首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The K homology-type splicing regulatory protein, KSRP, activates splicing through intronic splicing enhancer sequences. It is highly expressed in neural cells and is required for the neural-specific splicing of the c-src N1 exon. In this study, we mapped the gene (gene symbols KHSRP and Khsrp) to human chromosome 19 by using radiation hybrid panels and to mouse chromosome 17 by studying an interspecific backcross panel. Human KHSRP is a positional candidate gene for familial febrile convulsion and Cayman type cerebellar ataxia. Comparative analysis of the human and mouse genomes indicates that the KHSRP gene is located in regions of conserved synteny between the two species.  相似文献   

2.
The gamma-aminobutyric acid (GABAA) receptors are a family of ligand-gated chloride channels constituting the major inhibitory neurotransmitter receptors in the nervous system. In order to determine the genomic organization of the GABAA receptor beta 3 subunit gene (GABRB3) and alpha 5 subunit gene (GABRA5) in chromosome 15q11-q13, we have constructed a high-resolution physical map using the combined techniques of field-inversion gel electrophoresis and phage genomic library screening. This map, which covers nearly 1.0 Mb, shows that GABRB3 and GABRA5 are separated by less than 100 kb and are arranged in a head-to-head configuration. GABRB3 encompasses approximately 250 kb, while GABRA5 is contained within 70 kb. This difference in size is due in large part to an intron of 150 kb within GABRB3. We have also identified seven putative CpG islands within a 600-kb interval. Chromosomal rearrangement breakpoints--in one Angelman syndrome (AS) patient with an unbalanced translocation and in another patient with a submicroscopic deletion--are located within the large GABRB3 intron. These findings will facilitate chromosomal walking strategies for cloning the regions disrupted by the DNA rearrangements in these AS patients and will be valuable for mapping new genes to the AS chromosomal region.  相似文献   

3.
The gene for 7B2, a protein found in the secretory granules of neural and endocrine cells (gene symbol SGNE1) was localized to the E3-F3 region of mouse chromosome 2 and to the q11-q15 region of human chromosome 15. This was determined by in situ hybridization, using a mouse 7B2 cDNA and an intronic fragment of the corresponding human gene as probes. The respective locations of SGNE1 in the two species correlate with the conservation of loci between these subregions of mouse chromosome 2 and human chromosome 15. Clinically, the human SGNE1 DNA fragment may serve as a molecular probe of this locus in both the Prader-Willi and the Angelman syndromes, which are often accompanied by submicroscopic chromosomal deletions in the 15q11-15q13 region.  相似文献   

4.
Goode DK  Snell P  Smith SF  Cooke JE  Elgar G 《Genomics》2005,86(2):172-181
Comparative genomic analysis reveals an exceptionally large section of conserved shared synteny between the human 7q36 chromosomal region and the pufferfish (Fugu rubripes) genome. Remarkably, this conservation extends not only to gene order across 16 genes, but also to the position and orientation of a number of prominent conserved noncoding elements (CNEs). A functional assay using zebrafish has shown that most of the CNEs have reproducible and specific enhancer activity. This enhancer activity is often detected in a subset of tissues which reflect the endogenous expression pattern of a proximal gene, though some CNEs may act over a long range. We propose that the distribution of CNEs, and their probable association with a number of genes throughout the region, imposes a critical constraint on genome architecture, resulting in the maintenance of such a large section of conserved synteny across the vertebrate lineage.  相似文献   

5.
Deletions of the proximal long arm of chromosome 15 (bands 15q11q13) are found in the majority of patients with two distinct genetic disorders, Angelman syndrome (AS) and Prader-Willi syndrome (PWS). The deleted regions in the two syndromes, defined cytogenetically and by using cloned DNA probes, are similar. However, deletions in AS occur on the maternally inherited chromosome 15, and deletions in PWS occur on the paternally derived chromosome 15. This observation has led to the suggestion that one or more genes in this region show differential expression dependent on parental origin (genetic imprinting). No genes of known function have previously been mapped to this region. We show here that the gene encoding the GABAA (gamma-aminobutyric acid) receptor beta 3 subunit maps to the AS/PWS region. Deletion of this gene (GABRB3) was found in AS and PWS patients with interstitial cytogenetic deletions. Evidence of beta 3 gene deletion was also found in an AS patient with an unbalanced 13;15 translocation but not in a PWS patient with an unbalanced 9;15 translocation. The localization of this receptor gene to the AS/PWS region suggests a possible role of the inhibitory neurotransmitter GABA in the pathogenesis of one or both of these syndromes.  相似文献   

6.
7.
8.
9.
Lund J  Chen F  Hua A  Roe B  Budarf M  Emanuel BS  Reeves RH 《Genomics》2000,63(3):374-383
Mouse genomic DNA sequence extending 634 kb on proximal mouse chromosome 16 was compared to the corresponding human sequence from chromosome 22q11.2. Haploinsufficiency for this region results in velocardiofacial syndrome (VCFS) in humans. The mouse region is rearranged into three conserved blocks relative to human, but gene content and position are highly conserved within these blocks. Examination of the boundaries of one of these blocks suggested that the evolutionary chromosomal rearrangement occurred in the mouse lineage, resulting in inactivation of the mouse orthologue of ZNF74. Sequence analysis identified 21 genes and 15 ESTs. These include 2 novel genes, Srec2 and Cals2, and previously undescribed splice variants of several other genes. Exon discovery was carried out using GRAIL2, MZEF, or comparative analysis across 491 kb of conserved mouse and human sequence. Sequence comparison was highly effective, identifying every gene and nearly every exon without the high frequency of false-positive predictions seen when algorithmic methods were used alone. In combination, these procedures identified every gene with no false-positive predictions. Comparative sequence analysis also revealed regions of extensive conservation among noncoding sequences, accounting for 6% of the sequence. A library of such sequences has been established to form a resource for generalized studies of regulatory and structural elements.  相似文献   

10.
11.
Genetic mapping of the mouse interleukin 3 gene to chromosome 11   总被引:3,自引:0,他引:3  
Interleukin 3 (IL 3) is a T cell-derived lymphokine that induces the proliferation and differentiation of early hematopoietic stem cells. By using a cDNA clone for IL 3, a single Eco-RI restriction fragment of 8.5 kbp was detected in Southern blot hybridizations of DNA from BALB/c and C57BL/10 mice, whereas an Eco-RI restriction fragment of 10.8 kbp was detected in NFS and A/J mice. Under the conditions used, no hybridization was detected to Chinese hamster DNA. The species and strain differences were used to analyze a series of hamster X mouse somatic cell hybrids and genetic crosses between NFS and C57BL/10 mice. The results demonstrate that the IL 3 gene is located on chromosome 11.  相似文献   

12.
Rom-1 is a retinal integral membrane protein that, together with the product of the human retinal degeneration slow gene (RDS), defines a photoreceptor-specific protein family. The gene for rom-1 (HGM symbol: ROM1) has been assigned to human chromosome 11 and mouse chromosome 19 by Southern blot analysis of somatic cell hybrid DNAs. ROM1 was regionally sublocalized to human 11p13-11q13 by using three mouse-human somatic cell hybrids; in situ hybridization refined the sublocalization to human 11q13. Analysis of somatic cell hybrids suggested that the most likely localization of ROM1 is in the approximately 2-cM interval between human PGA (human pepsinogen A) and PYGM (muscle glycogen phosphorylase). ROM1 appears to be a new member of a conserved syntenic group whose members include such genes as CD5, CD20, and OSBP (oxysterol-binding protein), on human chromosome 11 and mouse chromosome 19. Localization of the ROM1 gene will permit the examination of its linkage to hereditary retinopathies in man and mouse.  相似文献   

13.
A cDNA encoding a G protein-coupled receptor that appears to mediate the behavioral effects of cannabinoids, the psychoactive ingredients of marijuana, has recently been cloned from rat cerebral cortex and expressed. We have now determined the genomic location of the human cannabinoid receptor gene (CNR) by a combination of genetic linkage mapping and chromosomal in situ hybridization. The segregation pattern of a CNR DNA polymorphism was analyzed in 508 individuals from two or three generations of 40 families. Linkage of CNR to chromosome 6 centromeric loci and to DNA markers on the long and short arms was detected. CNR was tightly linked to D6S27, which is known to be located at 6q (log10 odds ratio [lod score, Zmax] of 10.54 at a recombination fraction [theta] of 0.02). Close linkage was suggested between CNR and CGA, the locus for the alpha subunit of human chorionic gonadotropin (Zmax = 2.71 at theta = 0). Moreover, CNR was linked to the two markers 308/BamHI (theta = 0.14) and 308/TaqI (theta = 0.20) defining locus D6Z1, an extended, highly repetitive, and highly conserved sequence localized exclusively to centromeres of all chromosomes and enriched on chromosome 6. In situ hybridization using a biotinylated cosmid probe localizes the gene to 6q14-q15, thereby confirming the linkage analysis and defining a precise alignment of the genetic and cytogenetic maps.  相似文献   

14.
Polymeric immunoglobulin receptor (PIGR) is a transmembrane glycoprotein which is expressed by epithelial cells and is involved in the transcellular transport of polymeric immunoglobulins into secretions. We cloned the human gene for PIGR and used the clone to obtain probes to determine the chromosomal localization of PIGR. Analysis of somatic cell hybrids and in situ chromosomal hybridization localized the human PIGR gene locus to 1q31----q41.  相似文献   

15.
The mouse doublefoot (Dbf) mutant exhibits preaxial polydactyly in association with craniofacial defects. This mutation has previously been mapped to mouse chromosome 1. We have used a positional cloning strategy, coupled with a comparative sequencing approach using available human draft sequence, to identify putative candidates for the Dbf gene in the mouse and in homologous human region. We have constructed a high-resolution genetic map of the region, localizing the mutation to a 0.4-cM (+/-0.0061) interval on mouse chromosome 1. Furthermore, we have constructed contiguous BAC/PAC clone maps across the mouse and human Dbf region. Using existing markers and additional sequence tagged sites, which we have generated, we have anchored the physical map to the genetic map. Through the comparative sequencing of these clones we have identified 35 genes within this interval, indicating that the region is gene-rich. From this we have identified several genes that are known to be differentially expressed in the developing mid-gestation mouse embryo, some in the developing embryonic limb buds. These genes include those encoding known developmental signaling molecules such as WNT proteins and IHH, and we provide evidence that these genes are candidates for the Dbf mutation.  相似文献   

16.
The human interleukin-10 receptor gene maps to chromosome 11q23.3   总被引:3,自引:0,他引:3  
The human interleukin-10 receptor (IL-10R) gene has previously been mapped to chromosome 11. Here, we have determined the precise location of the human IL-10R gene by the fluorescence in situ hybridization method, and have found that the IL-10R gene maps to chromosome 11q23.3.  相似文献   

17.
18.
A human T-cell antigen receptor beta chain gene maps to chromosome 7.   总被引:11,自引:2,他引:11       下载免费PDF全文
cDNA clones which encode the human and mouse T cell antigen receptor beta chain gene have previously been isolated. We have used a mouse cDNA clone to map the chromosomal position of a human beta chain gene. Southern blot analysis of DNA prepared from somatic cell hybrids has assigned this gene to chromosome 7. The use of a hybrid containing a chromosome 7 translocation has further localised this gene to the region 7q22-qter.  相似文献   

19.
Autistic disorder (AutD) is a complex genetic disease. Available evidence suggests that several genes contribute to the underlying genetic risk for the development of AutD. However, both etiologic heterogeneity and genetic heterogeneity confound the discovery of AutD-susceptibility genes. Chromosome 15q11-q13 has been identified as a strong candidate region on the basis of both the frequent occurrence of chromosomal abnormalities in that region and numerous suggestive linkage and association findings. Ordered-subset analysis (OSA) is a novel statistical method to identify a homogeneous subset of families that contribute to overall linkage at a given chromosomal location and thus to potentially help in the fine mapping and localization of the susceptibility gene within a chromosomal area. For the present analysis, a factor that represents insistence on sameness (IS)--derived from a principal-component factor analysis using data on 221 patients with AutD from the repetitive behaviors/stereotyped patterns domain in the Autism Diagnostic Interview-Revised--was used as a covariate in OSA. Analysis of families sharing high scores on the IS factor increased linkage evidence for the 15q11-q13 region, at the GABRB3 locus, from a LOD score of 1.45 to a LOD score of 4.71. These results narrow our region of interest on chromosome 15 to an area surrounding the gamma-aminobutyric acid-receptor subunit genes, in AutD, and support the hypothesis that the analysis of phenotypic homogeneous subtypes may be a powerful tool for the mapping of disease-susceptibility genes in complex traits.  相似文献   

20.
The human aldose reductase gene maps to chromosome region 7q35   总被引:1,自引:0,他引:1  
Summary The human aldose reductase (AR) gene has been mapped to chromosome 7 using the polymerase chain reaction to specifically amplify the human AR sequence in hamster/human hybrid DNA and also in mouse/ human monochromosome hybrids. The assignment to chromosome 7 was confirmed by in situ hybridisation to human metaphase chromosomes using a novel, rapid hybridisation, method giving a regional localisation at 7q35.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号