首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the initial step of pronuclear association in fertilized fish eggs, the female and male pronuclei (containing large nucleolus-like bodies) were juxtaposed in the center of the blastodisc and formed nucleoplasmic projections along adjacent surfaces. After contact of the pronuclei, small internuclear bridges joining them were formed by fusion at several regions of the nuclear envelope projections. No specific site of fusion or breakdown of nuclear envelopes was recognized in the pronuclei during karyogamy. In the advanced stage, clumps of condensing chromatin appeared in the nucleoplasm of the newly fused pronuclei. The number and diameter of the internuclear bridges increased gradually by progressive fusion in many regions, finally yielding a spherical zygote nucleus. Following complete formation of the zygote nucleus, the pronuclear envelope began to break down concomitantly with shrinkage of the nucleoplasm, which was highly convoluted around the entire nuclear surface. The nucleoplasm containing chromosomes then mingled with the perinuclear cytoplasm.  相似文献   

2.
Before the first zygotic division, the nuclear envelopes of the maternal and paternal pronuclei disassemble, allowing both sets of chromosomes to be incorporated into a single nucleus in daughter cells after mitosis. We found that in Caenorhabditis elegans, partial inactivation of the polo-like kinase PLK-1 causes the formation of two nuclei, containing either the maternal or paternal chromosomes, in each daughter cell. These two nuclei gave rise to paired nuclei in all subsequent cell divisions. The paired-nuclei phenotype was caused by a defect in forming a gap in the nuclear envelopes at the interface between the two pronuclei during the first mitotic division. This was accompanied by defects in chromosome congression and alignment of the maternal and paternal metaphase plates relative to each other. Perturbing chromosome congression by other means also resulted in failure to disassemble the nuclear envelope between the two pronuclei. Our data further show that PLK-1 is needed for nuclear envelope breakdown during early embryogenesis. We propose that during the first zygotic division, PLK-1–dependent chromosome congression and metaphase plate alignment are necessary for the disassembly of the nuclear envelope between the two pronuclei, ultimately allowing intermingling of the maternal and paternal chromosomes.  相似文献   

3.
The formation of male and female pronuclei in physiologically monospermic fertilized eggs of the goldfish, Carassius auratus , has been investigated with transmission electron microscopy. Ultrastructural observations show that at 26°C the transformation of the sperm nucleus takes place very quickly. The sperm nuclear envelope degenerates and is replaced by a large number of smooth surface vesicles 1 min post-insemination. Concomitantly, most of the condensed sperm chromatin is dispersed and is surrounded by vesicles. Dispersion of the chromatin is followed by the fusion of vesicles and the formation of a new bilaminar pronuclear envelope. Within 5–10 min post-insemination, a spheroid male pronucleus with intranuclear annulate lamellae is produced. The formation of a female pronucleus is slightly different to that of the male pronucleus. The dispersing chromatin of the egg is divided into many groups, most of which are surrounded by multilaminar envelopes 5 min post-insemination. An ellipsoid female pronucleus with a continuous bilaminar pronuclear envelope and intranuclear annulate lamellae is formed 15 min post-insemination. Subsequently, the two pronuclei migrate towards one another. When the fully developed male and female pronuclei are located in the center of the blastodisc, each changes itself into a saccular complex 25 min post-insemination.  相似文献   

4.
NUCLEAR MEMBRANE FUSION IN FERTILIZED LYTECHINUS VARIEGATUS EGGS   总被引:3,自引:2,他引:1       下载免费PDF全文
Fusion of apposed nuclear envelopes is frequently seen at telophase during postmitotic reorganization of the nucleus, but only rarely at other times in the cell cycle. We attempted to define an experimental system for studying changes in the nuclear envelope related to the cell cycle by varying the time of pronuclear apposition in fertilized Lytechinus variegatus eggs. This approach was based on the assumption that the period from fertilization to metaphase of the first cleavage division corresponds to the period from telophase to metaphase in the generalized cell cycle. The experimental approach used was to block the movement of the pronuclei with Colcemid and then to release this block at varying times after insemination by photochemically inactivating the Colcemid. The results show that apposed pronuclear envelopes can fuse from soon after insemination until the anticipated time of prometaphase. Fusion occurred in about 3 min as scored by light microscopy and this time did not vary significantly with the time after insemination. The potential for nuclear fusion is not restricted to pronuclei alone since diploid nuclei in binucleate cells could be fused using centrifugation in solutions of Colcemid to bring the nuclei into apposition. It is suggested that the potential for nuclear fusion is not necessarily related to the cell cycle and that modification of the nuclear envelope, possibly by association with chromatin or other fibrous material restricts nuclear fusion in most multinucleated cells.  相似文献   

5.
Fine structure of the human ovum in the pronuclear stage   总被引:6,自引:4,他引:2       下载免费PDF全文
A penetrated ovum was recovered from the oviduct of a 33 year old surgical patient who had had sexual intercourse 26 hr before the operation. The ovum was in the pronuclear stage. The ooplasmic organelles were mainly represented by mitochondria, endoplasmic reticulum components, and Golgi elements. Small vesicles were found in the space between the two sheets of the pronuclear envelope. These vesicles appeared to be morphologically similar to the ER vesicles in the ooplasm and were considered to be involved in pronuclear development. Numerous annulate lamellae were seen in the ooplasm as well as in the pronuclei. Ooplasmic crystalloids were also observed. These were thought to represent cytoplasmic yolk. Remnants of the penetrating spermatozoon were found in close relation to one of the pronuclei. The fine structure of the first and second polar body is also described. The nuclear complement of the first polar body consisted of isolated chromosomes, whereas the second polar body contained a membrane-bounded nucleus. In consideration of the possibility that polar body fertilization may take place, these differences in nuclear organization could be of importance. Other recognizable differences between the two polar bodies were presence of dense cortical granules and microvilli in the first polar body, and absence of these structures in the second. These dissimilarities were considered to be related to the organization of the egg cytoplasm at the time of polar body separation.  相似文献   

6.
《The Journal of cell biology》1984,98(4):1222-1230
A cell-free cytoplasmic preparation from activated Rana pipiens eggs could induce in demembranated Xenopus laevis sperm nuclei morphological changes similar to those seen during pronuclear formation in intact eggs. The condensed sperm chromatin underwent an initial rapid, but limited, dispersion. A nuclear envelope formed around the dispersed chromatin and the nuclei enlarged. The subcellular distribution of the components required for these changes was examined by separating the preparations into soluble (cytosol) and particulate fractions by centrifugation at 150,000 g for 2 h. Sperm chromatin was incubated with the cytosol or with the particulate material after it had been resuspended in either the cytosol, heat-treated (60 or 100 degrees C) cytosol or buffer. We found that the limited dispersion of chromatin occurred in each of these ooplasmic fractions, but not in the buffer alone. Nuclear envelope assembly required the presence of both untreated cytosol and particulate material. Ultrastructural examination of the sperm chromatin during incubation in the preparations showed that membrane vesicles of approximately 200 nm in diameter, found in the particulate fraction, flattened and fused together to contribute the membranous components of the nuclear envelope. The enlargement of the sperm nuclei occurred only after the nuclear envelope formed. The pronuclei formed in the cell-free preparations were able to incorporate [3H]dTTP into DNA. This incorporation was inhibited by aphidicolin, suggesting that the DNA synthesis by the pronuclei was dependent on DNA polymerase-alpha. When sperm chromatin was incubated greater than 3 h, the chromatin of the pronuclei often recondensed to form structures resembling mitotic chromosomes within the nuclear envelope. Therefore, it appeared that these ooplasmic preparations could induce, in vitro, nuclear changes resembling those seen during the first cell cycle in the zygote.  相似文献   

7.
Nuclear envelope dynamics during male pronuclear development   总被引:1,自引:0,他引:1  
Upon fertilization, the sperm nucleus undergoes reactivation. The poreless sperm nuclear envelope is replaced by a functional male pronuclear envelope and the highly compact male chromatin decondenses. Here some recent evidence is examined: that disassembly of the sperm lamina is required for chromatin decondensation, that remnant portions of the sperm nuclear envelope target the binding of egg membrane vesicles that form the male pronuclear envelope, that functional male pronuclear envelopes containing lamin B receptor assemble prior to lamin import and lamina formation, and that lamina assembly drives male pronuclear swelling. Several unresolved issues are discussed.  相似文献   

8.
The involvement of newly synthesized proteins and calcium in meiotic processes, sperm nuclear transformations, and pronuclear development was examined in emetine-treated, fertilized, and A-23187-activated Spisula eggs by observing changes in the morphogenesis of the maternal and paternal chromatin. Emetine treatment (50 micrograms/ml) initiated 30 min before fertilization or A-23187 activation inhibited incorporation of [3H]leucine into TCA-precipitable material and blocked second polar body formation. Sperm incorporation and the initial enlargement of the sperm nucleus were unaffected; however, the dramatic enlargement and transformation of the sperm nucleus into a male pronucleus, which normally follow polar body formation, were delayed 10 to 20 min. Unlike the situation in untreated, control eggs, male pronuclear development took place while the maternally derived chromosomes remained condensed. It was not until approximately 20 min after the normal period of pronuclear development that the maternal chromosomes dispersed and formed a female pronucleus in emetine-treated, fertilized eggs. Formation of pronuclei, however, was unaffected in both emetine-treated, A-23187-activated eggs and fertilized eggs incubated with A-23187. These observations indicate that germinal vesicle breakdown, first polar body formation, and initial transformations of the sperm nucleus are independent of newly synthesized proteins. Inhibition of second polar body formation and the delay in pronuclear development brought about by emetine, as well as the appearance of silver grains over pronuclei in autoradiographs of control eggs incubated with [3H]leucine demonstrate that nascent proteins are involved with the completion of meiotic maturation and the development of male and female pronuclei. The ability of A-23187 to override the inhibitory effects of emetine on pronuclear development suggests that both nascent protein and calcium signals are involved in regulating the status of the maternal and paternal chromatin during pronuclear development.  相似文献   

9.
Incubation of demembranated sperm chromatin in cytoplasmic extracts of unfertilized Xenopus laevis eggs resulted in nuclear envelope assembly, chromosome decondensation, and sperm pronuclear formation. In contrast, egg extracts made with EGTA-containing buffers induced the sperm chromatin to form chromosomes or irregularly shaped clumps of chromatin that were incorporated into bipolar or multipolar spindles. The 150,000 g supernatants of the EGTA extracts could not alone support these changes in incubated nuclei. However, these supernatants induced not only chromosome condensation and spindle formation, but also nuclear envelope breakdown when added to sperm pronuclei or isolated Xenopus liver or brain nuclei that were incubated in extracts made without EGTA. Similar changes were induced by partially purified preparations of maturation-promoting factor. The addition of calcium chloride to extracts containing condensed chromosomes and spindles caused dissolution of the spindles, decondensation of the chromosomes, and re-formation of interphase nuclei. These results indicate that nuclear envelope breakdown, chromosome condensation, and spindle assembly, as well as the regulation of these processes by Ca2+-sensitive cytoplasmic components, can be studied in vitro using extracts of amphibian eggs.  相似文献   

10.
Eggs of the sea urchin, Arbacia punctulata, treated with 3% urethane for 30 sec followed by 0.3% urethane and inseminated are polyspermic and fail to undergo a typical cortical reaction. Upon insemination the vitelline layer of urethane-treated eggs either does not separate or is raised only a short distance from the oolemma. 1–6 min after insemination, almost all of the cortical granules remain intact and are dislodged from the plasmalemma. Later (6 min to the two-cell stage) some cortical granules are released randomly along the surface of the zygote. Not all zygotes show the same degree of cortical granule dehiscence; most of them experience little if any granule release whereas others demonstrate considerably more. The thickness of the hyaline layer appears to be directly related to the number of cortical granules released. Subsequent to pronuclear migration, several male pronuclei become associated with the female pronucleus. Later the male and female pronuclear envelopes contact and the outer and the inner laminae fuse, thereby forming the zygote nucleus. The male pronuclei remaining in the cytoplasm increase in size and progressively migrate to, and fuse with, the zygote nucleus. By 60 min some zygotes appear to contain only one large zygote nucleus which subsequently enters mitosis. Other zygotes possess a number of male pronuclei which remain unfused, and later these pronuclei along with the zygote nucleus undergo mitosis. There does not appear to be a direct relation between the number of cortical granules a zygote possesses and the above mentioned dichotomy.  相似文献   

11.
The formation of the nuclear envelope in the mitosis ofSpirogyra was studied with an electron microscope. The nuclear envelope was disrupted around the spindle equator in the metaphase. Many small vesicles were observed in the metaphase spindle. These vesicles surrounded the masses of chromosomes and nucleolar substance in the early anaphase, and they fused with each other to form daughter nuclear envelopes during the early anaphase. The formation of new envelopes from small vesicles at such an early mitotic anaphase is reported here for the first time. The possible origin of these vesicles is also discussed.  相似文献   

12.
Investigations were conducted in an effort to determine the origin of the membrane comprising the male pronuclear envelope of inseminated sea urchin eggs. The events of fertilization in zygotes treated with 200 μg/ml of puromycin are not impaired even though incorporation of [3H]leucine is inhibited up to 80% when compared to control specimens. Developing male pronuclei in zygotes treated with puromycin form nuclear envelopes structurally similar to and within the same period as controls. In puromycin-treated and untreated zygotes morphologically recognizable portions of the sperm nuclear envelope are incorporated into the structure of the male pronuclear envelope. Pronuclear development was also examined in inseminated ova where most of the endoplasmic reticulum (ER) was confined to a specific area of the zygote. Eggs were centrifuged in order to stratify their organelles into specific layers (stratified eggs); with further centrifugation stratified eggs are bisected to form nucleate (rich in ER) and nonnucleate halves (containing little ER). Observations of inseminated stratified eggs and nucleate and nonnucleate halves demonstrate an inverse relation between the amount of ER present in the vicinity of a reorganizing sperm nucleus and the time it takes to form the male pronuclear envelope. Computation of the maximum quantity of membrane in the male pronucleus that may be derived from the sperm nuclear envelope is approximately 15%. These investigations suggest that a major portion of the male pronuclear envelope is derived from endoplasmic reticulum within the egg and only a small portion (up to 15%) originates from the sperm nuclear envelope.  相似文献   

13.
We tested the ability of chromosomes in a mitotic cytoplasm to organize a bipolar spindle in the absence of centrosomes. Sea urchin eggs were treated with 5 X 10(-6) colcemid for 7-9 min before fertilization to block future microtubule assembly. Fertilization events were normal except that a sperm aster was not formed and the pronuclei remained up to 70 microns apart. After nuclear envelope breakdown, individual eggs were irradiated with 366-nm light to inactivate photochemically the colcemid. A functional haploid bipolar spindle was immediately assembled in association with the male chromosomes. In contrast to the male pronucleus, the female pronucleus in most of these eggs remained as a small nonbirefringent hyaline area throughout mitosis. High-voltage electron microscopy of serial semithick sections from individual eggs, previously followed in vivo, revealed that the female chromosomes were randomly distributed within the remnants of the nuclear envelope. No microtubules were found in these pronuclear areas even though the chromosomes were well-condensed and had prominent kinetochores with well-developed coronas. In the remaining eggs, a weakly birefringent monaster was assembled in the female pronuclear area. These observations demonstrate that chromosomes in a mitotic cytoplasm cannot organize a bipolar spindle in the absence of a spindle pole or even in the presence of a monaster. In fact, chromosomes do not even assemble kinetochore microtubules in the absence of a spindle pole, and kinetochore microtubules form only on kinetochores facing the pole when a monaster is present. This study also provides direct experimental proof for the longstanding paradigm that the sperm provides the centrosomes used in the development of the sea urchin zygote.  相似文献   

14.
《The Journal of cell biology》1995,129(6):1447-1458
Nuclear envelope breakdown (NEB) and entry into mitosis are though to be driven by the activation of the p34cdc2-cyclin B kinase complex or mitosis promoting factor (MPF). Checkpoint control mechanisms that monitor essential preparatory events for mitosis, such as DNA replication, are thought to prevent entry into mitosis by downregulating MPF activation until these events are completed. Thus, we were surprised to find that when pronuclear fusion in sea urchin zygotes is blocked with Colcemid, the female pronucleus consistently breaks down before the male pronucleus. This is not due to regional differences in the time of MPF activation, because pronuclei touching each other break down asynchronously to the same extent. To test whether NEB is controlled at the nuclear or cytoplasmic level, we activated the checkpoint for the completion of DNA synthesis separately in female and male pronuclei by treating either eggs or sperm before fertilization with psoralen to covalently cross-link base-paired strands of DNA. When only the maternal DNA is cross-linked, the male pronucleus breaks down first. When the sperm DNA is cross-linked, male pronuclear breakdown is substantially delayed relative to female pronuclear breakdown and sometimes does not occur. Inactivation of the Colcemid after female NEB in such zygotes with touching pronuclei yields a functional spindle composed of maternal chromosomes and paternal centrosomes. The intact male pronucleus remains located at one aster throughout mitosis. In other experiments, when psoralen-treated sperm nuclei, over 90% of the zygote nuclei do not break down for at least 2 h after the controls even though H1 histone kinase activity gradually rises close to, or higher than, control mitotic levels. The same is true for normal zygotes treated with aphidicolin to block DNA synthesis. From these results, we conclude that NEB in sea urchin zygotes is controlled at the nuclear, not cytoplasmic, level, and that mitotic levels of cytoplasmic MPF activity are not sufficient to drive NEB for a nucleus that is under checkpoint control. Our results also demonstrate that the checkpoint for the completion of DNA synthesis inhibits NEB by acting primarily within the nucleus, not by downregulating the activity of cytoplasmic MPF.  相似文献   

15.
Nucleic acid synthesis and development of human male pronucleus   总被引:8,自引:0,他引:8  
Polyspermically penetrated human zona-free eggs prepared from oocytes that had failed to be fertilized in an in-vitro fertilization programme were used. The pronuclear synthetic activity was evaluated by high-resolution autoradiography and correlated with the development of pronuclear structure. Incorporation of [3H]-thymidine, signalling the occurrence of a DNA synthetic phase, was only detected in structurally fully developed pronuclei previously shown to appear no sooner than 12 h after gamete union. However, [3H]adenosine was incorporated into very early pronuclei which had not yet completed the development of their nuclear envelopes and which first appeared about 4 h after sperm-egg fusion. In the absence of DNA synthesis (shown by the lack of thymidine incorporation), this early adenosine incorporation apparently reflects an early pronuclear RNA synthesis. Taken together, these results indicate that nucleic acid synthesis in human male pronuclei is tightly bound to the development of a corresponding pronuclear structure and that DNA synthesis, beginning about 12 h after fertilization, is preceded by a slight but evident RNA synthesis taking place during an early stage of human male pronuclear formation.  相似文献   

16.
Sperm aster in rabbit zygotes: its structure and function   总被引:6,自引:1,他引:5       下载免费PDF全文
Microscope observations of rabbit zygotes demonstrate that a sperm aster forms in association with the male pronucleus approximately 1 h postinsemination and consists of two regions. One, the centrosphere, contains a dense aggregation of cisternae of smooth endoplasmic reticulum and microtubules. The second consists of fascicles of microtubules which emanate from the centrosphere. Fertilized rabbit eggs were cultured in medium containing colcemid in order to determine its effects on various events of fertilization, such as movements of the male and female pronuclei and DNA synthesis. No evidence was obtained to indicate that a sperm aster is formed in colcemid-treated zygotes. In addition, migration and close apposition of the pronuclei do not take place. Breakdown of the pronuclear envelopes and condensation of the maternally and paternally derived chromosomes occur even though the pronuclei fail to migrate centrad. Autoradiographic analysis of the synthesis of DNA by both pronuclei demonstrates that their migration into close apposition to one another is not required for the incorporation of tritiated thymidine.  相似文献   

17.
THE FUSION OF SEXUAL NUCLEI   总被引:1,自引:0,他引:1  
A classification scheme is proposed for the types of sexual nuclear fusion that occur in eukaryotes. The two main classes are envelope fusion and envelope vesiculation and each is further divided into subclasses. The formation of sexual nuclei (pronuclei) has been detailed in representatives from various phyla, but is best understood in animals, in which the development of male and female pronuclei differs in some respects. The only characterized cytoplasmic mediator of pronuclear movement are microtubules. Groups of eukaryotes can be classified according to the type of nuclear fusion they reveal. Envelope fusion occurs in animals whose eggs are fertilized at the pronuclear stage, and in all plants, fungi, protozoa and algae studied to date. Ultrastructural details of envelope fusion have shown variations that are classified in our scheme as direct and indirect, the latter being restricted to the plant kingdom. Envelope vesiculation only occurs in animals, in which it is the most common means of nuclear fusion. Four subclasses can be defined according to the timing of the vesiculation of the nuclear envelopes, and the extent of envelope surface projections prior to fusion. The amount of work reported on the controlling mechanisms of nuclear fusion has been limited, but some evidence of genetic control has been provided, particularly in fungi. Evidence is presented to indicate that the control of the fusion competence of nuclei is a negative one. This review of the information available on nuclear fusion points out the need for extensive future comparative studies if this important process is to be better understood.  相似文献   

18.
Oocyte-thymocyte mouse cell hybrids were produced using polyethylene glycol (PEG) and examined at the ultrastructural level. Fusion was accomplished either before or after activation of metaphase II oocytes. In both experimental variants thymocyte nuclei undergo remodelling which comprises the following sequence of events: nuclear envelope breakdown, initial chromatin condensation, and subsequent decondensation, nuclear envelope reformation and formation of nucleoli. In hybrids produced before oocyte activation but activated within a short time and cultured for several hours the thymocyte nuclei become identical to the female pronucleus. In the second variant (fusion with activated oocytes) the degree of remodeling of thymocyte nuclei is variable. Our observations demonstrate that between metaphase II, telophase of meiosis and early female pronuclear stages the mouse oocyte contains all "factors" necessary for remodelling of differentiated somatic nuclei and their development as if they were pronuclei.  相似文献   

19.
Summary The nuclear envelope functions as a selective barrier between nucleus and cytoplasm. During cycles of cell division the nuclear envelope repeatedly disassembles and re-associates. Presumably, each cycle re-establishes the functional and structural integrity of the nuclear envelope. After repeated rounds of cell division, as occurs during differentiation, the selectivity and configuration of the envelope may change. We compare the ionic conductance and the nuclear pore density in four types of murine nuclei: germinal vesicles in oocytes, pronuclei in zygotes, nuclei from two-cell blastomeres, and somatic cell nuclei from the liver. A large-conductance ion channel is present in all nuclear envelopes. Liver cell nuclei have a greater number of these channels than those from earlier developmental stages, and they also have a higher density of nuclear pores. In this article we hypothesize an association between the ion channels and the nuclear pores.  相似文献   

20.
Isolated hamster spermatogenic cells at various stages of spermatogenesis were examined by thin‐sectioning techniques after electrofusion with activated homologous oocytes. The nuclei and attached organelles of the cells remained almost unchanged within the ooplasm three to five hours after the fusion pulse, by which time the oocytes had developed to the pronuclear stage. Only the spherical nuclei of primary spermatocytes and early spermatids in the Golgi and cap phases underwent modifications in their fine structures. They gained the morphological characteristics of well‐developed mammalian pronuclei; e.g., electron‐dense round nucleolus‐like bodies and blebbing of the nuclear envelope. In contrast, the elongated nuclei of later spermatids in the acrosome and maturation phases retained their original features, except that their acrosomes were deformed. Thus, ooplasm‐mediated transformation within activated oocytes at the pronuclear stage occurred only in nuclei containing dispersed chromatin and having nuclear pores in the envelope. Mol. Reprod. Dev. 52:66–73, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号