首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fetal hemoglobin (Hb F) and fetal cell (FC) levels in adults show considerable variation and are influenced by several genetic variants; the major determinants appear to be unlinked to the beta-globin gene cluster. Recently, a trans-acting locus controlling Hb F and FC production has been mapped to chromosome 6q23 in an Asian Indian kindred that includes individuals with heterocellular hereditary persistence of Hb F (HPFH) associated with beta thalassemia. We have extended the kindred by 57 members, bringing the total studied to 210, and have saturated the region with 26 additional markers. Linkage analysis showed tight linkage of the quantitative-trait locus (QTL) to the anonymous markers D6S976 (LOD score 11.3; recombination fraction .00) and D6S270 (LOD score 7.4; recombination fraction .00). Key recombination events now place this QTL within a 1-2-cM interval spanning approximately 1.5 Mb between D6S270 and D6S1626. Furthermore, haplotype analysis has led to a reevaluation of the genealogy and to the identification of additional relationships in the kindred.  相似文献   

2.
Pyoderma gangrenosum, cystic acne, and aseptic arthritis are clinically distinct disorders within the broad class of inflammatory diseases. Although this triad of symptoms is rarely observed in a single patient, a three-generation kindred with autosomal-dominant transmission of these three disorders has been reported as "PAPA syndrome" (MIM 604416). We report mapping of a disease locus for familial pyoderma gangrenosum-acne-arthritis to the long arm of chromosome 15 (maximum two-point LOD score, 5.83; recombination fraction [straight theta] 0 at locus D15S206). Under the assumption of complete penetrance, haplotype analysis of recombination events defined a disease interval of 10 cM, between D15S1023 and D15S979. Successful identification of a single disease locus for this syndrome suggests that these clinically distinct disorders may share a genetic etiology. These data further indicate the role of genes outside the major histocompatibility locus in inflammatory disease.  相似文献   

3.
Idiopathic dilated cardiomyopathy is a heart muscle disease of unknown etiology, characterized by impaired myocardial contractility and ventricular dilatation. The disorder is an important cause of morbidity and mortality and represents the chief indication for heart transplantation. Familial transmission is often recognized (familial dilated cardiomyopathy, or FDC), mostly with autosomal dominant inheritance. In order to understand the molecular genetic basis of the disease, a large six-generation kindred with autosomal dominant FDC was studied for linkage analysis. A genome-wide search was undertaken after a large series of candidate genes were excluded and was then extended to two other families with autosomal dominant pattern of transmission and identical clinical features. Coinheritance of the disease gene was excluded for > 95% of the genome, after 251 polymorphic markers were analyzed. Linkage was found for chromosome 9q13-q22, with a maximum multipoint lod score of 4.2. There was no evidence of heterogeneity. The FDC locus was placed in the interval between loci D9S153 and D9S152. Several candidate genes for causing dilated cardiomyopathy map in this region.  相似文献   

4.
This group has previously reported the mapping of a novel locus for autosomal dominant retinitis pigmentosa (adRP) in a South African kindred to 17q. Using a new series of microsatellite markers in this study, two-point and multipoint analysis provide evidence for the localization of the disease gene to the 17q22 region. In addition, a second South African adRP family is shown to be linked to this 17q22 locus. Disease-associated haplotypes constructed for both families and multipoint linkage analysis place the gene in the 10-cM interval between D17S1607 and D17S1874. Three candidate genes on 17q were investigated: PDEG, the gamma subunit of rod phosphodiesterase; TIMP2, tissue inhibitor of metalloproteinases-2; and PRKCA, protein kinase C alpha. Recombination events between the adRP locus and: (1) a single-stranded conformation polymorphism in PDEG; and (2) a restriction fragment length polymorphism in TIMP2 provided evidence for the exclusion of these candidate genes as being responsible for adRP in the South African kindred. Received: 6 December 1996 / Accepted: 19 July 1997  相似文献   

5.
Nephronophthisis, an autosomal-recessive cystic kidney disease, is the most frequent monogenic cause for renal failure in childhood. Infantile and juvenile forms of nephronophthisis are known to originate from separate gene loci. We describe here a new disease form, adolescent nephronophthisis, that is clearly distinct by clinical and genetic findings. In a large, 340-member consanguineous Venezuelan kindred, clinical symptoms and renal pathology were evaluated. Onset of terminal renal failure was compared with that in a historical sample of juvenile nephronophthisis. Onset of terminal renal failure in adolescent nephronophthisis occurred significantly later (median age 19 years, quartile borders 16.0 and 25.0 years) than in juvenile nephronophthisis (median age 13.1 years, quartile borders 11.3 and 17.3 years; Wilcoxon test P=.0069). A total-genome scan of linkage analysis was conducted and evaluated by LOD score and total-genome haplotype analyses. A gene locus for adolescent nephronophthisis was localized to a region of homozygosity by descent, on chromosome 3q22, within a critical genetic interval of 2. 4 cM between flanking markers D3S1292 and D3S1238. The maximum LOD score for D3S1273 was 5.90 (maximum recombination fraction.035). This locus is different than that identified for juvenile nephronophthisis. These findings will have implications for diagnosis and genetic counseling in hereditary chronic renal failure and provide the basis for identification of the responsible gene.  相似文献   

6.
Characterized by proximal muscle weakness and wasting, limb-girdle muscular dystrophies (LGMDs) are a heterogeneous group of clinical disorders. Previous reports have documented either autosomal dominant or autosomal recessive modes of inheritance, with genetic linkage studies providing evidence for the existence of at least 12 distinct loci. Gene products have been identified for five genes responsible for autosomal recessive forms of the disorder. We performed a genome scan using pooled DNA from a large Hutterite kindred in which the affected members display a mild form of autosomal recessive LGMD. A total of 200 markers were used to screen pools of DNA from patients and their siblings. Linkage between the LGMD locus and D9S302 (maximum LOD score 5.99 at recombination fraction .03) was established. Since this marker resides within the chromosomal region known to harbor the gene causing Fukuyama congenital muscular dystrophy (FCMD), we expanded our investigations, to include additional markers in chromosome region 9q31-q34.1. Haplotype analysis revealed five recombinations that place the LGMD locus distal to the FCMD locus. The LGMD locus maps close to D9S934 (maximum multipoint LOD score 7.61) in a region that is estimated to be approximately 4.4 Mb (Genetic Location Database composite map). On the basis of an inferred ancestral recombination, the gene may lie in a 300-kb region between D9S302 and D9S934. Our results provide compelling evidence that yet another gene is involved in LGMD; we suggest that it be named "LGMD2H."  相似文献   

7.
We report that the Bjornstad syndrome gene maps to chromosome 2q34-36. The clinical association of sensorineural hearing loss with pili torti (broken, twisted hairs) was described >30 years ago by Bjornstad; subsequently, several small families have been studied. We evaluated a large kindred with Bjornstad syndrome in which eight members inherited pili torti and prelingual sensorineural hearing loss as autosomal recessive traits. A genomewide search using polymorphic loci demonstrated linkage between the disease gene segregating in this kindred and D2S434 (maximum two-point LOD score = 4.98 at theta = 0). Haplotype analysis of recombination events located the disease gene in a 3-cM region between loci D2S1371 and D2S163. We speculate that intermediate filament and intermediate filament-associated proteins are good candidate genes for causing Bjornstad syndrome.  相似文献   

8.
Stargardt disease (STGD) is the most common hereditary macular dystrophy and is characterized by decreased central vision, atrophy of the macula and underlying retinal-pigment epithelium, and frequent presence of prominent flecks in the posterior pole of the retina. STGD is most commonly inherited as an autosomal recessive trait, but many families have been described in which features of the disease are transmitted in an autosomal dominant manner. A recessive locus has been identified on chromosome 1p (STGD1), and dominant loci have been mapped to both chromosome 13q (STGD2) and chromosome 6q (STGD3). In this study, we describe a kindred with an autosomal dominant Stargardt-like phenotype. A genomewide search demonstrated linkage to a locus on chromosome 4p, with a maximum LOD score of 5.12 at a recombination fraction of.00, for marker D4S403. Analysis of extended haplotypes localized the disease gene to an approximately 12-cM interval between loci D4S1582 and D4S2397. Therefore, this kindred establishes a new dominant Stargardt-like locus, STGD4.  相似文献   

9.
The possibility that organophosphorus (OP) compounds contribute to motor neuron disease (MND) is supported by association of paraoxonase 1 polymorphisms with amyotrophic lateral sclerosis (ALS) and the occurrence of MND in OP compound-induced delayed neuropathy (OPIDN), in which neuropathy target esterase (NTE) is inhibited by organophosphorylation. We evaluated a consanguineous kindred and a genetically unrelated nonconsanguineous kindred in which affected subjects exhibited progressive spastic paraplegia and distal muscle wasting. Affected subjects resembled those with OPIDN and those with Troyer Syndrome due to SPG20/spartin gene mutation (excluded by genetic linkage and SPG20/spartin sequence analysis). Genome-wide analysis suggested linkage to a 22 cM homozygous locus (D19S565 to D19S884, maximum multipoint LOD score 3.28) on chromosome 19p13 to which NTE had been mapped (GenBank AJ004832). NTE was a candidate because of its role in OPIDN and the similarity of our patients to those with OPIDN. Affected subjects in the consanguineous kindred were homozygous for disease-specific NTE mutation c.3034A-->G that disrupted an interspecies conserved residue (M1012V) in NTE's catalytic domain. Affected subjects in the nonconsanguineous family were compound heterozygotes: one allele had c.2669G-->A mutation, which disrupts an interspecies conserved residue in NTE's catalytic domain (R890H), and the other allele had an insertion (c.2946_2947insCAGC) causing frameshift and protein truncation (p.S982fs1019). Disease-specific, nonconserved NTE mutations in unrelated MND patients indicates NTE's importance in maintaining axonal integrity, raises the possibility that NTE pathway disturbances contribute to other MNDs including ALS, and supports the role of NTE abnormalities in axonopathy produced by neuropathic OP compounds.  相似文献   

10.
Generalized epilepsy with febrile seizures plus (GEFS+) is a recently recognized but relatively common form of inherited childhood-onset epilepsy with heterogeneous epilepsy phenotypes. We genotyped 41 family members, including 21 affected individuals, to localize the gene causing epilepsy in a large family segregating an autosomal dominant form of GEFS+. A genomewide search examining 197 markers identified linkage of GEFS+ to chromosome 2, on the basis of an initial positive LOD score for marker D2S294 (Z=4.4, recombination fraction [straight theta] = 0). A total of 24 markers were tested on chromosome 2q, to define the smallest candidate region for GEFS+. The highest two-point LOD score (Zmax=5.29; straight theta=0) was obtained with marker D2S324. Critical recombination events mapped the GEFS+ gene to a 29-cM region flanked by markers D2S156 and D2S311, with the idiopathic generalized epilepsy locus thereby assigned to chromosome 2q23-q31. The existence of the heterogeneous epilepsy phenotypes in this kindred suggests that seizure predisposition determined by the GEFS+ gene on chromosome 2q could be modified by other genes and/or by environmental factors, to produce the different seizure types observed.  相似文献   

11.
In a systematic effort for mapping of all the human ribosomalprotein (rp) genes, we have found that an unusually large number(12) of rp genes are present on chromosome 19 and subsequentlydetermined their locations on the chromosome by a radiation-hybridprocedure. For this, we isolated cosmid clones correspondingto each gene and placed nine of them on a metric physical mapof chromosome 19. Although most genes are scattered over thechromosome, we found three genes are clustered in a 0.6-Mb regionat 19q13.3 and two of them, RPL13A and RPS11, within a singlecosmid only 4.3 kb apart. To explore a possible relationshipbetween rp gene defects and human disease, we compared map positionsof the rpgenes and disease loci on chromosome 19, which ledus to find RPS9 gene in the same interval as the gene for retinitispigmentosa 11. The disease locus has previously been mappedto the 6-cM interval at 19q13.4 between markers D19S572 andD19S926, which corresponds to less than 2-Mb region on the metricphysical map. We mapped RPS9 about 800 kb distal to D19S572.  相似文献   

12.
Benign hereditary chorea (BHC) is an autosomal dominant disorder characterized by an early-onset nonprogressive chorea. The early onset and the benign course distinguishes BHC from the more common Huntington disease (HD). Previous studies on families with BHC have shown that BHC and HD are not allelic. We studied a large Dutch kindred with BHC and obtained strong evidence for linkage between the disorder and markers on chromosome 14q (maximum LOD score 6.32 at recombination fraction 0). The BHC locus in this family was located between markers D14S49 and D14S1064, a region spanning approximately 20.6 cM that contains several interesting candidate genes involved in the development and/or maintenance of the CNS: glia maturation factor-beta, GTP cyclohydrolase 1 and the survival of motor neurons (SMN)-interacting protein 1. The mapping of the BHC locus to 14q is a first step toward identification of the gene involved, which might, subsequently, shed light on the pathogenesis of this and other choreatic disorders.  相似文献   

13.
Cystinuria is an autosomal recessive aminoaciduria in which three urinary phenotypes (I, II, and III) have been described. An amino acid transporter gene, SLC3A1 (formerly rBAT), was found to be responsible for this disorder. Mutational and linkage analysis demonstrated the presence of genetic heterogeneity in which the SLC3A1 gene is responsible for type I cystinuria but not for type II or type III. In this study, we report the identification of the cystinuria type III locus on the long arm of chromosome 19 (19q13.1), obtained after a genomewide search. Pairwise linkage analysis in a series of type III or type II families previously excluded from linkage to the cystinuria type I locus (SLC3A1 gene) revealed a significant maximum LOD score (zeta max) of 13.11 at a maximum recombination fraction (theta max) of .00, with marker D19S225. Multipoint linkage analysis performed with the use of additional markers from the region placed the cystinuria type III locus between D19S414 and D19S220. Preliminary data on type II families also seem to place the disease locus for this rare type of cystinuria at 19q13.1 (significant zeta max = 3.11 at theta max of .00, with marker D19S225).  相似文献   

14.
Hereditary spastic paraplegia (HSP) is a clinically and genetically heterogeneous group of disorders characterized by insidiously progressive spastic weakness in the legs. Genetic loci for autosomal dominant HSP exist on chromosomes 2p, 14q, and 15q. These loci are excluded in 45% of autosomal dominant HSP kindreds, indicating the presence of additional loci for autosomal dominant HSP. We analyzed a Caucasian kindred with autosomal dominant HSP and identified tight linkage between the disorder and microsatellite markers on chromosome 8q (maximum two-point LOD score 5.51 at recombination fraction 0). Our results clearly establish the existence of a locus for autosomal dominant HSP on chromosome 8q23-24. Currently this locus spans 6.2 cM between D8S1804 and D8S1774 and includes several potential candidate genes. Identifying this novel HSP locus on chromosome 8q23-24 will facilitate discovery of this HSP gene, improve genetic counseling for families with linkage to this locus, and extend our ability to correlate clinical features with different HSP loci.  相似文献   

15.
Larsen syndrome (LS) is a skeletal dysplasia (osteochondrodysplasia) in which multiple dislocations of the large joints are the major feature. Nosology in this group of diseases, which constitutes 8% of Mendelian disorders in man, is primarily based on clinical and radiographic features. Hopes for more accurate classification grounds are currently being met by progress in elucidation of underlying genetic defects. We have performed linkage analysis in a large Swedish kindred with autosomal dominant LS and found the gene (LAR1) to be strongly linked to chromosome 3p markers (Zmax = 13.4 at (theta = .00). Recombination analysis indicates that the LAR1 locus is located in a region defined distally by D3S1581 and proximally by D3S1600, which cytogenetically maps to chromosome region 3p21.1-14.1. Linkage and recombination analysis of a COL7A1 PvuII intragenic polymorphism versus LS and chromosome 3 markers indicate that COL7A1 is located close to, but distinct from, the LAR1 locus.  相似文献   

16.
Familial hypobetalipoproteinemia (FHBL) is an apparently autosomal dominant disorder of lipid metabolism characterized by less than fifth percentile age- and sex-specific levels of apolipoprotein beta (apobeta) and low-density lipoprotein-cholesterol. In a minority of cases, FHBL is due to truncation-producing mutations in the apobeta gene on chromosome 2p23-24. Previously, we reported on a four-generation FHBL kindred in which we had ruled out linkage of the trait to the apobeta gene. To locate other loci containing genes for low apobeta levels in the kindred, a genomewide search was conducted. Regions on 3p21.1-22 with two-point LOD scores >1.5 were identified. Additional markers were typed in the region of these signals. Two-point LOD scores in the region of D3S2407 increased to 3.35 at O = 0. GENEHUNTER confirmed this finding with an nonparametric multipoint LOD score of 7.5 (P=.0004). Additional model-free analyses were conducted with the square root of the apobeta level as the phenotype. Results from the Loki and SOLAR programs further confirmed linkage of FHBL to 3p21.1-22. Weaker linkage to a region near D19S916 was also indicated by Loki and SOLAR. Thus, a heretofore unidentified genetic susceptibility locus for FHBL may reside on chromosome 3.  相似文献   

17.
Birt-Hogg-Dubé syndrome (BHD), an inherited autosomal genodermatosis characterized by benign tumors of the hair follicle, has been associated with renal neoplasia, lung cysts, and spontaneous pneumothorax. To identify the BHD locus, we recruited families with cutaneous lesions and associated phenotypic features of the BHD syndrome. We performed a genomewide scan in one large kindred with BHD and, by linkage analysis, localized the gene locus to the pericentromeric region of chromosome 17p, with a LOD score of 4.98 at D17S740 (recombination fraction 0). Two-point linkage analysis of eight additional families with BHD produced a maximum LOD score of 16.06 at D17S2196. Haplotype analysis identified critical recombinants and defined the minimal region of nonrecombination as being within a <4-cM distance between D17S1857 and D17S805. One additional family, which had histologically proved fibrofolliculomas, did not show evidence of linkage to chromosome 17p, suggesting genetic heterogeneity for BHD. The BHD locus lies within chromosomal band 17p11.2, a genomic region that, because of the presence of low-copy-number repeat elements, is unstable and that is associated with a number of diseases. Identification of the gene for BHD may reveal a new genetic locus responsible for renal neoplasia and for lung and hair-follicle developmental defects.  相似文献   

18.
Xenopus laevis (an anuran amphibian) shows limb regeneration ability between that of urodele amphibians and that of amniotes. Xenopus frogs can initiate limb regeneration but fail to form patterned limbs. Regenerated limbs mainly consist of cone-shaped cartilage without any joints or branches. These pattern defects are thought to be caused by loss of proper expressions of patterning-related genes. This study shows that hyperinnervation surgery resulted in the induction of a branching regenerate. The hyperinnervated blastema allows the identification and functional analysis of the molecules controlling this patterning of limb regeneration. This paper focuses on the nerve affects to improve Xenopus limb patterning ability during regeneration. The nerve molecules, which regulate limb patterning, were also investigated. Blastemas grown in a hyperinnervated forelimb upregulate limb patterning-related genes (shh, lmx1b, and hoxa13). Nerves projecting their axons to limbs express some growth factors (bmp7, fgf2, fgf8, and shh). Inputs of these factors to a blastema upregulated some limb patterning-related genes and resulted in changes in the cartilage patterns in the regenerates. These results indicate that additional nerve factors enhance Xenopus limb patterning-related gene expressions and limb regeneration ability, and that bmp, fgf, and shh are candidate nerve substitute factors.  相似文献   

19.
20.
Familial eosinophilia (FE) is an autosomal dominant disorder characterized by peripheral hypereosinophilia of unidentifiable cause with or without other organ involvement. To localize the gene for FE, we performed a genomewide search in a large U.S. kindred, using 312 different polymorphic markers. Seventeen affected subjects, 28 unaffected bloodline relatives, and 8 spouses were genotyped. The initial linkage results from the genome scan provided evidence for linkage on chromosome 5q31-q33. Additional genotyping of genetic markers located in this specific region demonstrated significant evidence that the FE locus is situated between the chromosome 5q markers D5S642 and D5S816 (multipoint LOD score of 6.49). Notably, this region contains the cytokine gene cluster, which includes three genes-namely, those for interleukin (IL)-3, IL-5, and granulocyte/macrophage colony-stimulating factor (GM-CSF)-whose products play important roles in the development and proliferation of eosinophils. These three cytokine genes were screened for potential disease-specific mutations by resequencing of a subgroup of individuals from the present kindred. No functional sequence polymorphisms were found within the promoter, the exons, or the introns of any of these genes or within the IL-3/GM-CSF enhancer, suggesting that the primary defect in FE is not caused by a mutation in any one of these genes but, rather, is caused by another gene in the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号