首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
An in silico peptide design strategy is conducted in order to introduce a novel series of pertuzumab mimetic peptides, aimed to target the extracellular domain of HER-2 and prevent its signal transduction. A combination of alanine scanning and contact surface analysis is employed to assess the pertuzumab paratope, HER-2 epitope and their hot spots. Furthermore, the recognised residues are utilised to construct nine 10-mer peptides. Some of the peptides are modified pertuzumab paratope sequences, whereas the others are designed and modified as strongly binding complementary peptides for HER-2 epitope. Evaluation of the peptides is carried out through homology modelling, molecular dynamics simulation (MDS) and docking. It was revealed that all peptides mimic pertuzumab performance since they exhibit noticeable binding interaction energies, inhibitory efficiencies and number of hot spots. However, YNDSTHGERL with five hot spots and considerable interaction energy has the highest ability in interfering with HER-2-specific epitope. Inhibiting potency of this peptide is verified through MDSs.  相似文献   

2.
Trastuzumab is a growth-inhibitory humanized Ab targeting the oncogenic protein HER-2/neu. Although trastuzumab is approved for treatment of advanced breast cancer, a number of concerns exist with passive immunotherapy. Treatment is expensive and has a limited duration of action, necessitating repeated administrations of the mAb. Active immunotherapy with conformational B cell epitopes affords the possibility of generating an enduring immune response, eliciting protein-reactive high-affinity anti-peptide Abs. The three-dimensional structure of human HER-2 in complex with trastuzumab reveals that the Ag-binding region of HER-2 spans residues 563-626 that comprises an extensive disulfide-bonding pattern. To delineate the binding region of HER-2, we have designed four synthetic peptides with different levels of conformational flexibility. Chimeric peptides incorporating the measles virus fusion "promiscuous" T cell epitope via a four-residue linker sequence were synthesized, purified, and characterized. All conformational peptides were recognized by trastuzumab and prevented the function of trastuzumab inhibiting tumor cell proliferation, with 563-598 and 597-626 showing greater reactivity. All epitopes were immunogenic in FVB/N mice with Abs against 597-626 and 613-626 recognizing HER-2. The 597-626 epitope was immunogenic in outbred rabbits eliciting Abs which recognized HER-2, competed with trastuzumab for the same epitope, inhibited proliferation of HER-2-expressing breast cancer cells in vitro and caused their Ab-dependent cell-mediated cytotoxicity. Moreover, immunization with the 597-626 epitope significantly reduced tumor burden in transgenic BALB-neuT mice. These results suggest the peptide B cell immunogen is appropriate as a vaccine for HER-2-overexpressing cancers because the resulting Abs show analogous biological properties to trastuzumab.  相似文献   

3.
Human epidermal growth factor receptor-2 (HER-2)/neu (ErbB2), a member of the epidermal growth factor family of receptors, is overexpressed in 20-30% of breast cancers. It is an attractive target for receptor-directed antitumor therapy using mAbs. Unlike other epidermal growth factor receptor family members, HER-2/neu does not bind a high-affinity ligand, but rather functions as the preferred dimerization partner. Pertuzumab (Omnitarg) is a humanized mAb directed against the HER-2/neu dimerization domain that inhibits receptor signaling. The recent definition of the crystal structure of the HER-2/neu-pertuzumab complex demonstrated that the receptor dimerization region encompassed residues 266-333. Based on the three-dimensional structure of the complex, we have designed three conformational peptide constructs (sequences 266-296, 298-333, and 315-333) to mimic regions of the dimerization loop of the receptor and to characterize their in vitro and in vivo antitumor efficacy. All the constructs elicited high-affinity peptide Abs that inhibited multiple signaling pathways including HER-2/neu-specific inhibition of cellular proliferation and cytoplasmic receptor domain phosphorylation. All the peptide Abs showed Ab-dependent cellular cytotoxicity to varying degrees with the 266-296 constructs being equally effective as compared with Herceptin. The 266-296 peptide vaccine had statistically reduced tumor onset in both transplantable tumor models (FVB/n and BALB/c) and significant reduction in tumor development in two transgenic mouse tumor models (BALB-neuT and VEGF(+/-)Neu2-5(+/-)). The 266-296 construct represents the most promising candidate for antitumor vaccination and could also be used to treat a variety of cancers with either normal or elevated expression of HER-2 including breast, lung, ovarian, and prostate.  相似文献   

4.
三羟异黄酮(genistein)是大豆中的一种非营养成分,其结构与黄酮化合物类似,能竞争性地与雌激素受体结合,故称之为植物雌激素(phytoestmgen)。它具有广泛的生物学作用,如抗肿瘤、抗病毒、抗真菌、抗氧化、抗突变、抗高血压、抗增生等,其中genistein抑制肿瘤的血管生成是当前研究的热点之一。  相似文献   

5.
Immunogenic HER-2/neu peptides as tumor vaccines   总被引:6,自引:0,他引:6  
During the last decade, a large number of tumor-associated antigens (TAA) have been identified, which can be recognized by T cells. This has led to renewed interest in the use of active immunization as a modality for the treatment of cancer. HER-2/neu is a 185-KDa receptor-like glycoprotein that is overexpressed by a variety of tumors including breast, ovarian, lung, prostate and colorectal carcinomata. Several immunogenic HER-2/neu peptides recognized by cytotoxic T lymphocytes (CTL) or helper T lymphocytes (TH) have been identified thus far. Patients with HER-2/neu over-expressing cancers exhibit increased frequencies of peripheral blood T cells recognizing immunogenic HER-2/neu peptides. Various protocols for generating T cell-mediated immune responses specific for HER-2/neu peptides have been examined in pre-clinical models or in clinical trials. Vaccination studies in animals utilizing HER-2/neu peptides have been successful in eliminating tumor growth. In humans, however, although immunological responses have been detected against the peptides used for vaccination, no clinical responses have been described. Because HER-2/neu is a self-antigen, functional immune responses against it may be limited through tolerance mechanisms. Therefore, it would be interesting to determine whether abrogation of tolerance to HER-2/neu using appropriate adjuvants and/or peptide analogs may lead to the development of immune responses to HER-2/neu epitopes that can be of relevance to cancer immunotherapy. Vaccine preparations containing mixtures of HER-2/neu peptides and peptide from other tumor-related antigens might also enhance efficacy of therapeutic vaccination. This article is a symposium paper from the conference “Progress in Vaccination against Cancer 2004 (PIVAC 4)”, held in Freudenstadt-Lauterbad, Black Forest, Germany, on 22–25 September 2004  相似文献   

6.
BACKGROUND: The failure to respond to chemotherapy is a major obstacle in the successful treatment of breast cancer. We have previously shown that anti-HER-2 antisense oligonucleotide (AS HER-2 ODN) treatment was able to sensitize breast cancer cells to various chemotherapeutic agents in vitro irrespective of their HER-2 status, indicating that the use of AS HER-2 ODN therapy for breast cancer is not limited to tumors overexpressing the protein. One of the main drawbacks to the use of antisense therapy in the clinical setting is the lack of an efficient, tumor-targeting, systemic delivery method. We have developed a tumor-specific, ligand-targeting, cationic liposome delivery system designed for systemic gene therapy of cancer. In this study we employ this ligand-liposome strategy to enhance the delivery of the AS Her-2 ODN to breast cancer cells, including those that do not overexpress HER-2, in vitro and in vivo. MATERIALS AND METHODS: A cationic liposome complex that includes folate as the targeting ligand was designed and optimized for more efficient delivery of AS HER-2 ODN to breast tumors cells in vitro, and more significantly, for systemic delivery with tumor-specific targeting in vivo. Human breast cancer cell line MDA-MB-435, which does not overexpress HER-2, was used to compare the degree of chemosensitization to the taxanes of AS HER-2 ODN delivered via the optimized folate-liposome versuscommercial Lipofectin. MDA-MB-435 xenograft tumors were also used to evaluate the anti-tumor effect of the combination of systemically delivered folate-liposome-AS HER-2 ODN and docetaxel (Taxotere). RESULTS: The optimized folate-liposome-AS HER-2 ODN complex significantly increases the response of breast tumor cell lines to conventional chemotherapeutic agents in vitro as compared to AS HER-2 delivered via an unliganded commercially available reagent, Lipofectin. In vivo, the folate-liposome-AS HER-2 ODN complex has prolonged stability in blood and increased uptake in tumors. More significantly, the combination of intravenously administered ligand-liposome-AS HER-2 ODN and docetaxel resulted in a marked inhibition of xenograft growth in an aggressive breast cancer model that does not overexpress HER-2, even after treatment ended. CONCLUSIONS: Although there are other reports of liposomal delivery of AS ODNs, this is the first report of in vivo efficacy against human cancer cells using a tumor-targeting liposome delivery system for systemic AS therapy. Moreover, the increased stability in circulation and anti-tumor efficacy observed were obtained without the need for continuous intravenous infusion. HER-2 is an integral component within a network of cell growth pathways that can affect many different types of tumors where HER-2 may be a contributing factor, such as ovarian, esophageal, and GI malignancies including colon and pancreatic cancers. Therefore, the effectiveness of this therapy with xenograft tumors that do not overexpress HER-2 has the potential to expand the clinical usefulness of this efficacious form of therapy.  相似文献   

7.
三羟异黄酮(genistein)是大豆中的一种非营养成分,其结构与黄酮化合物类似,能竞争性地与雌激素受体结合,故称之为植物雌激素(phytoestrogen)。它具有广泛的生物学作用,如抗肿瘤、抗病毒、抗真菌、抗氧化、抗突变、抗高血压、抗增生等,其中genistein抑制肿瘤的血管生成是当前研究的热点之一。肿瘤的血管生成是肿瘤进一步生长转移的基础,该过程受肿瘤细胞和血管内皮细胞分泌的血管生成相关因  相似文献   

8.
With the aid of computational biology, we have studied the possibility of predicting the peptides able to evoke humoral immune response by using as experimental model the human HER-2/neu breast cancer-associated antigen. We already demonstrated that HER-2/neu peptides, that are the target of humoral human and mouse immune responses, correspond to those sequences having a low degree of sequence similarity to host's proteome. Here we report that the linear peptide determinant of the anti-HER-2/neu MAb-3 is characterized by a low degree of sequence similarity to mouse proteome in combination with high binding potential to specific MHC II molecule.  相似文献   

9.
We have demonstrated that coupling an immunoregulatory segment of the MHC class II-associated invariant chain (Ii), the Ii-Key peptide, to a promiscuous MHC class II epitope significantly enhances its presentation to CD4+ T cells. Here, a series of homologous Ii-Key/HER-2/neu(776-790) hybrid peptides, varying systematically in the length of the epitope(s)-containing segment, are significantly more potent than the native peptide in assays using T cells from patients with various types of tumors overexpressing HER-2/neu. In particular, priming normal donor and patient PBMCs with Ii-Key hybrid peptides enhances recognition of the native peptide either pulsed onto autologous dendritic cells (DCs) or naturally presented by IFN-gamma-treated autologous tumor cells. Moreover, patient-derived CD4+ T cells primed with the hybrid peptides provide a significantly stronger helper effect to autologous CD8+ T cells specific for the HER-2/neu(435-443) CTL epitope, as illustrated by either IFN-gamma ELISPOT assays or specific autologous tumor cell lysis. Hybrid peptide-specific CD4+ T cells strongly enhanced the antitumor efficacy of HER-2/neu(435-443) peptide-specific CTL in the therapy of xenografted SCID mice inoculated with HER-2/neu overexpressing human tumor cell lines. Our data indicate that the promiscuously presented vaccine peptide HER-2/neu(776-790) is amenable to Ii-Key-enhancing effects and supports the therapeutic potential of vaccinating patients with HER-2/neu+ tumors with such Ii-Key/HER-2/neu(776-790) hybrid peptides.  相似文献   

10.
Angiogenesis, or formation of new blood vessels, is crucial to cancer tumor growth. Tumor growth, progression, and metastasis are critically influenced by the production of the pro-angiogenic vascular endothelial growth factor (VEGF). Promising anti-angiogenic drugs are currently available; however, their susceptibilities to drug resistance and long term toxicity are serious impediments to their use, thus requiring the development of new therapeutic approaches for safe and effective angiogenic inhibitors. In this work, peptides were designed to mimic the VEGF-binding site to its receptor VEGFR-2. The VEGF conformational peptide mimic, VEGF-P3(CYC), included two artificial cysteine residues, which upon cyclization constrained the peptide in a loop native-like conformation to better mimic the anti-parallel structure of VEGF. The engineered cyclic VEGF mimic peptide demonstrated the highest affinity to VEGFR-2 by surface plasmon resonance assay. The VEGF peptide mimics were evaluated as inhibitors in several in vitro assays in which VEGF-dependent signaling pathways were observed. All VEGF mimics inhibited VEGFR-2 phosphorylation with VEGF-P3(CYC) showing the highest inhibitory effects when compared with unstructured peptides. Additionally, we show in several angiogenic in vitro assays that all the VEGF mimics inhibited endothelial cell proliferation, migration, and network formation with the conformational VEGF-P3 (CYC) being the best. The VEGF-P3(CYC) also caused a significant delay in tumor development in a transgenic model of VEGF(+/-)Neu2-5(+/-). These results indicate that the structure-based design is important for the development of this peptidomimetic and for its anti-angiogenic effects.  相似文献   

11.
In the present study, we evaluated expressions of estrogen receptor (ER), progestin receptor (PR), human epidermal growth factor receptor-2 (HER-2), cyclooxygenase-2 (COX-2), and vascular endothelial growth factor (VEGF) in primary and relapsed/metastatic breast cancers to elucidate the clinical significance of these markers. The markers were evaluated by immunohistochemistry in specimens of 50 patients with primary or metastatic breast cancer. Positive rates of ER were significantly (p = 0.002) higher in primary versus relapsed/metastatic breast cancer (70 vs. 38 %, respectively). The VEGF positive expression rates were also significantly higher in primary versus metastatic cancer (82 vs. 38 %, respectively; p < 0.001). By contrast, positive rates of HER-2 and COX-2 were not significantly different between different types of cancer. COX-2 correlated with HER-2 expression in both primary and relapsed/metastatic focuses of breast cancer. COX-2 also correlated with VEGF expression in primary breast cancer. Expressions of ER, PR, HER2, and COX-2 did not correlate between primary and relapsed/metastatic breast cancers, indicating that the treatment decision should be made according to the status of these markers in relapsed/metastatic focuses. The total change rates of ER, PR, HER-2, COX-2, and VEGF were 26, 18, 10, 30, and 58 %, respectively. In conclusion, HER-2 and COX-2, along with VEGF, appear to play a role in the development and progression of breast cancer. In addition, all of the studied markers may serve as indicators of prognosis.  相似文献   

12.
One fourth of women with HER-2(+) metastatic breast carcinoma are treated with a combination regimen with trastuzumab, but the frequent resistance to this Ab requires definition of new means to improve its bioactivity. The mechanisms of action of trastuzumab involve several pathways including Ab-dependent cellular cytotoxicity. Because human γδ T lymphocytes mediate Ab-dependent cellular cytotoxicity and can be activated further by phosphoantigens, these cells are prone to improve the efficacy of Abs, as recently demonstrated for CD20(+) B cell lymphomas. Whether this concept applies as well with carcinomas remained to be demonstrated in vivo, however. In this study, we asked whether a combination of trastuzumab and phosphoantigen-stimulated γδ lymphocytes increases the efficacy of trastuzumab against HER-2(+) breast carcinoma cell lines in vivo. We report that repeated infusions of this combination had a better efficacy than that of trastuzumab alone against HER-2(+) mammary carcinoma xenografts in mice. In these models, reduction of tumor growth was observed together with trastuzumab opsonization of HER-2(+) cells and tumor infiltration by γδ lymphocytes. In addition in humans, the mammary carcinomas of 27 of 30 patients showed significant γδ T cell infiltrates. Altogether, these findings indicate that combination of trastuzumab and stimulated γδ cells represents a new strategy to improve the efficacy of Herceptin (trastuzumab) in HER-2(+) breast cancer.  相似文献   

13.
Aromatase (product of CYP19 gene), the critical enzyme in estrogen biosynthesis, is up-regulated in 70% of all breast cancers and is highly correlated with cyclooxygenase 2 (COX-2), the rate-determining enzyme in prostanoid biosynthesis. Expression of COX-2 also is correlated with the oncogene HER-2/neu. The efficacy of current endocrine therapies for breast cancer is predicted only if the tumor contains significant amounts of estrogen receptor. Because the progesterone receptor (PR) is an estrogen-induced target gene, it has been suggested that its presence may serve as an indicator of estrogen receptor functional capacity and the differentiation state of the tumor. In the present study, we tested the hypothesis that PR serves a crucial protective role by antagonizing inflammatory response pathways in the breast. We observed that progesterone antagonized the stimulatory effects of cAMP and IL-1beta on aromatase, COX-2, and HER-2/neu expression in T47D breast cancer cells. These actions of progesterone were associated with increased expression of the nuclear factor-kappaB inhibitor, IkappaBalpha. In 28 breast cancer cell lines, IkappaBalpha expression was positively correlated with PR mRNA levels; overexpression of a phosphorylation-defective mutant of IkappaBalpha inhibited expression of aromatase, COX-2, and HER-2/neu. Moreover, in breast cancer cell lines cultured in the absence of progesterone, up-regulation of endogenous PR caused decreased expression of aromatase, COX-2, and HER-2/neu expression, whereas down-regulation of endogenous PR resulted in a marked induction of aromatase and HER-2/neu mRNA. Collectively, these findings suggest that PR plays an important antiinflammatory role in breast cancer cells via ligand-dependent and ligand-independent mechanisms.  相似文献   

14.
Class I major histocompatibility complex (MHC) molecules bind short peptides derived from proteins synthesized within the cell. These complexes of peptide and class I MHC (pMHC) are transported from the endoplasmic reticulum to the cell surface. If a clonotypic T cell receptor expressed on a circulating T cell binds to the pMHC complex, the cell presenting the pMHC is killed. In this manner, some tumor cells expressing aberrant proteins are recognized and removed by the immune system. However, not all tumors are recognized efficiently. One reason hypothesized for poor T cell recognition of tumor-associated peptides is poor binding of those peptides to class I MHC molecules. Many peptides, derived from the proto-oncogene HER-2/neu have been shown to be recognized by cytotoxic T cells derived from HLA-A2(+) patients with breast cancer and other adenocarcinomas. Seven of these peptides were found to bind with intermediate to poor affinity. In particular, GP2 (HER-2/neu residues 654-662) binds very poorly even though it is predicted to bind well based upon the presence of the correct HLA-A2.1 peptide-binding motif. Altering the anchor residues to those most favored by HLA-A2.1 did not significantly improve binding affinity. The crystallographic structure shows that unlike other class I-peptide structures, the center of the peptide does not assume one specific conformation and does not make stabilizing contacts with the peptide-binding cleft.  相似文献   

15.
Previous work in both human and animal models has shown that CTL responses can be generated against proteins derived from tumors using either peptide-pulsed dendritic cells (DCs) or nucleic acids from the tumor transfected into autologous DCs. Despite the efficacy of this approach for vaccine therapy, many questions remain regarding whether the route of administration, the frequency of administration, or the type of Ag is critical to generating T cell responses to these Ags. We have investigated methods to enhance CTL responses to a peptide derived from the human proto-oncogene HER-2/neu using mice containing a chimeric HLA A2 and H2Kb allele. Changes in amino acids in the anchor positions of the peptide enhanced the binding of the peptide to HLA-A2 in vitro, but did not enhance the immunogenicity of the peptide in vivo. In contrast, when autologous DCs presented peptides, significant CTL activity was induced with the altered, but not the wild-type, peptide. We found that the route of administration affected the anatomic site and the time to onset of CTL activity, but did not impact on the magnitude of the response. To our surprise, we observed that weekly administration of peptide-pulsed DCs led to diminishing CTL activity after 6 wk of treatment. This was not found in animals injected with DCs every 3 wk for six treatments or in animals initially given DCs weekly and then injected weekly with peptide-pulsed C1R-A2 transfectants.  相似文献   

16.
Tumor angiogenesis is a critical step for the growth and metastasis of solid tumors. Vascular endothelial growth factor (VEGF) is a specific and potent angiogenic factor and contributes to the development of solid tumors by promoting tumor angiogenesis. Therefore, it is a prime therapeutic target for the development of antagonists for treatment of cancer. We identified from peptide libraries arginine-rich hexapeptides that inhibit the interaction of VEGF(165) with VEGF receptor (IC(50) = 2-4 micrometer). They have no effect on binding of basic fibroblast growth factor to cellular receptor. The hexapeptides inhibit the proliferation of human umbilical vein endothelial cells induced by VEGF(165) without toxicity. The peptides bind to VEGF and inhibit binding of both VEGF(165) and VEGF(121), suggesting that the peptides interact with the main body of VEGF but not the heparin-binding domain that is absent in VEGF(121). The identified peptides block the angiogenesis induced by VEGF(165) in vivo in the chick chorioallantoic membrane and the rabbit cornea. Furthermore, one of the hexapeptides, RRKRRR, blocks the growth and metastasis of VEGF-secreting HM7 human colon carcinoma cells in nude mice. Based on our results, the arginine-rich hexapeptides may be effective for the treatment of various human tumors and other angiogenesis-dependent diseases that are related to the action of VEGF and could also serve as leads for development of more effective drugs.  相似文献   

17.
In order to broaden the possibility for anti-HER-2/neu (HER-2) immune targeting, it is important to identify HLA-A24 restricted peptide epitopes derived from HER-2, since HLA-A24 is one of the most common alleles in Japanese and Asian people. In the present study, we have screened HER-2-derived, HLA-A24 binding peptides for cytotoxic T lymphocyte (CTL) epitopes. A panel of HER-2-derived peptides with HLA-A24 binding motifs and the corresponding analogs designed to enhance HLA-A24 binding affinity were selected. Identification of HER-2-reactive and HLA-A24 restricted CTL epitopes were performed by a reverse immunology approach. To induce HER-2-reactive and HLA-A24 restricted CTLs, PBMCs from healthy donors were repeatedly stimulated with monocytes-derived, mature DCs pulsed with HER-2 peptide. Subsequent peptide-induced T cells were tested for the specificity by enzyme linked immunospot, cytotoxicity and tetramer assays. CTL clones were then obtained from the CTL lines by limiting dilution. Of the peptides containing HLA-A24 binding motifs, 16 peptides (nine mers) including wild type peptides (IC50<1,000 nM) and substituted analog peptides (IC50<50 nM) were selected for the present study. Our studies show that an analog peptide, HER-2(905AA), derived from HER-2(905) could efficiently induce HER-2-reactive and HLA-A24 restricted CTLs. The reactivity of the HER-2(905AA)-induced CTL (CTL905AA) was confirmed by different CTL assays. The CTL905AA clones also were able to lyse HER-2(+), HLA-A24(+) tumor cells and cytotoxicity could be significantly reduced in cold target inhibition assays using cold targets pulsed with the HER-2(905) wild type peptide as well as the inducing HER-2(905AA) analog peptide. A newly identified HER-2(905) peptide epitope is naturally processed and presented as a CTL epitope on HER-2 overexpressing tumor cells, and an MHC anchor-substituted analog, HER-2(905AA), can efficiently induce HER-2-specific, HLA-A24 restricted CTLs.  相似文献   

18.
VEGF is an important mediator of pathological angiogenesis in the eye and is a target for the development of novel anti-angiogenic molecules. In a previous study we identified 12-amino acid peptides derived from exon 6 of VEGF that inhibited VEGF binding to its receptors in HUVECs, endothelial cell functions, and in vitro angiogenesis. Screening of a series of truncated peptides corresponding to the inhibitory region of exon 6 identified a seven amino acid residue peptide, RKRKKSR, as the minimum exon 6-encoded sequence which retains the ability to inhibit VEGF receptor binding and angiogenesis in vitro. The effect of the seven-residue peptide was examined in a mouse model of ischaemic retinal neovascularisation. Administration of the peptide caused a 50% inhibition of retinal neovascularisation and was as effective in inhibiting ischaemic angiogenesis as soluble Flt-1 adenovirus. These results demonstrate that a seven amino acid VEGF exon 6-derived peptide is an effective inhibitor of ocular neovascularisation in vivo, and may have applications in the treatment of pathophysiological ocular neovascularisation in human disease.  相似文献   

19.
The objectives of this work are to characterize the identity of I-domain-antigen conjugate (IDAC) and to evaluate the in vivo efficacy of IDAC in suppressing experimental autoimmune encephalomyelitis (EAE) in mouse model. The hypothesis is that the I-domain delivers PLP(139-151) peptides to antigen-presenting cells (APC) and alters the immune system by simultaneously binding to ICAM-1 and MHC-II, blocking immunological synapse formation. IDAC was synthesized by derivatizing the lysine residues with maleimide groups followed by conjugation with PLP-Cys-OH peptide. Conjugation with PLP peptide does not alter the secondary structure of the protein as determined by CD. IDAC suppresses the progression of EAE, while I-domain and GMB-I-domain could only delay the onset of EAE. As a positive control, Ac-PLP-BPI-NH(2)-2 can effectively suppress the progress of EAE. The number of conjugation sites and the sites of conjugations in IDAC were determined using tryptic digest followed by LC-MS analysis. In conclusion, conjugation of I-domain with an antigenic peptide (PLP) resulted in an active molecule to suppress EAE in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号