首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ML (MD-2 (myeloid differentiation factor-2)-related Lipid-recognition) is a conserved domain identified in MD-2, MD-1, NPC2 (Niemann-Pick disease type C2), and mite major allergen protein from animals, plants, and fungi. Vertebrate members of the ML family proteins, such as NPC2 and MD-2, play important roles in lipid metabolism and immune signaling pathway. MD-2 is an essential co-receptor in the lipopolysaccharide (LPS)/Toll-like receptor 4 (TLR4) signaling pathway. Insects contain multiple ML genes, arbitrarily named md-2- or npc2-like genes. However, whether insect ML genes have functions similar to vertebrate md-2 is unknown. In Drosophila melanogaster, there are eight npc2 genes (npc2a-h), and they can be further divided into three subgroups based on the numbers of cysteine residues (6, 7 and 8 Cys) in the mature proteins. The purpose of this study is to investigate whether any Drosophila npc2 genes may have functions in immune signaling pathways. We chose npc2a, npc2e and npc2h genes representing the three subgroups for this study. We showed that recombinant NPC2a, NPC2e and NPC2h not only bound to LPS and lipid A, but also bound to peptidoglycan (PG) and lipoteichoic acid (LTA), a property that has not been reported previously for vertebrate NPC2 or MD-2. More importantly, we showed that over-expression of NPC2a and NPC2e activated diptericin promoter reporter in S2 cells stimulated by PG, suggesting that NPC2e and NPC2a may play a role in the immune deficiency (Imd) pathway. This is the first in vitro study about NPC2 proteins in innate immunity of D. melanogaster.  相似文献   

2.
MD-2 binds to bacterial lipopolysaccharide   总被引:16,自引:0,他引:16  
The exact roles and abilities of the individual components of the lipopolysaccharide (LPS) receptor complex of proteins remain unclear. MD-2 is a molecule found in association with toll-like receptor 4. We produced recombinant human MD-2 to explore its LPS binding ability and role in the LPS receptor complex. MD-2 binds to highly purified rough LPS derived from Salmonella minnesota and Escherichia coli in five different assays; one assay yielded an apparent KD of 65 nm. MD-2 binding to LPS did not require LPS-binding proteins LBP and CD14; in fact LBP competed with MD-2 for LPS. MD-2 enhanced the biological activity of LPS in toll-like receptor 4-transfected Chinese hamster ovary cells but inhibited LPS activation of U373 astrocytoma cells and of monocytes in human whole blood. These data indicate that MD-2 is a genuine LPS-binding protein and strongly suggest that MD-2 could play a role in regulation of cellular activation by LPS depending on its local availability.  相似文献   

3.
Lipopolysaccharide (LPS), the Gram-negative bacterial outer membrane glycolipid, induces sepsis through its interaction with myeloid differentiation protein-2 (MD-2) and Toll-like receptor 4 (TLR4). To block interaction between LPS/MD-2 complex and TLR4, we designed and generated soluble fusion proteins capable of binding MD-2, dubbed TLR4 decoy receptor (TOY) using ‘the Hybrid leucine-rich repeats (LRR) technique’. TOY contains the MD-2 binding ectodomain of TLR4, the LRR motif of hagfish variable lymphocyte receptor (VLR), and the Fc domain of IgG1 to make it soluble, productive, and functional. TOY exhibited strong binding to MD-2, but not to the extracellular matrix (ECM), resulting in a favorable pharmacokinetic profile in vivo. TOY significantly extended the lifespan, when administered in either preventive or therapeutic manners, in both the LPS- and cecal ligation/puncture-induced sepsis models in mice. TOY markedly attenuated LPS-triggered NF-κB activation, secretion of proinflammatory cytokines, and thrombus formation in multiple organs. Taken together, the targeting strategy for sequestration of LPS/MD-2 complex using the decoy receptor TOY is effective in treating LPS- and bacteria-induced sepsis; furthermore, the strategy used in TOY development can be applied to the generation of other novel decoy receptor proteins.  相似文献   

4.
MD-2 is an essential component of endotoxin (LPS) sensing, binding LPS independently and when bound to the ectodomain of the membrane receptor TLR4. Natural variation of proteins involved in the LPS-recognition cascade such as the LPS-binding protein, CD14, and TLR4, as well as proteins involved in intracellular signaling downstream of LPS binding, affect the cellular response to endotoxin and host defense against bacterial infections. We now describe the functional properties of two nonsynonymous coding polymorphisms of MD-2, G56R and P157S, documented in HapMap. As predicted from the MD-2 structure, the P157S mutation had little or no effect on MD-2 function. In contrast, the G56R mutation, located close to the LPS-binding pocket, significantly decreased cellular responsiveness to LPS. Soluble G56R MD-2 showed markedly reduced LPS binding that was to a large degree rescued by TLR4 coexpression or presence of TLR4 ectodomain. Thus, cells that express TLR4 without MD-2 and whose response to LPS depends on ectopically produced MD-2 were most affected by expression of the G56R variant of MD-2. Coexpression of wild-type and G56R MD-2 yielded an intermediate phenotype with responses to LPS diminished to a greater extent than that resulting from expression of the D299G TLR4 polymorphic variant.  相似文献   

5.
The lipopolysaccharide (LPS) receptor is a multi-protein complex that consists of at least three proteins, CD14, TLR4, and MD-2. Because each of these proteins is glycosylated, we have examined the functional role of N-linked carbohydrates of both MD-2 and TLR4. We demonstrate that MD-2 contains 2 N-glycosylated sites at positions Asn(26) and Asn(114), whereas the amino-terminal ectodomain of human TLR4 contains 9 N-linked glycosylation sites. Site-directed mutagenesis studies showed that cell surface expression of MD-2 did not depend on the presence of either N-linked site, whereas in contrast, TLR4 mutants carrying substitutions in Asn(526) or Asn(575) failed to be transported to the cell surface. Using a UV-activated derivative of Re595 LPS (ASD-Re595 LPS) in cross-linking assays, we demonstrated a critical role of MD-2 and TLR4 carbohydrates in LPS cross-linking to the LPS receptor. The ability of the various glycosylation mutants to support cell activation was also evaluated in transiently transfected HeLa cells. The double mutant of MD-2 failed to support LPS-induced activation of an interleukin-8 (IL-8) promoter-driven luciferase reporter to induce IL-8 secretion or to activate amino-terminal c-Jun kinase (JNK). Similar results were observed with TLR4 mutants lacking three or more N-linked glycosylation sites. Surprisingly, the reduction in activation resulting from expression of the Asn mutants of MD-2 and TLR4 can be partially reversed by co-expression with CD14. This suggests that the functional integrity of the LPS receptor depends both on the surface expression of at least three proteins, CD14, MD-2, and TLR4, and that N-linked sites of both MD-2 and TLR4 are essential in maintaining the functional integrity of this receptor.  相似文献   

6.
Stimulation with LPS induces tyrosine phosphorylation of numerous proteins involved in the TLR signaling pathway. In this study, we demonstrated that myeloid differentiation factor-2 (MD-2) is also tyrosine phosphorylated following LPS stimulation. LPS-induced tyrosine phosphorylation of MD-2 is specific; it is blocked by the tyrosine kinase inhibitor, herbimycin A, as well as by an inhibitor of endocytosis, cytochalasin D, suggesting that MD-2 phosphorylation occurs during trafficking of MD-2 and not on the cell surface. Furthermore, we identified two possible phospho-accepting tyrosine residues at positions 22 and 131. Mutant proteins in which these tyrosines were changed to phenylalanine had reduced phosphorylation and significantly diminished ability to activate NF-κB in response to LPS. In addition, MD-2 coprecipitated and colocalized with Lyn kinase, most likely in the endoplasmic reticulum. A Lyn-binding peptide inhibitor abolished MD-2 tyrosine phosphorylation, suggesting that Lyn is a likely candidate to be the kinase required for MD-2 tyrosine phosphorylation. Our study demonstrated that tyrosine phosphorylation of MD-2 is important for signaling following exposure to LPS and underscores the importance of this event in mediating an efficient and prompt immune response.  相似文献   

7.
Three cell-surface proteins have been recognized as components of the mammalian signaling receptor for bacterial lipopolysaccharide (LPS): CD14, Toll-like receptor-4 (TLR4), and MD-2. Biochemical and visual studies shown here demonstrate that the role of CD14 in signal transduction is to enhance LPS binding to MD-2, although its expression is not essential for cellular activation. These studies clarify how MD-2 functions: we found that MD-2 enables TLR4 binding to LPS and allows the formation of stable receptor complexes. MD-2 must be bound to TLR4 on the cell surface before binding can occur. Consequently, TLR4 clusters into receptosomes (many of which are massive) that recruit intracellular toll/IL-1/resistance domain-containing adapter proteins within minutes, thus initiating signal transduction. TLR4 activation correlates with the ability of MD-2 to bind LPS, as MD-2 mutants that still bind TLR4, but are impaired in the ability to bind LPS, conferred a greatly blunted LPS response. These findings help clarify the earliest events of TLR4 triggering by LPS and identify MD-2 as an attractive target for pharmacological intervention in endotoxin-mediated diseases.  相似文献   

8.
MD-1 and MD-2 are secretory glycoproteins that exist on the cell surface in complexes with transmembrane proteins. MD-1 is anchored by radioprotective 105 (RP105), and MD-2 is associated with TLR4. In vivo studies revealed that MD-1 and MD-2 have roles in responses to LPS. Although the direct binding function of MD-2 to LPS has been observed, the physiological function of MD-1 remains unknown. In this study, we compared the LPS-binding functions of MD-1 and MD-2. LPS binding to cell surface complexes was detected for cells transfected with TLR4/MD-2. In contrast, binding was not observed for RP105/MD-1-transfected cells. When rMD-2 protein was expressed in Escherichia coli, it was purified in complexes containing LPS. In contrast, preparations of MD-1 did not contain LPS. When rMD-2 protein was prepared in a mutant strain lacking the lpxM gene, LPS binding disappeared. Therefore, the secondary myristoyl chain attached to the (R)-3-hydroxymyristoyl chain added by LpxM is required for LPS recognition by MD-2, under these conditions. An amphipathic cluster composed of basic and hydrophobic residues in MD-2 has been suggested to be the LPS-binding site. We specifically focused on two Phe residues (119 and 121), which can associate with fatty acids. A mutation at Phe(191) or Phe(121) strongly reduced binding activity, and a double mutation at these residues prevented any binding from occurring. The Phe residues are present in MD-2 and absent in MD-1. Therefore, the LPS recognition mechanism by RP105/MD-1 is distinct from that of TLR4/MD-2.  相似文献   

9.
Myeloid differentiation proteins MD-1 and MD-2 have both been shown to form a heterogeneous collection of oligomers when expressed in absence of their respective receptor, RP105 and TLR4. The biological relevance of these oligomers is not clear. Only monomeric proteins have been found to be active and able to trigger an immune response to endotoxin by modulating the TLR4 pathway. In this study, we produced variants of MD-1 and MD-2 in Pichia pastoris. To minimize the time and expense of initial expression tests, small-scale cultures have been set up to allow the rapid identification of the highest expressing clone and the optimal expression conditions. The expression vectors used, the site of linearization and the locus of integration affected the yield of transformation. Next we screened culture additives and found that they significantly increased the fraction of monomeric proteins secreted in the culture medium (up to 15% of the total MD protein produced). We confirmed their presence by size-exclusion chromatography. Optimal anti-aggregation agents were protein-dependent except for LPS that presented stabilizing effects for all MD proteins. Contrary to previous reports, this study suggests that MD-1 can bind to LPS.  相似文献   

10.
TLRs have been implicated in recognition of pathogen-associated molecular patterns. TLR4 is a signaling receptor for LPS, but requires MD-2 to respond efficiently to LPS. The purposes of this study were to examine the interactions of the extracellular TLR4 domain with MD-2 and LPS. We generated soluble forms of rTLR4 (sTLR4) and TLR2 (sTLR2) lacking the putative intracellular and transmembrane domains. sTLR4 consisted of Glu(24)-Lys(631). MD-2 bound to sTLR4, but not to sTLR2 or soluble CD14. BIAcore analysis demonstrated the direct binding of sTLR4 to MD-2 with a dissociation constant of K(D) = 6.29 x 10(-8) M. LPS-conjugated beads precipitated MD-2, but not sTLR4. However, LPS beads coprecipitated sTLR4 and MD-2 when both proteins were coincubated. The addition of sTLR4 to the medium containing the MD-2 protein significantly attenuated LPS-induced NF-kappaB activation and IL-8 secretion in wild-type TLR4-expressing cells. These results indicate that the extracellular TLR4 domain-MD-2 complex is capable of binding LPS, and that the extracellular TLR4 domain consisting of Glu(24)-Lys(631) enables MD-2 binding and LPS recognition to TLR4. In addition, the use of sTLR4 may lead to a new therapeutic strategy for dampening endotoxin-induced inflammation.  相似文献   

11.
Kinetics of binding of LPS to recombinant CD14, TLR4, and MD-2 proteins   总被引:2,自引:0,他引:2  
TLR4 together with CD14 and MD-2 forms a pattern recognition receptor that plays an initiating role in the innate immune response to Gram-negative bacteria. Here, we employed the surface plasmon resonance technique to investigate the kinetics of binding of LPS to recombinant CD14, MD-2 and TLR4 proteins produced in insect cells. The dissociation constants (KD) of LPS for immobilized CD14 and MD-2 were 8.7 microM, and 2.3 microM, respectively. The association rate constant (Kon) of LPS for MD-2 was 5.61 x 10(3) M-1S-1, and the dissociation rate constant (Koff) was 1.28 10 2 S 1, revealing slow association and fast dissociation with an affinity constant KD of 2.33 x 10-6 M at 25 degreesC. These affinities are consistent with the current view that CD14 conveys LPS to the TLR4/MD-2 complex.  相似文献   

12.
Members of the toll-like receptor family are crucial in recognition of microbial pathogens as part of innate immune response. MD-2, an accessory protein to TLR4, present on the extracellular side of the membrane is needed to initiate the signal transduction. We have identified a 15 amino acid region of human MD-2 that contains several features of other lipopolysaccharide (LPS) binding proteins and peptides. In vitro LPS neutralization by this peptide was observed and confirmed by 2D transferred NOESY NMR experiments. NMR experiments have also shown binding of the MD-2 peptide to lipoteichoic acid (LTA) but not to peptidoglycan. Furthermore this peptide inhibited growth of gram-negative and to a lower extent of some gram-positive bacteria. Our results indicate that this region of MD-2 might be responsible for binding of LPS and confirms the role of MD-2 as an accessory protein in LPS signaling bestowing the Toll receptors their specificity.  相似文献   

13.
Intestinal epithelial cells (IEC) are constantly exposed to both high concentrations of the bacterial ligand LPS and the serine protease trypsin. MD-2, which contains multiple trypsin cleavage sites, is an essential accessory glycoprotein required for LPS recognition and signaling through TLR4. The aim of this study was to characterize the expression and subcellular distribution of intestinal epithelial MD-2 and to delineate potential functional interactions with trypsin and then alteration in inflammatory bowel disease (IBD). Although MD-2 protein expression was minimal in primary IEC of normal colonic or ileal mucosa, expression was significantly increased in IEC from patients with active IBD colitis, but not in ileal areas from patients with severe Crohn's disease. Endogenous MD-2 was predominantly retained in the calnexin-calreticulin cycle of the endoplasmic reticulum; only a small fraction was exported to the Golgi. MD-2 expression correlated inversely with trypsin activity. Biochemical evidence and in vitro experiments demonstrated that trypsin exposure resulted in extensive proteolysis of endogenous and soluble MD-2 protein, but not of TLR4 in IEC, and was associated with desensitization of IEC to LPS. In conclusion, the present study suggests that endoplasmic reticulum-associated MD-2 expression in IBD may be altered by ileal protease in inflammation, leading to impaired LPS recognition and hyporesponsiveness through MD-2 proteolysis in IEC, thus implying a physiologic mechanism that helps maintain LPS tolerance in the intestine.  相似文献   

14.
Cloning and characterization of a shrimp ML superfamily protein   总被引:1,自引:0,他引:1  
  相似文献   

15.
The structural features of some proteins of the innate immune system involved in mediating responses to microbial pathogens are highly conserved throughout evolution. Examples include members of the Drosophila Toll (dToll) and the mammalian Toll-like receptor (TLR) protein families. Activation of Drosophila Toll is believed to occur via an endogenous peptide rather than through direct binding of microbial products to the Toll protein. In mammals there is a growing consensus that lipopolysaccharide (LPS) initiates its biological activities through a heteromeric receptor complex containing CD14, TLR4, and at least one other protein, MD-2. LPS binds directly to CD14 but whether LPS then binds to TLR4 and/or MD-2 is not known. We have used transient transfection to express human TLRs, MD-2, or CD14 alone or in different combinations in HEK 293 cells. Interactions between LPS and these proteins were studied using a chemically modified, radioiodinated LPS containing a covalently linked, UV light-activated cross-linking group ((125)I-ASD-Re595 LPS). Here we show that LPS is cross-linked specifically to TLR4 and MD-2 only when co-expressed with CD14. These data support the contention that LPS is in close proximity to the three known proteins of its membrane receptor complex. Thus, LPS binds directly to each of the members of the tripartite LPS receptor complex.  相似文献   

16.
BACKGROUND: Several cell types are susceptible to transfection in vivo using naked plasmid DNA. The mechanisms involved in mediating in vivo transfection are incompletely known, but evidence suggests that receptor-mediated endocytosis is important for specific types of cells. In this study we tested the hypothesis that residual Escherichia coli lipopolysaccharide (LPS) forms a non-covalent complex with expression plasmid DNA, and host-cell-derived soluble LPS-binding proteins bind to the DNA-LPS complexes in order to facilitate receptor-mediated endocytosis. METHODS: Cells from the murine synovial lining were used as an in vivo model system and in vivo luciferase imaging was used to quantify levels of transgene expression. Using a series of gene-deleted mice, the roles of LPS recognition complex proteins, lipopolysaccharide-binding protein (LBP), CD14 and MD-2, in the process of in vivo transfection were determined. RESULTS: Luciferase expression assays revealed that mice lacking LBP or CD14 had increased luciferase expression (p < 0.023 and < 0.165, respectively), while mice deleted of MD-2 had significant reductions in luciferase expression (p < 0.001). Gene deletion of hyaluronic acid binding protein CD44 was used as a control and had no statistically significant effect on transgene expression in vivo. In muscle tissue, where neither cell surface nor soluble MD-2 is expressed, no MD-2 dependence of plasmid transfection was identified, suggesting the role of MD-2 is tissue or cell type specific. Additionally, depleting mice of macrophages showed that luciferase expression is occurring within fibroblast-like synoviocytes. CONCLUSIONS: Our data support a physical association between LPS and E. coli-derived plasmid DNA, and that in vivo transfection of fibroblast-like synoviocytes is dependent on the soluble form of the LPS-binding protein MD-2.  相似文献   

17.
The receptor complex resulting from association of MD-2 and the ectodomain of Toll-like receptor 4 (TLR4) mediates lipopolysaccharide (LPS) signal transduction across the cell membrane. We prepared a tertiary structure model of MD-2, based on the known structures of homologous lipid-binding proteins. Analysis of circular dichroic spectra of purified bacterially expressed MD-2 indicates high content of beta-type secondary structure, in agreement with the structural model. Bacterially expressed MD-2 was able to confer LPS responsiveness to cells expressing TLR4 despite lacking glycosylation. We identified several clusters of basic residues on the surface of MD-2. Mutation of each of two clusters encompassing the residues Lys(89)-Arg(90)-Lys(91) and Lys(125)-Lys(125) significantly decreased the signal transduction of the respective MD-2 mutants either upon co-expression with TLR4 or upon addition as soluble protein into the supernatant of cells overexpressing TLR4. These basic clusters lie at the edge of the beta-sheet sandwich, which in cholesterol-binding protein connected to Niemann-Pick disease C2 (NPC2), dust mite allergen Der p2, and ganglioside GM2-activator protein form a hydrophobic pocket. In contrast, mutation of another basic cluster composed of Arg(69)-Lys(72), which according to the model lies further apart from the hydrophobic pocket only weakly decreased MD-2 activity. Furthermore, addition of the peptide, comprising the surface loop between Cys(95) and Cys(105), predicted by model, particularly in oxidized form, decreased LPS-induced production of tumor necrosis factor alpha and interleukin-8 upon application to monocytic cells and fibroblasts, respectively, supporting its involvement in LPS signaling. Our structural model of MD-2 is corroborated by biochemical analysis and contributes to the unraveling of molecular interactions in LPS recognition.  相似文献   

18.
We previously showed that viable Mycobacterium tuberculosis (Mtb) bacilli contain distinct ligands that activate cells via the mammalian Toll-like receptor (TLR) proteins TLR2 and TLR4. We now demonstrate that expression of a dominant negative TLR2 or TLR4 proteins in RAW 264.7 macrophages partially blocked Mtb-induced NF-kappa B activation. Coexpression of both dominant negative proteins blocked virtually all Mtb-induced NF-kappa B activation. The role of the TLR4 coreceptor MD-2 was also examined. Unlike LPS, Mtb-induced macrophage activation was not augmented by overexpression of ectopic MD-2. Moreover, cells expressing an LPS-unresponsive MD-2 mutant responded normally to Mtb. We also observed that the lipid A-like antagonist E5531 specifically inhibited TLR4-dependent Mtb-induced cellular responses. E5531 could substantially block LPS- and Mtb-induced TNF-alpha production in both RAW 264.7 cells and primary human alveolar macrophages (AM phi). E5531 inhibited Mtb-induced AM phi apoptosis in vitro, an effect that was a consequence of the inhibition of TNF-alpha production by E5531. In contrast, E5531 did not inhibit Mtb-induced NO production in RAW 264.7 cells and AM phi. Mtb-stimulated peritoneal macrophages from TLR2- and TLR4-deficient animals produced similar amounts of NO compared with control animals, demonstrating that these TLR proteins are not required for Mtb-induced NO production. Lastly, we demonstrated that a dominant negative MyD88 mutant could block Mtb-induced activation of the TNF-alpha promoter, but not the inducible NO synthase promoter, in murine macrophages. Together, these data suggest that Mtb-induced TNF-alpha production is largely dependent on TLR signaling. In contrast, Mtb-induced NO production may be either TLR independent or mediated by TLR proteins in a MyD88-independent manner.  相似文献   

19.
In order to mediate cellular response to lipopolysaccharide (LPS), Toll-like receptor (TLR) 4 must interact with MD-2, a secreted protein. In this study, a biochemical assay was developed to demonstrate that recombinant MD-2 can interact with the extracellular portion of TLR4 in solution. The ability of MD-2 to multimerize was confirmed, and MD-1 was also shown to possess this ability. Through site-directed mutagenesis, more than two intermolecular disulfide bonds were found to stabilize the MD-2 multimer. MD-2's abilities to confer LPS responsiveness and to bind TLR4 were strongly associated functions. Remarkably, although the majority of recombinant MD-2 exists in multimeric form, monomeric MD-2 was found to preferentially bind TLR4 and to confer LPS responsiveness more efficiently than MD-2 multimers.  相似文献   

20.
Toll-like receptor 4 and MD-2 form a receptor for lipopolysaccharide (LPS), a major constituent of Gram-negative bacteria. MD-2 is a 20-25-kDa extracellular glycoprotein that binds to Tolllike receptor 4 (TLR4) and LPS and is a critical part of the LPS receptor. Here we have shown that the level of MD-2 expression regulates TLR4 activation by LPS. Using site-directed mutagenesis, we have found that glycosylation has no effect on MD-2 function as a membrane receptor for LPS. We used alanine-scanning mutagenesis to identify regions of human MD-2 that are important for TLR4 and LPS binding. We found that mutation in the N-terminal 46 amino acids of MD-2 did not substantially diminish LPS activation of Chinese hamster ovary (CHO) cells co-transfected with TLR4 and mutant MD-2. The residues 46-50 were important for LPS activation but not LPS binding. The residues 79-83, 121-124, and 125-129 are identified as important in LPS activation but not surface expression of membrane MD-2. The function of soluble MD-2 is somewhat more sensitive to mutation than membrane MD-2. Our results suggest that the 46-50 and 127-131 regions of soluble MD-2 bind to TLR4. The region 79-120 is not involved in LPS binding but affects monomerization of soluble MD-2 as well as TLR4 binding. We define the LPS binding region of monomeric soluble MD-2 as a cluster of basic residues 125-131. Studies on both membrane and soluble MD-2 suggest that domains of MD-2 for TLR4 and LPS binding are separate as well as overlapping. By mapping these regions on a three-dimensional model, we show the likely binding regions of MD-2 to TLR4 and LPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号