplification and high-resolution restriction endonuclease analysis. Four groups of mtDNA haplotypes (haplogroups A, B, C, and D) characterize Amerind populations, but only three (haplogroups A, B, and C) were observed in these Mexican populations. The comparison of their mtDNA variation with that observed in other populations from Mexico and Central America permits a clear distinction among the different Middle American tribes and raises questions about some of their linguistic affiliations. The males of these population samples were also analyzed for Y-chromosome RFLPs with the probes 49a, 49f, and 12f2. This analysis suggests that certain Y-chromosome haplotypes were brought from Asia during the colonization of the Americas, and a differential gene flow was introduced into Native American populations from European males and females.  相似文献   

7.
The yellow-footed rock-wallaby Petrogale xanthopus is considered to be potentially vulnerable to extinction. This wallaby inhabits naturally disjunct rocky outcrops which could restrict dispersal between populations, but the extent to which that occurs is unknown. Genetic differences between populations were assessed using mitochondrial DNA (control region) sequencing and analysis of variation at four microsatellite loci among three geographically close sites in south-west Queensland (P. x. celeris) and, for mtDNA only, samples from South Australia (P. x. xanthopus) as well. Populations from South Australia and Queensland had phylogenetically distinct mtDNA, supporting the present classification of these two groups as evolutionarily distinct entities. Within Queensland, populations separated by 70 km of unsuitable habitat differed significantly for mtDNA and at microsatellite loci. Populations separated by 10 km of apparently suitable habitat had statistically homogeneous mtDNA, but a significant difference in allele frequency at one microsatellite locus. Tests for Hardy-Weinberg equilibrium and micro-geographical variation at microsatellite loci did not detect any substructuring between two wallaby aggregations within a colony encircling a single rock outcrop. Although the present study was limited by small sample sizes at two of the three Queensland locations examined, the genetic results suggest that dispersal between colonies is limited, consistent with an ecological study of dispersal at one of the sites. Considering both the genetic and ecological data, we suggest that management of yellow-footed rock-wallabies should treat each colony as an independent unit and that conservation of the Queensland and South Australian populations as separate entities is warranted.  相似文献   

8.
Range-wide genetic variation of Korean pine (Pinus koraiensis) was assessed using maternally inherited mtDNA and paternally inherited cpDNA for 16 natural populations throughout northeast Asia in order to study its phylogeographical history during the Quaternary. The cpDNA variation indicated that there was no difference between populations on the Asian continent and those in the Japanese archipelago. In contrast, the mtDNA variation indicated that there was significant difference between the populations from the two regions, with each region having a different lineage. The continental populations exhibited no diversity in the mtDNA examined despite the species’ current extensive range and large populations. Conversely, while the Korean pine is rare in Japan, the Japanese populations exhibited greater levels of mtDNA diversity (H T?=?0.502). The higher mtDNA diversity and evidence from numerous Korean pine macrofossil remains dated to the Pleistocene and recovered various sites in Japan suggest that the Japanese archipelago once served as a refugium to a much larger Korean pine population with a more extensive range than is the case today. The presence of the single mtDNA haplotype across the Asian continent suggests that the present widespread populations could have expanded from a single refugium population after the last glacial periods.  相似文献   

9.
The number of Asian black bears (Ursus thibetanus) in Japan has been reduced and their habitats fragmented and isolated because of human activities. Our previous study examining microsatellite DNA loci revealed significant genetic differentiation among four local populations in the western part of Honshu. Here, an approximate 700-bp nucleotide sequence of mitochondrial DNA (mtDNA) control region was analysed in 119 bears to infer the evolutionary history of these populations. Thirteen variable sites and variation in the number of Ts at a T-repeat site were observed among the analysed sequences, which defined 20 mtDNA haplotypes with the average sequence divergence of 0.0051 (SD = 0.00001). The observed haplotype frequencies differed significantly among the four populations. Phylogeographic analysis of the haplotypes suggested that black bears in this region have gone through two different colonisation histories, since the observed haplotypes belonged to two major monophyletic lineages and the lineages were distributed with an apparent border. The spatial genetic structure revealed by using mtDNA was different from that observed using microsatellite DNA markers, probably due to female philopatry and male-biased dispersal. Since nuclear genetic diversity will be lost in the three western populations because of the small population size and genetic isolation, their habitats need to be preserved, and these four populations should be linked to each other by corridors to promote gene flow from the easternmost population with higher nuclear genetic diversity.  相似文献   

10.
Ecological and genetic studies of marine turtles generally support the hypothesis of natal homing, but leave open the question of the geographical scale of genetic exchange and the capacity of turtles to shift breeding sites. Here we combine analyses of mitochondrial DNA (mtDNA) variation and recapture data to assess the geographical scale of individual breeding populations and the distribution of such populations through Australasia. We conducted multiscale assessments of mtDNA variation among 714 samples from 27 green turtle rookeries and of adult female dispersal among nesting sites in eastern Australia. Many of these rookeries are on shelves that were flooded by rising sea levels less than 10 000 years (c. 450 generations) ago. Analyses of sequence variation among the mtDNA control region revealed 25 haplotypes, and their frequency distributions indicated 17 genetically distinct breeding stocks (Management Units) consisting either of individual rookeries or groups of rookeries in general that are separated by more than 500 km. The population structure inferred from mtDNA was consistent with the scale of movements observed in long-term mark-recapture studies of east Australian rookeries. Phylogenetic analysis of the haplotypes revealed five clades with significant partitioning of sequence diversity (Phi = 68.4) between Pacific Ocean and Southeast Asian/Indian Ocean rookeries. Isolation by distance was indicated for rookeries separated by up to 2000 km but explained only 12% of the genetic structure. The emerging general picture is one of dynamic population structure influenced by the capacity of females to relocate among proximal breeding sites, although this may be conditional on large population sizes as existed historically across this region.  相似文献   

11.
Mitochondrial DNA (mtDNA) genomes generally evolve rapidly in animals, but considerable variation in the rates of evolution of mtDNA occurs among taxa. Higher levels of mutation will tend to increase the amount of polymorphism, which should also scale with population size, but there are mixed signals from previous studies on the evolutionary outcomes of the interactions of these processes. The copepod Tigriopus californicus provides an interesting model in which to study the evolution of mtDNA because it has high levels of divergence among populations and there is the suggestion that this divergence could be involved in reproductive isolation. This species also appears to have an elevated mtDNA substitution rate, but previous studies did not provide an accurate measurement. This article examines the rate of mtDNA substitution versus nuclear substitution in T. californicus and finds that the mtDNA rate for synonymous sites averages 55-fold higher, a level that exceeds the rates found in most other invertebrates. Levels of polymorphism are also examined in both mtDNA and nuclear genes, and it is shown that the effective population size of mtDNA genes is much lower than that of nuclear genes. In addition, no correlation between polymorphism in mtDNA and nuclear genes is found across populations, which suggest factors other than demography may shape polymorphism in this species. The results from this study suggest that mtDNA is evolving at a very rapid rate in this copepod species, and this could increase the likelihood that mtDNA evolution is involved in the generation of reproductive isolation.  相似文献   

12.
Genetic variation in four natural populations of the starfish Linckia laevigata from the Indo-West Pacific was examined using restriction fragment analysis of a portion of the mtDNA including the control region. Digestion with seven restriction enzymes identified 47 haplotypes in a sample of 326 individuals. Samples collected from reef sites within each location were not significantly differentiated based on ΦST or spatial distribution of haplotypes, indicating that dispersal is high over short to moderate distances. Evidence of gene flow is further supported by the low divergence among haplotypes and the lack of any clear geographical structuring among different haplotypes in the gene phylogeny. However, analysis of molecular variance ( AMOVA ), ΦST and contingency χ2 analyses of the spatial distribution of haplotypes demonstrate the presence of significant broad scale population genetic structure among the four widespread locations examined. RFLP data are consistent with high gene flow between the Philippines and Western Australia and moderate gene flow between the Great Barrier Reef (GBR) and Fiji, but only limited gene flow between either the Philippines or Western Australia and either the GBR or Fiji. The presence of mtDNA structure contrasts with previous allozyme data which suggest that dispersal among widely separated locations is equivalent to dispersal among populations within the highly connected GBR studies. This discordance between patterns of gene flow inferred from these two markers cannot be fully accounted for by differences in effective population size for mtDNA. This might suggest that while mtDNA variation may represent contemporary patterns of gene flow, allozyme variation among populations is yet to reach equilibrium between drift and migration over the range surveyed.  相似文献   

13.
We used mitochondrial DNA (mtDNA) restriction analysis to study genetic variation in 98 striped dolphins (Stenella coeruleoalba) stranded on coasts from different European countries and from animals caught by fisheries. A total of 63 different restriction sites was mapped after digestion of mtDNA with 15 restriction endonucleases that yielded a total of 27 haplotypes. No haplotype was shared between Mediterranean and Atlantic areas. All the analyses indicate the existence of two different populations with a very limited gene flow across the Strait of Gibraltar.  相似文献   

14.
The variation in mitochondrial DNA (mtDNA) structure among Chinook Salmon Oncorhynchus tschawytscha Walbaum populations from Kamchatka was inferred from restriction length polymorphism analysis using eight restriction endonucleases. The nucleotide sequence variation in three amplified mtDNA regions was examined at seven polymorphic restriction sites in 579 fish from 13 localities. Based on the frequencies of 11 combined haplotypes and the number of nucleotide substitutions, the among- and within-population variation was estimated. The heterogeneity test showed highly significant differences among all the populations. The estimated maximum time of independent divergence of the Asian Chinook salmon populations, whose differences was about 0.02% nucleotide substitutions, did not exceed 10000-20000 years. Apparently, the retreat of the late Pleistocene glacier triggered spreading, recolonization, and formation of the present-day pattern of the species subdivision into structural components.  相似文献   

15.
We compared mitochondrial DNA and gill-raker number variation in populations of the European whitefish Coregonus lavaretus (L.) species complex to illuminate their evolutionary history, and discuss mechanisms behind diversification. Using single-strand conformation polymorphism (SSCP) and sequencing 528 bp of combined parts of the cytochrome oxidase b (cyt b) and NADH dehydrogenase subunit 3 (ND3) mithochondrial DNA (mtDNA) regions, we documented phylogeographic relationships among populations and phylogeny of mtDNA haplotypes. Demographic events behind geographical distribution of haplotypes were inferred using nested clade analysis (NCA) and mismatch distribution. Concordance between operational taxonomical groups, based on gill-raker numbers, and mtDNA patterns was tested. Three major mtDNA clades were resolved in Europe: a North European clade from northwest Russia to Denmark, a Siberian clade from the Arctic Sea to southwest Norway, and a South European clade from Denmark to the European Alps, reflecting occupation in different glacial refugia. Demographic events inferred from NCA were isolation by distance, range expansion, and fragmentation. Mismatch analysis suggested that clades which colonized Fennoscandia and the Alps expanded in population size 24 500-5800 years before present, with minute female effective population sizes, implying small founder populations during colonization. Gill-raker counts did not commensurate with hierarchical mtDNA clades, and poorly with haplotypes, suggesting recent origin of gill-raker variation. Whitefish designations based on gill-raker numbers were not associated with ancient clades. Lack of congruence in morphology and evolutionary lineages implies that the taxonomy of this species complex should be reconsidered.  相似文献   

16.
The variation in mitochondrial DNA (mtDNA) structure among chinook salmon Oncorhynchus tschawytscha Walbaum populations from Kamchatka was inferred from restriction length polymorphism analysis using eight restriction endonucleases. The nucleotide sequence variation in three amplified mtDNA regions was examined at seven polymorphic restriction sites in 579 fish from 13 localities. Based on the frequencies of 11 combined haplotypes and the number of nucleotide substitutions, the among-and within-population variation was estimated. The heterogeneity test showed highly significant differences among all the populations. The estimated maximum time of independent divergence of the asian chinook salmon populations, whose differences was about 0.02% nucleotide substitutions, did not exceed 10 000–20 000 years. Apparently, the retreat of the late Pleistocene glacier triggered spreading, recolonization, and formation of the present-day pattern of the species subdivision into structural components.  相似文献   

17.
Wolbachia is the most widespread endosymbiotic bacterium of insects and other arthropods that can rapidly invade host populations. Deliberate releases of Wolbachia into natural populations of the dengue fever mosquito, Aedes aegypti, are used as a novel biocontrol strategy for dengue suppression. Invasion of Wolbachia through the host population relies on factors such as high fidelity of the endosymbiont transmission and limited immigration of uninfected individuals, but these factors can be difficult to measure. One way of acquiring relevant information is to consider mitochondrial DNA (mtDNA) variation alongside Wolbachia in field-caught mosquitoes. Here we used diagnostic mtDNA markers to differentiate infection-associated mtDNA haplotypes from those of the uninfected mosquitoes at release sites. Unique haplotypes associated with Wolbachia were found at locations outside Australia. We also performed mathematical and qualitative analyses including modelling the expected dynamics of the Wolbachia and mtDNA variants during and after a release. Our analyses identified key features in haplotype frequency patterns to infer the presence of imperfect maternal transmission of Wolbachia, presence of immigration and possibly incomplete cytoplasmic incompatibility. We demonstrate that ongoing screening of the mtDNA variants should provide information on maternal leakage and immigration, particularly in releases outside Australia. As we demonstrate in a case study, our models to track the Wolbachia dynamics can be successfully applied to temporal studies in natural populations or Wolbachia release programs, as long as there is co-occurring mtDNA variation that differentiates infected and uninfected populations.  相似文献   

18.
African wild dogs are large, highly mobile carnivores that are known to disperse over considerable distances and are rare throughout much of their geographical range. Consequently, genetic variation within and differentiation between geographically separated populations is predicted to be minimal. We determined the genetic diversity of mitochondrial DNA (mtDNA) control region sequences and microsatellite loci in seven populations of African wild dogs. Analysis of mtDNA nucleotide diversity suggests that, historically, wild dog populations have been small relative to other large carnivores. However, population declines due to recent habitat loss have not caused a dramatic reduction in genetic diversity. We found one historical and eight recent mtDNA genotypes in 280 individuals that defined two highly divergent clades. In contrast to a previous, more limited, mtDNA analysis, sequences from these clades are not geographically restricted to eastern or southern African populations. Rather, we found a large admixture zone spanning populations from Botswana, Zimbabwe and south-eastern Tanzania. Mitochondrial and microsatellite differentiation between populations was significant and unique mtDNA genotypes and alleles characterized the populations. However, gene flow estimates (Nm) based on microsatellite data were generally greater than one migrant per generation. In contrast, gene flow estimates based on the mtDNA control region were lower than expected given differences in the mode of inheritance of mitochondrial and nuclear markers which suggests a male bias in long-distance dispersal.  相似文献   

19.
Geographic variation in mitochondrial DNA (mtDNA) restriction sites was studied in samples of two sympatric passerine birds, fox (Passerella iliaca) and song (Melospiza melodia) sparrows, collected at the same sites in the western United States. Different levels of variation and differentiation were observed in each species. In 46 fox sparrows taken at nine sites, five clones were observed, partitioned into two distinct east-west groups that meet at the Great Basin-Sierra Nevada interface; percent nucleotide divergence was 0.86 between groups and 0.08 within groups. An additional 43 individuals were examined using at least one of seven diagnostic endonucleases, and all supported the east-west groupings. Considering common mtDNA haplotypes as alleles, an FST of 0.50 was computed, which is an order of magnitude greater than that computed from allozyme comparisons (0.019); mtDNA analyses suggest little intergroup gene exchange. Compared to allozymic variation, analysis of mtDNA revealed a greater degree of population structuring and greater consistency with broad patterns of morphological variation. Fifteen clones were observed in 27 song sparrows taken at seven of the same sites at which fox sparrows were sampled; the percent nucleotide divergence averaged 0.27. There was no detectable geographic pattern to the variation, and no evidence of an east-west division as in the fox sparrow. However, the mosaic nature of mtDNA variation in song sparrows suggests limited gene exchange. Considering the 15 clones as alleles yielded an Fst of 0.24, which is reduced to 0.039 when corrected for sampling error. In spite of occupying the same geographic area, mtDNA analyses showed that the two species (or at least their mtDNA gene genealogies) have had different evolutionary histories.  相似文献   

20.
We surveyed mtDNA restriction-site variation in song sparrows taken from across their continental range. Despite marked geographic variation in size and plumage color, mtDNA variation was not geographically structured. Subspecies were not identifiable by mtDNA analysis. We suggest that postglaciation dispersal scattered mtDNA haplotypes across the continent, explaining the lack of mtDNA geographic patterns. Evolution of size and plumage coloration has probably proceeded faster than mtDNA evolution, leading to the well-structured continental pattern of morphological variation. We suggest that the nonordered geographic distribution of haplotypes reflects the recency of population establishment following completion of range expansion. Dispersal distance was estimated from the mtDNA data at 6.1 km per generation, an order of magnitude greater than that (0.3 km) estimated from demographic data. Island samples were not especially different from continental ones. Rooting the haplotype cladogram with a putative primitive haplotype identified Newfoundland and the Queen Charlotte Islands as potential sites of recent refugia. We question whether study of geographic variation in song sparrows leads to insights concerning speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号