首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cornified envelope hs been shown to be formed beneath the plasma membrane as a result of the cross-linking of soluble and membrane-associated precursor proteins by transglutaminase. We have obtained a monoclonal antibody which reacts with the periphery of cells in the upper layers of human epidermis by indirect immunofluorescence (IIF) following immunization of mice with cornified envelopes of cultured human keratinocytes. The antibody also stained the cell peripheries of bovine, rat and mouse epidermis as well as stratified epithelium. Neutral buffer extracts of human cultured keratinocytes and epidermis examined under denaturing conditions contained polypeptides of molecular weight 14 900 and 16 800 which reacted with the antibody, and an additional component of molecular weight 24 800 was found in cultured cells. The polypeptides were shown to have a pI of about 9.0. Under non-denaturing conditions the two lower-molecular-weight polypeptides had an apparent molecular weight of 30 000, while the 24 800 protein had one of 60 000. Incubation of the polypeptides under conditions that activate transglutaminase resulted in a disappearance of the polypeptides or the formation of cross-linked products. Basic polypeptides with somewhat different pI values and molecular weights were identified in neutral buffer extracts of bovine and rat epidermis. The HCE-2 antibody appears to identify a new class of basic protein precursors of mammalian cornified envelope.  相似文献   

2.
The amino acid sequence of ERp57, which functions in the endoplasmic reticulum together with the lectins calreticulin and calnexin to achieve folding of newly synthesized glycoproteins, is highly similar to that of protein disulfide isomerase (PDI), but they have their own distinct roles in protein folding. We have characterized the domain structure of ERp57 by limited proteolysis and N-terminal sequencing and have found it to be similar but not identical to that of PDI. ERp57 had three major protease-sensitive regions, the first of which was located between residues 120 and 150, the second between 201 and 215, and the third between 313 and 341, the data thus being consistent with a four-domain structure abb'a'. Recombinant expression in Escherichia coli was used to verify the domain boundaries. Each single domain and a b'a' double domain could be produced in the form of soluble, folded polypeptides, as verified by circular dichroism spectra and urea gradient gel electrophoresis. When the ability of ERp57 and its a and a' domains to fold denatured RNase A was studied by electrospray mass analyses, ERp57 markedly enhanced the folding rate at early time points, although less effectively than PDI, but was an ineffective catalyst of the overall process. The a and a' domains produced only minor, if any, increases in the folding rate at the early stages and no increase at the late stages. Interaction of the soluble ERp57 domains with the P domain of calreticulin was studied by chemical cross-linking in vitro. None of the single ERp57 domains nor the b'a' double domain could be cross-linked to the P domain, whereas cross-linking was obtained with a hybrid ERpabb'PDIa'c polypeptide but not with ERpabPDIb'a'c, indicating that multiple domains are involved in this protein-protein interaction and that the b' domain of ERp57 cannot be replaced by that of PDI.  相似文献   

3.
The interaction of a series of bifunctional reagents with skeletal muscle myosin has been studied. In the di-imido ester series dimethylmalonimidate failed to generate any cross-linked species, whereas the adipic and higher analogues gave dimers of myosin heavy chains. Analysis of free amino groups after reaction with these reagents and with the reducible species dimethyldithiobis(propionimidate) showed that no more than two to three cross-links per molecule were introduced. By contrast, the bifunctional reducible acylating agent, dithiobis(succinimidylpropionate), reacted with annihilation of about 10% of the amino groups under mild conditions that precluded the formation of intermolecularly linked species. Digestion of the intramolecularly cross-linked myosin with papain, followed by analysis of the fragments by gel electrophoresis, revealed extensive cross-linking between the globular heads of the myosin molecules. The subfragment 1 dimers regenerated subfragment 1 on reduction, as shown by the electrophoretic mobility and amino acid analysis. The extent of cross-linking, and therefore presumably the average relative orientation or freedom of the two heads, was unaffected by the addition of ADP and calcium ions. The internally cross-linked myosin retains practically its full calcium-activated adenosine triphosphatase activity, but in contrast to native myosin is soluble even at very low ionic strength. Circular dichroism measurements show that the alpha helical conformation is undisturbed in cross-linked myosin, but the sedimentation coefficient is considerably higher than that of the native protein, possibly due to freezing of the heads in a "closed" configuration. The light chaiins are not cross-linked to the heavy chains, except under extreme conditions that leads to intermolecular cross-linking and inactivation. The presence of calcium ions protects dithiobisnitrobenzoate light chains against degradation by papain.  相似文献   

4.
The subunit arrangement of the F0 sector of the Escherichia coli ATP synthase is examined using hydrophilic and hydrophobic (cleavable) cross-linking reagents and the water-soluble labeling reagent [35S] diazoniumbenzenesulfonate ( [35S]DABS). Cross-linking is performed on purified ATP synthase and inverted minicell membranes. ATP synthase incorporated into liposomes is labeled with [35S]DABS. Three cross-linked products involving the F0 subunits (a, b, and c) are observed with the purified ATP synthase in solution: a-b, b2, and c2 dimers. A cross-link between the F0 and F1 is detected and occurs between the a and beta subunits. A cross-linker independent association between the b and beta subunits is also evident, suggesting that the two subunits are close enough to form a disulfide bridge. A cross-linking reagent stable to reducing agents produces a b-beta dimer, as detected by immunoblotting with anti-beta serum. The c subunit does not cross-link with any F1 polypeptide. Minicell membranes containing ATP synthase polypeptides radioactively labeled in vivo similarly show b2 and c2 dimers after cross-linking. [35S]DABS labels the a and b, but not c, subunits, showing that the a and b, but not c, subunits possess hydrophilic domains. Thus, certain domains of subunits a and b extend from the membrane and are in close proximity to one another and the F1 catalytic subunit beta.  相似文献   

5.
Histone H1 from erythrocytes of Japanese quail was resolved in a sodium dodecyl sulfate (SDS)-polyacrylamide gel into five fractions differing in apparent molecular weights. A polymorphism of histone H1.1, H1.2, and H1.3 bands was detected among quail individuals. While some birds possessed either a high (phenotype .3+) or a low (phenotype .3+/.3-) level of H1.3, at least half of the quail population lacked this H1 band (phenotype .3-). Appropriate genetic crosses demonstrated that H1.3 behaved as though it was coded by a gene with two codominant alleles at an autosomal locus. Using two-dimensional polyacrylamide gel electrophoresis (acid-urea followed by SDS gels), it was found that birds .3+ contained polypeptides H1.b1 and H1.b'1; birds .3-, polypeptides H1.b2 and H1.b'2 with lower apparent molecular weights; and birds .3+/.3-, both types of polypeptides in equal proportions. The H1.b2 + H1.b'2 complement was not discernible in SDS gels, for it migrated together with H1.c' within band H1.4. It was found that a small number of birds lacking the H1.2 band in SDS gels failed to express histone H1.a. Since birds with phenotype .2- with a defective allele of the gene H1.a were simultaneously lacking the H1.3 band, it seems that the imperfect allele of the H1.a gene might be closely linked to the alleles producing H1.b2 + H1.b'2.  相似文献   

6.
The spatial relationship of the three polypeptides contained in the B800-850 light-harvesting complex of Rhodopseudomonas capsulata has been studied with chemical cross-linking of crude membrane preparations of the phototrophic negative mutant strain Y5. Samples were cross-linked with the cleavable reagent dithiobis (succinimidyl propionate) (1.1 nm chain length) and analyzed by two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. Membranes labelled with 14C-amino acids were used to determine the compositional stoichiometry of cross-linked products. It was found that the two polypeptides with an apparent Mr of 8000 and 10 000, respectively, that are associated with the pigments bacteriochlorophyll a and carotenoid form homooligomers as well as heterooligomers. The data support the idea that these polypeptides are closely arranged in clusters probably containing at least four of each species. The third subunit with an Mr of 14 000, which is not associated with pigments, was found to be most susceptible to cross-linking and formed homooligomers but no heterooligomers with the other two subunits, and is thus likely to be loosely attached to these clusters. Comparative studies with the phototrophic positive wild type strain indicated that the results found with the phototrophic negative mutant strain Y5 reflect the organization of the B800-850 complex in the membrane of Rhodopseudomonas capsulata. Studies with the isolated B800-850 complex revealed that the sterical arrangement of the three constituent polypeptides in dodecyl dimethylamine-N-oxide containing solutions must be very similar to that in the membrane.  相似文献   

7.
Protein-disulfide isomerase (PDI) catalyzes the formation of the correct pattern of disulfide bonds in secretory proteins. A low resolution crystal structure of yeast PDI described here reveals large scale conformational changes compared with the initially reported structure, indicating that PDI is a highly flexible molecule with its catalytic domains, a and a', representing two mobile arms connected to a more rigid core composed of the b and b' domains. Limited proteolysis revealed that the linker between the a domain and the core is more susceptible to degradation than that connecting the a' domain to the core. By restricting the two arms with inter-domain disulfide bonds, the molecular flexibility of PDI, especially that of its a domain, was demonstrated to be essential for the enzymatic activity in vitro and in vivo. The crystal structure also featured a PDI dimer, and a propensity to dimerize in solution and in the ER was confirmed by cross-linking experiments and the split green fluorescent protein system. Although sedimentation studies suggested that the self-association of PDI is weak, we hypothesize that PDI exists as an interconvertible mixture of monomers and dimers in the endoplasmic reticulum due to its high abundance in this compartment.  相似文献   

8.
ER-60 domains responsible for interaction with calnexin and calreticulin   总被引:2,自引:0,他引:2  
Urade R  Okudo H  Kato H  Moriyama T  Arakaki Y 《Biochemistry》2004,43(27):8858-8868
ER-60 is a thiol oxidoreductase family protein of the endoplasmic reticulum that facilitates the oxidative folding of glycoproteins via interaction with calnexin (CNX) and calreticulin (CRT). In this study, we tried to identify the site of interaction with CNX and CRT in the ER-60 molecule. ER-60 was shown to be composed of at least four domains, named a, b, b', and a', by limited proteolysis. Recombinant fragments of ER-60, a, b', and a'c, were each expressed in Escherichia coli as an individual soluble folded protein that underwent a cooperative unfolding transition along a urea gradient. These fragments each gave the circular dichroism (CD) spectrum of the folded protein. On the other hand, fragment b, which did not undergo the cooperative unfolding transition along a urea gradient gel, did not show any sign of the folded structure on the CD measurement. However, subtraction of the spectra showed that the b domain was folded in wild-type ER-60 or abb'. Both a and a'c, which have a catalytic center CGHC motif, showed activity almost equivalent to half of that of wild-type ER-60. Extension from a or a'c to ab and abb' or b'a'c had little effect on their isomerase activity, suggesting that the b and b' domains hardly contribute to the catalytic activity of ER-60. The contribution of both the b and b' domains to the binding with CNX and CRT was revealed by surface plasmon resonance analysis and oxidative-refolding experiments of monoglucosylated RNase B with addition of the luminal domain of CNX.  相似文献   

9.
In contrast to high molecular weight forms of elongation factor 1 (EF-1H) from animal sources which contain three subunits, EF-1a, EF-1b, and EF-1c, EF-1H from wheat embryo consisted of four subunits, EF-1a, EF-1b, EF-1b', and EF-1c, in an equimolar ratio. The molecular weights of EF-1a, EF-1b, EF-1b', and EF-1c from wheat embryo were 52,000, 29,000, 28,000, and 48,000, respectively. In the animal system, EF-1a and EF-1b correspond functionally to EF-Tu and EF-Ts, respectively. In the wheat system, however, both EF-1b and EF-1b' had the EF-Ts-like activity to stimulate EF-1a-dependent binding of aminoacyl-tRNA to ribosomes. EF-1b and EF-1b' from wheat embryo gave 21 and 20 tryptic peptides, respectively. Twenty peptides were common.  相似文献   

10.
Cross-linking between protein components of whole spinach (Spinacia oleracea var. Nobel) thylakoids and of photosystem I- and II-enriched thylakoid fractions has been produced by reaction with the bifunctional imidoester dimethyl-3,3′-dithiobispropionimidate dihydrochloride as well as by the oxidation of intrinsic sulfydryl groups with an orthophenanthrolinecupric ion complex. The mixture of membrane proteins and their cross-linked products has been analyzed by two-dimensional sodium dodecyl sulfate electrophoresis, with a reductive cleavage step of the cross-linkages before the second dimension. Cross-linked aggregates up to a molecular weight of about 130 kilodaltons (kD) were analyzed, and it was inferred that the polypeptides appearing together in the same aggregates were neighbors within the membrane.

In thylakoids as well as in isolated photosystem fractions, oligomers were formed by cross-linking polypeptides of the 60 to 90 kD range, among them the polypeptides of the chlorophyll-protein complex I. Polypeptides of 46, 19, and 12 kD were cross-linked to these complexes. Polypeptides of 25 and 22 kD, which are related to the chlorophyll-protein complex II, were cross-linked in thylakoids as well as in photosystem II fractions, suggesting that in the membrane these molecules are close together. In photosystem II fractions an oligomer having a molecular weight of about 60 kD was formed by cross-linking several polypeptides of different molecular weights: 40, 25, and 22 kD.

Our cross-linking experiments show that protein interactions in the thylakoid membrane occurred mainly among the polypeptides of the two chlorophyll-protein complexes, thus suggesting an oligomeric nature of these apoproteins.

  相似文献   

11.
1. The hemoglobin of the pond snail, Planorbella duryi has a molecular weight of 1.64 x 10(6) to 1.77 x 10(6) as determined by light-scattering at 630 nm and a sedimentation coefficient of 36 S. 2. The analysis of the circular dichroism spectrum obtained in the 190-250 nm region suggests a high degree of helical folding of the polypeptide chains of P. duryi hemoglobin analogous to human hemoglobin and myoglobin, with estimates of alpha-helical folding of about 60-65%, 0-5% beta-structure, and the remaining portion of the chains in unordered form. 3. The dissociated subunits in 6.0 M GdmCl, in the absence and in the presence of reducing reagent (0.1 M dithiothreitol), have a molecular weight of 3.73 +/- 0.23 x 10(5) and 1.93 +/- 0.04 x 10(5), suggesting a di-decameric assembly of the parent hemoglobin organized in the form of five dimers held together by disulfide-linkages. 4. The native hemoglobin is strongly resistant to both pH dissociation and dissociation by urea and such salts as NaCl and NaClO4. Dissociation and denaturation could only be effected in concentrated GdmCl solutions. 5. The influence of the various dissociating agents on the quaternary structure suggest ionic stabilization of the decameric assembly, which is stabilized by salt bridges between the subunits.  相似文献   

12.
Cross-linking of cold-insoluble globulin by fibrin-stabilizing factor.   总被引:44,自引:0,他引:44  
Cold-insoluble globulin (CI globulin) was purified from human plasma and identified on the basis of its sedimentation coefficient, electrophoretic mobility, and concentration in normal plasma. CI globulin was distinguished from antihemophilic factor (AHF) by amino acid analysis, position of elution from 4% agarose, and electrophoretic migration in polyacrylamide gels in the presence of sodium dodecyl sulfate without prior reduction. CI globulin and AHF could not be distinguished by polyacrylamide gel electrophoresis in sodium dodecyl sulfate after reduction and probably have very similar subunit molecular weights. CI globulin apparently consists of two polypeptide chains, each of molecular weight 2.0 x 10(5), held together by disulfide bonds. CI globulin was a substrate for activated fibrin-stabilizing factor (FSF, blood coagulation factor XIII). FSF catalyzed the incorporation of a fluorescent primary amine, N-(5-aminopentyl)-5-dimethylaminonaphthalene-1-sulfonamide, into CI globulin and also catalyzed the cross-linking of CI globulin into multimers, as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulfate after reduction. In the presence of fibrin, cross-linking of CI globulin by FSF occurred without the formation of CI globulin multimers. Instead, polypeptides with apparent molecular weights of 2.6 x 10(5) and 3.0 x 10(5) were seen. The formation of these polypeptides coincided with the loss of the alpha chain of fibrin and CI globulin. The polypeptides were not seen when fibrin alone was cross-linked. The formation of the polypeptides was greater in fine clots than in coarse clots, and greater in clots incubated at 0 degrees than in clots incubated at 37 degrees. In clots made from purified fibrinogen, CI globulin, and FSF, the concentration of CI globulin in the clot liquor was greater if either FSF or calcium ion was omitted and cross-linking did not take place. These observations suggest that CI globulin is enzymically cross-linked to one of the chains of fibrin, most likely the alpha chain, and is thus covalently incorporated into the fibrin clot. CI globulin is very similar to a protein in the plasma membrane of fibroblasts. The cross-linking of CI globulin to itself and to fibrin may typify reactions also involving the fibroblast membrane protein.  相似文献   

13.
2,5-Hexanedione (2,5-HD), the neurotoxic metabolite of n-hexane, can structurally modify neurofilaments (NF) by pyrrole adduct formation and subsequent covalent cross-linking. 2,5-HD also induces accumulations of NF within the pre-terminal axon. We examined whether exposure of NF to 2,5-HD affected NF degradation. Two different models were used: (1) NF-enriched cytoskeletons isolated from human sciatic nerve were incubated with 2,5-HD in vitro and (2) differentiated human neuroblastoma cells (SK-N-SH) were exposed to 2, 5-HD in culture prior to isolation of cytoskeletal proteins. The cytoskeletal preparations were subsequently incubated with calpain II. The amount of NF-H and NF-L remaining after proteolysis was determined by SDS-PAGE and quantitative immunoblotting. NF-M proteolysis could not be quantified. Incubation of sciatic nerve cytoskeletal preparations with 2,5-HD resulted in cross-linking of all three NF proteins into high molecular weight (HMW) material with a range of molecular weights. Proteolysis of the NF-H and NF-L polypeptides was not affected by 2,5-HD-exposure. Degradation of the HMW material containing NF-H or NF-L was retarded when comparing with degradation of the NF-H and NF-L polypeptides, respectively, from control samples, but not as compared to the corresponding NF polypeptides from 2,5-HD-treated samples. Exposure of SK-N-SH cells to 2,5-HD also resulted in considerable cross-linking of NF. No differences were found between the proteolytic rates of NF-L and NF-H from exposed cells as compared with those subunits from control cells. Moreover, degradation of cross-linked NF-H was not different from monomeric NF-H. In conclusion, whether 2,5-HD affects calpain-mediated degradation of cross-linked NF proteins will depend on which model better reflects NF cross-linking as occurring in 2, 5-HD-induced axonopathy. However, with both models it was demonstrated that exposure of NF proteins to 2,5-HD without subsequent cross-linking is not adequate to inhibit NF proteolysis in vitro by added calpain.  相似文献   

14.
Circular dichroism studies of tropoelastin secondary structure show 4+/-1% alpha-helix in aqueous solutions. This is in contrast to the substantially higher amounts (up to 23+/-7%) of alpha-helix predicted by computer algorithms, which propose that regions of alpha-helix are limited to the alanine-rich cross-linking domains. Through the addition of trifluoroethanol, the amount of alpha-helix increased to 17+/-1%, equivalent to that expected on the basis of primary structure. The physiological ability of the protein to coacervate and the critical concentration of monomer required for coacervation were unaffected by levels of alpha-helix. However, the temperature required for coacervation decreased linearly with increasing alpha-helical structure, which correlates with the participation of alpha-helices in association. We propose that the alanine-rich cross-linking domains exist as nascent helices in tropoelastin in aqueous solution. We further suggest a novel mechanism for coacervation whereby formation of alpha-helices and subsequent helical side chain interactions limit the conformational flexibility of the polypeptide, to facilitate associations between hydrophobic domains during elastogenesis.  相似文献   

15.
Limited trypsinolysis of native alpha-actinin by trypsin was carried out. This procedure resulted in the formation of two large fragments with Mr of 30 and 70 kD which cover almost the whole subunit of alpha-actinin. Using the sedimentation equilibrium method, it was demonstrated that the bisubunit structure of alpha-actinin is provided for by C-terminal fragments of the subunits. Data from circular dichroism analysis suggest that the fragments formed are independent structural units, i.e., domains.  相似文献   

16.
Calf lens nuclear alpha-crystallin was separated into five molecular weight subpopulations by exclusion chromatography on Bio-Gel A-5m. These subpopulations were compared by amino acid analysis, ultraviolet absorption analysis, fluorescence, far- and near-ultraviolet circular dichroism, isoelectric focusing, SDS-polyacrylamide gel electrophoresis and sedimentation velocity analysis. Although only minor differences were detectable in most physicochemical properties, progressive changes were found in the near-ultraviolet circular dichroism spectra and in pellet hardness after centrifugation. Minute amounts of beta-crystallin polypeptides and a 43 kDa component were present in all five subpopulations. In addition, the highest molecular weight aggregates contain some gamma-crystallin polypeptides. A slow re-equilibration of separated subpopulations towards the initial distribution was observed by rechromatography.  相似文献   

17.
The structure of the N-terminal transmembrane domain (residues 1-34) of subunit b of the Escherichia coli F0F1-ATP synthase has been solved by two-dimensional 1H NMR in a membrane mimetic solvent mixture of chloroform/methanol/H2O (4:4:1). Residues 4-22 form an alpha-helix, which is likely to span the hydrophobic domain of the lipid bilayer to anchor the largely hydrophilic subunit b in the membrane. The helical structure is interrupted by a rigid bend in the region of residues 23-26 with alpha-helical structure resuming at Pro-27 at an angle offset by 20 degrees from the transmembrane helix. In native subunit b, the hinge region and C-terminal alpha-helical segment would connect the transmembrane helix to the cytoplasmic domain. The transmembrane domains of the two subunit b in F0 were shown to be close to each other by cross-linking experiments in which single Cys were substituted for residues 2-21 of the native subunit and b-b dimer formation tested after oxidation with Cu(II)(phenanthroline)2. Cys residues that formed disulfide cross-links were found with a periodicity indicative of one face of an alpha-helix, over the span of residues 2-18, where Cys at positions 2, 6, and 10 formed dimers in highest yield. A model for the dimer is presented based upon the NMR structure and distance constraints from the cross-linking data. The transmembrane alpha-helices are positioned at a 23 degrees angle to each other with the side chains of Thr-6, Gln-10, Phe-14, and Phe-17 at the interface between subunits. The change in direction of helical packing at the hinge region may be important in the functional interaction of the cytoplasmic domains.  相似文献   

18.
The principal protein component of the elastic fiber found in elastic tissues is elastin, an amorphous, cross-linked biopolymer that is assembled from a high molecular weight monomer. The hydrophobic and cross-linking domains of elastin have been considered separate and independent, such that changes to one region are not thought to affect the other. However, results from these solid-state 13C NMR experiments demonstrate that cooperativity in protein folding exists between the two domain types. The sequence of the EP20-24-24 polypeptide has three hydrophobic sequences from exons 20 and 24 of the soluble monomer tropoelastin, interspersed with cross-linking domains constructed from exons 21 and 23. In the middle of each cross-linking domain is a "hinge" sequence. When this pentapeptide is replaced with alanines, as in EP20-24-24[23U], its properties are changed. In addition to the expected increase in alpha-helical content and the resulting increase in rigidity of the cross-linking domains, changes to the organization of the hydrophobic regions are also observed. Using one-dimensional CPMAS (cross-polarization with magic angle spinning) techniques, including spectral editing and relaxation measurements, evidence for a change in dynamics to both domain types is observed. Furthermore, it is likely that the methyl groups of the leucines of the hydrophobic domains are also affected by the substitution to the hinge region of the cross-linking sequences. This cooperativity between the two domain types brings new questions to the phenomenon of coacervation in elastin polypeptides and strongly suggests that functional models for the protein must include a role for the cross-linking regions.  相似文献   

19.
One interferon gamma receptor binds one interferon gamma dimer   总被引:3,自引:0,他引:3  
We investigated the stoichiometry of the interferon gamma and interferon gamma receptor interaction, using recombinant interferon gamma and recombinant soluble interferon gamma receptor, applying chemical cross-linking and chromatographic techniques, and analyzing the resulting products in denaturing polyacrylamide gels. Interferon gamma cross-linked to itself produced a major band of an apparent molecular mass of 34 kDa, which suggests that it exists as a dimer in physiological buffer and which agrees with published data. Soluble interferon gamma receptor cross-linked to itself produced mainly a 28-kDa band, suggesting that the interferon gamma receptor exists as a monomer. Interferon gamma cross-linked to the soluble interferon gamma receptor resulted in the formation of two main products of apparent molecular masses of 60 and 44 kDa. The predominant 60-kDa band resulted from the cross-linking of one interferon gamma dimer (34 kDa) to one interferon gamma receptor molecule (27 kDa). The 44-kDa band was formed by the cross-linking of one interferon gamma molecule to one interferon gamma receptor. Kinetic studies showed that the cross-linking of interferon gamma dimer to the soluble receptor proceeds through the intermediate formed by cross-linking one molecule of the interferon gamma dimer to the receptor. Reducing and dissociating agents inhibited complex formation. When chromatographed on Sephadex G-100, interferon gamma was eluted as a protein of 34-kDa molecular mass, the soluble interferon gamma receptor as a protein of 40 kDa, and their mixture was eluted in one peak corresponding to an apparent molecular mass of 73 kDa. Sodium dodecyl sulfate-polyacrylamide gel analysis of the eluted mixture showed the presence of both interferon gamma and interferon gamma receptor at a ratio of 2:1. The found results suggest that the interferon gamma receptor binds interferon gamma as a dimer.  相似文献   

20.
This paper describes the physical and chemical properties of purified tau, a protein which is associated with brain microtubules and which induces assembly of microtubules from tubulin. Purified tau is composed of four polypeptides which migrate at positions equivalent to molecular weights between 55,000 and 62,000 during electrophoresis on sodium dodecyl sulfate/polyacrylamide gels. These polypeptides are shown to be closely related by peptide mapping and by amnio acid analysis. A comparison by various techniques of the high molecular weight microtubule-associated proteins with the tau polypeptides indicates no apparent relationship. Tau is found by analytical ultracentrifugation and by sedimentation equilibrium to have a sedimentation coefficient of 2.6 S and a native molecular weight of 57,000. Tau, therefore, must be highly asymmetric (an axial ratio of 20:1 using a prolate ellipsoid model), and yet possess little α-helical structure as indicated by circular dichroism. Isoelectric focusing shows tau to be a neutral or slightly basic protein. Tau is also seen to be phosphorylated by a protein kinase which copurifies with microtubules.In the assembly process, tau apparently regulates the formation of longitudinal oligomers from tubulin dimers, and hence promotes ring formation under depolymerizing conditions and microtubule formation under polymerizing conditions. The known asymmetry of the tau molecule suggests that tau induces assembly by binding to several tubulin molecules per tau molecule, thereby effectively increasing the local concentration of tubulin and inducing the formation of longitudinal filaments. The role of tau is discussed in light of reports of polymerization induced by particular non-physiological conditions and by various polycations. The formation of normal microtubules over a wide range of tubulin and tau concentrations under mild buffer conditions suggests that tau and tubulin define a complete in vitro assembly system under conditions which approach physiological.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号