首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The Rab-specific alphaGDP-dissociation inhibitor (alphaGDI) regulates the recycling of Rab GTPases. We have now identified a novel alphaGDI complex from synaptic membranes that contains three chaperone components: Hsp90, Hsc70 and cysteine string protein (CSP). We find that the alphaGDI-chaperone complex is dissociated in response to Ca(2+)-induced neurotransmitter release, that chaperone complex dissociation is sensitive to the Hsp90 inhibitor geldanamycin (GA) and that GA inhibits the ability of alphaGDI to recycle Rab3A during neurotransmitter release. We propose that alphaGDI interacts with a specialized membrane-associated Rab recycling Hsp90 chaperone system on the vesicle membrane to coordinate the Ca(2+)-dependent events triggering Rab-GTP hydrolysis with retrieval of Rab-GDP to the cytosol.  相似文献   

5.
Rab GTPase regulated hubs provide a framework for an integrated coding system, the membrome network, that controls the dynamics of the specialized exocytic and endocytic membrane architectures found in eukaryotic cells. Herein, we report that Rab recycling in the early exocytic pathways involves the heat-shock protein (Hsp)90 chaperone system. We find that Hsp90 forms a complex with guanine nucleotide dissociation inhibitor (GDI) to direct recycling of the client substrate Rab1 required for endoplasmic reticulum (ER)-to-Golgi transport. ER-to-Golgi traffic is inhibited by the Hsp90-specific inhibitors geldanamycin (GA), 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), and radicicol. Hsp90 activity is required to form a functional GDI complex to retrieve Rab1 from the membrane. Moreover, we find that Hsp90 is essential for Rab1-dependent Golgi assembly. The observation that the highly divergent Rab GTPases Rab1 involved in ER-to-Golgi transport and Rab3A involved in synaptic vesicle fusion require Hsp90 for retrieval from membranes lead us to now propose that the Hsp90 chaperone system may function as a general regulator for Rab GTPase recycling in exocytic and endocytic trafficking pathways involved in cell signaling and proliferation.  相似文献   

6.
Hsp90 canalizes developmental perturbation   总被引:2,自引:0,他引:2  
Stochastic processes are intrinsic phenomena that perturb developmental processes. However, the canalization process restricts the magnitude of perturbation and hence the magnitude of morphological variation during development. Heat-shock protein 90 (Hsp90) chaperones are a class of proteins stabilizing a network of 'client' proteins that are involved in diverse signal transduction pathways affecting development. Here it is reported that a reduction of Hsp90 gene dose creates canalization perturbations that affect many aspects of Arabidopsis development and results in a plethora of morphological alterations. Hence, Hsp90 restricts stochastic phenomena by minimizing perturbations, thereby canalizing development. It is also shown that morphogenesis is determined by three mutually inter-related parameters: genotype, environment, and time. Hsp90 is involved in the interaction of these three parameters which ultimately affect developmental processes. The amount of phenotypic variation upon the reduction of Hsp90 function could be perceived as adaptive and could have an impact on the evolutionary process.  相似文献   

7.
Hsp90 is an essential molecular chaperone required for the folding and activation of many hundreds of cellular "client" proteins. The ATP-dependent chaperone cycle involves significant conformational rearrangements of the Hsp90 dimer and interaction with a network of cochaperone proteins. Little is known about the mechanism of client protein binding or how cochaperone interactions modulate Hsp90 conformational states. We have determined the cryo-EM structure of the human Hsp90:Hop complex that receives client proteins from the Hsp70 chaperone. Hop stabilizes an alternate Hsp90 open state, where hydrophobic client-binding surfaces have converged and the N-terminal domains have rotated and match the closed, ATP conformation. Hsp90 is thus simultaneously poised for client loading by Hsp70 and subsequent N-terminal dimerization and ATP hydrolysis. Upon binding of a single Hsp70, the Hsp90:Hop conformation remains essentially unchanged. These results identify distinct functions for the Hop cochaperone, revealing an asymmetric mechanism for Hsp90 regulation and client loading.  相似文献   

8.
Substrate transfer from the chaperone Hsp70 to Hsp90   总被引:5,自引:0,他引:5  
Hsp90 is an essential chaperone protein in the cytosol of eukaryotic cells. It cooperates with the chaperone Hsp70 in defined complexes mediated by the adaptor protein Hop (Sti1 in yeast). These Hsp70/Hsp90 chaperone complexes play a major role in the folding and maturation of key regulatory proteins in eukaryotes. Understanding how non-native client proteins are transferred from one chaperone to the other in these complexes is of central importance. Here, we analyzed the molecular mechanism of this reaction using luciferase as a substrate protein. Our experiments define a pathway for luciferase folding in the Hsp70/Hsp90 chaperone system. They demonstrate that Hsp70 is a potent capture device for unfolded protein while Hsp90 is not very efficient in this reaction. When Hsp90 is absent, in contrast to the in vivo situation, Hsp70 together with the two effector proteins Ydj1 and Sti1 exhibits chaperone activity towards luciferase. In the presence of the complete chaperone system, Hsp90 exhibits a specific positive effect only in the presence of Ydj1. If this factor is absent, the transferred luciferase is trapped on Hsp90 in an inactive conformation. Interestingly, identical results were observed for the yeast and the human chaperone systems although the regulatory function of human Hop is completely different from that of yeast Sti1.  相似文献   

9.
Hsp90 reaches new heights. Conference on the Hsp90 chaperone machine   总被引:2,自引:0,他引:2  
  相似文献   

10.
Conformational dynamics of the molecular chaperone Hsp90   总被引:1,自引:0,他引:1  
The ubiquitous molecular chaperone Hsp90 makes up 1-2% of cytosolic proteins and is required for viability in eukaryotes. Hsp90 affects the folding and activation of a wide variety of substrate proteins including many involved in signaling and regulatory processes. Some of these substrates are implicated in cancer and other diseases, making Hsp90 an attractive drug target. Structural analyses have shown that Hsp90 is a highly dynamic and flexible molecule that can adopt a wide variety of structurally distinct states. One driving force for these rearrangements is the intrinsic ATPase activity of Hsp90, as seen with other chaperones. However, unlike other chaperones, studies have shown that the ATPase cycle of Hsp90 is not conformationally deterministic. That is, rather than dictating the conformational state, ATP binding and hydrolysis only shift the equilibria between a pre-existing set of conformational states. For bacterial, yeast and human Hsp90, there is a conserved three-state (apo-ATP-ADP) conformational cycle; however; the equilibria between states are species specific. In eukaryotes, cytosolic co-chaperones regulate the in vivo dynamic behavior of Hsp90 by shifting conformational equilibria and affecting the kinetics of structural changes and ATP hydrolysis. In this review, we discuss the structural and biochemical studies leading to our current understanding of the conformational dynamics of Hsp90, as well as the roles that nucleotide, co-chaperones, post-translational modification and substrates play. This view of Hsp90's conformational dynamics was enabled by the use of multiple complementary structural methods including, crystallography, small-angle X-ray scattering (SAXS), electron microscopy, F?rster resonance energy transfer (FRET) and NMR. Finally, we discuss the effects of Hsp90 inhibitors on conformation and the potential for developing small molecules that inhibit Hsp90 by disrupting the conformational dynamics.  相似文献   

11.
The molecular chaperone Hsp90 modulates the function of specific cell signaling proteins. Although targeting Hsp90 with the antibiotic inhibitor geldanamycin (GA) may be a promising approach for cancer treatment, little is known about the determinants of Hsp90 interaction with its client proteins. Here we identify a loop within the N lobe of the kinase domain of ErbB2 that determines Hsp90 binding. The amino acid sequence of the loop determines the electrostatic and hydrophobic character of the protein's surface, which in turn govern interaction with Hsp90. A point mutation within the loop that alters ErbB2 surface properties disrupts Hsp90 association and confers GA resistance. Notably, the immature ErbB2 point mutant remains sensitive to GA, suggesting that mature and nascent client kinases may use distinct motifs to interact with the Hsp90 chaperone complex.  相似文献   

12.
The Hsp90 chaperoning pathway and its model client substrate, the progesterone receptor (PR), have been used extensively to study chaperone complex formation and maturation of a client substrate in a near native state. This chaperoning pathway can be reconstituted in vitro with the addition of five proteins plus ATP: Hsp40, Hsp70, Hop, Hsp90, and p23. The addition of these proteins is necessary to reconstitute hormone-binding capacity to the immuno-isolated PR. It was recently shown that the first step for the recognition of PR by this system is binding by Hsp40. We compared type I and type II Hsp40 proteins and created point mutations in Hsp40 and Hsp70 to understand the requirements for this first step. The type I proteins, Ydj1 and DjA1 (HDJ2), and a type II, DjB1 (HDJ1), act similarly in promoting hormone binding and Hsp70 association to PR, while having different binding characteristics to PR. Ydj1 and DjA1 bind tightly to PR whereas the binding of DjB1 apparently has rapid on and off rates and its binding cannot be observed by antibody pull-down methods using either purified proteins or cell lysates. Mutation studies indicate that client binding, interactions between Hsp40 and Hsp70, plus ATP hydrolysis by Hsp70 are all required to promote conformational maturation of PR via the Hsp90 pathway.  相似文献   

13.
In response to DNA damage, p53-induced protein with a death domain (PIDD) forms a complex called the PIDDosome, which either consists of PIDD, RIP-associated protein with a death domain and caspase-2, forming a platform for the activation of caspase-2, or contains PIDD, RIP1 and NEMO, important for NF-κB activation. PIDDosome activation is dependent on auto-processing of PIDD at two different sites, generating the fragments PIDD-C and PIDD-CC. Despite constitutive cleavage, endogenous PIDD remains inactive. In this study, we screened for novel PIDD regulators and identified heat shock protein 90 (Hsp90) as a major effector in both PIDD protein maturation and activation. Hsp90, together with p23, binds PIDD and inhibition of Hsp90 activity with geldanamycin efficiently disrupts this association and impairs PIDD auto-processing. Consequently, both PIDD-mediated NF-κB and caspase-2 activation are abrogated. Interestingly, PIDDosome formation itself is associated with Hsp90 release. Characterisation of cytoplasmic and nuclear pools of PIDD showed that active PIDD accumulates in the nucleus and that only cytoplasmic PIDD is bound to Hsp90. Finally, heat shock induces Hsp90 release from PIDD and PIDD nuclear translocation. Thus, Hsp90 has a major role in controlling PIDD functional activity.  相似文献   

14.
The heat shock protein 90 (Hsp90) is a molecular chaperone central to client protein folding and maturation in eukaryotic cells. During its chaperone cycle, Hsp90 undergoes ATPase-coupled large-scale conformational changes between open and closed states, where the N-terminal and middle domains of the protein form a compact dimerized conformation. However, the molecular principles of the switching motion between the open and closed states remain poorly understood. Here we show by integrating atomistic and coarse-grained molecular simulations with small-angle X-ray scattering experiments and NMR spectroscopy data that Hsp90 exhibits rich conformational dynamics modulated by the charged linker, which connects the N-terminal with the middle domain of the protein. We show that the dissociation of these domains is crucial for the conformational flexibility of the open state, with the separation distance controlled by a β-sheet motif next to the linker region. Taken together, our results suggest that the conformational ensemble of Hsp90 comprises highly extended states, which could be functionally crucial for client processing.  相似文献   

15.
Information from X-ray crystal structures were used to optimize the potency of a HTS hit in a Hsp90 competitive binding assay. A class of novel and potent small molecule Hsp90 inhibitors were thereby identified. Enantio-pure compounds 31 and 33 were potent in PGA-based competitive binding assay and inhibited proliferation of various human cancer cell lines in vitro, with IC(50) values averaging 20 nM.  相似文献   

16.
As one of the major cellular chaperones, Hsp90 plays diverse roles in supporting and regulating wild-type and oncogenic signal transduction proteins. Hsp90 function itself is regulated by its various nonsubstrate subunits. To define Hsp90's predominant in vivo functions and the mechanisms for regulating this function, the human Hsp90 interactome was characterized using gel-based proteomics techniques. Results show that Hsp90's most prominent association is its previously described interaction with Hsp70, a primary chaperone capable of recognizing and binding hydrophobic peptide segments. Additionally, novel human proteins discovered in this study reveal that several newly described Hsp90 associations in yeast are conserved in the human cytoplasm. Additionally, other new Hsp90 subunits imply that a great deal of Hsp90 function may be directed to the assembly, regulation, or exploitation of the tubulin-based cytoskeleton network, particularly the mitotic spindle.  相似文献   

17.
Altered states: selectively drugging the Hsp90 cancer chaperone   总被引:7,自引:0,他引:7  
The molecular chaperone Hsp90 is an exciting cancer drug target. The first Hsp90 inhibitor to enter clinical trials--the geldanamycin derivative 17AAG--has recently demonstrated proof-of-concept for successful target modulation, with sighs of therapeutic benefit. An important property of Hsp90 inhibitors is their ability to cause simultaneous, combinatorial blockade of multiple cancer-causing pathways by promoting the degradation of many oncogenic client proteins. However, the reason for therapeutic selectivity in cancer cells versus normal cells is unclear. New research now shows that Hsp90 exists in cancer cells in a heightened, activated state that is highly susceptible to inhibition by 17AAG.  相似文献   

18.
Although calmodulin is known to be a component of the Hsp70/Hsp90 multichaperone complex, the functional role of the protein remains uncertain. In this study, we have identified S100A1, but not calmodulin or other S100 proteins, as a potent molecular chaperone and a new member of the multichaperone complex. Glutathione S-transferase pull-down assays and co-immunoprecipitation experiments indicated the formation of stable complexes between S100A1 and Hsp90, Hsp70, FKBP52, and CyP40 both in vitro and in mammalian cells. S100A1 potently protected citrate synthase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, and rhodanese from heat-induced aggregation and suppressed the aggregation of chemically denatured rhodanese and citrate synthase during the refolding pathway. In addition, S100A1 suppressed the heat-induced inactivation of citrate synthase activity, similar to that for Hsp90 and p23. The chaperone activity of S100A1 was antagonized by calmodulin antagonists, such as fluphenazine and prenylamine, that is, indeed an intrinsic function of the protein. The overexpression of S100A1 in COS-7 cells protected transiently expressed firefly luciferase and Escherichia coli beta-galactosidase from inactivation during heat shock. The results demonstrate a novel physiological function for S100A1 and bring us closer to a comprehensive understanding of the molecular mechanisms of the Hsp70/Hsp90 multichaperone complex.  相似文献   

19.
REV1 is a Y-family polymerase that plays a central role in mutagenic translesion DNA synthesis (TLS), contributing to tumor initiation and progression. In a current model, a monoubiquitinated form of the replication accessory protein, proliferating cell nuclear antigen (PCNA), serves as a platform to recruit REV1 to damaged sites on the DNA template. Emerging evidence indicates that posttranslational mechanisms regulate REV1 in yeast; however, the regulation of REV1 in higher eukaryotes is poorly understood. Here we show that the molecular chaperone Hsp90 is a critical regulator of REV1 in human cells. Hsp90 specifically binds REV1 in vivo and in vitro. Treatment with a specific inhibitor of Hsp90 reduces REV1 protein levels in several cell types through proteasomal degradation. This is associated with suppression of UV-induced mutagenesis. Furthermore, Hsp90 inhibition disrupts the interaction between REV1 and monoubiquitinated PCNA and suppresses UV-induced focus formation. These results indicate that Hsp90 promotes folding of REV1 into a stable and/or functional form(s) to bind to monoubiquitinated PCNA. The present findings reveal a novel role of Hsp90 in the regulation of TLS-mediated mutagenesis.  相似文献   

20.
Hsp90 is an essential molecular chaperone in the eukaryotic cytosol. Its function is modulated by cochaperones and posttranslational modifications. Importantly, the phosphatase Ppt1 is a dedicated regulator of the Hsp90 chaperone system. Little is known about Ppt1-dependent phosphorylation sites and how these affect Hsp90 activity. Here, we identified the major phosphorylation sites of yeast Hsp90 in its middle or the C-terminal domain and determined the subset regulated by Ppt1. In general, phosphorylation decelerates the Hsp90 machinery, reduces chaperone function in vivo, sensitizes yeast cells to Hsp90 inhibition and affects DNA repair processes. Modification of one particular site (S485) is lethal, whereas others modulate Hsp90 activity via distinct mechanisms affecting the ATPase activity, cochaperone binding and manipulating conformational transitions in Hsp90. Our mechanistic analysis reveals that phosphorylation of Hsp90 permits a regulation of the conformational cycle at distinct steps by targeting switch points for the communication of remote regions within Hsp90.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号