首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
At elevated temperatures, germinating conidiospores of Neurospora crassa discontinue synthesis of most proteins and initiate synthesis of three dominant heat shock proteins of 98,000, 83,000, and 67,000 Mr and one minor heat shock protein of 30,000 Mr. Postemergent spores produce, in addition to these, a fourth major heat shock protein of 38,000 Mr and a minor heat shock protein of 34,000 Mr. The three heat shock proteins of lower molecular weight are associated with mitochondria. This exclusive synthesis of heat shock proteins is transient, and after 60 min of exposure to high temperatures, restoration of the normal pattern of protein synthesis is initiated. Despite the transiency of the heat shock response, spores incubated continuously at 45 degrees C germinate very slowly and do not grow beyond the formation of a germ tube. The temperature optimum for heat shock protein synthesis is 45 degrees C, but spores incubated at other temperatures from 40 through 47 degrees C synthesize heat shock proteins at lower rates. Survival was high for germinating spores exposed to temperatures up to 47 degrees C, but viability declined markedly at higher temperatures. Germinating spores survived exposure to the lethal temperature of 50 degrees C when they had been preexposed to 45 degrees C; this thermal protection depends on the synthesis of heat shock proteins, since protection was abolished by cycloheximide. During the heat shock response mitochondria also discontinue normal protein synthesis; synthesis of the mitochondria-encoded subunits of cytochrome c oxidase was as depressed as that of the nucleus-encoded subunits.  相似文献   

3.
4.
《Insect Biochemistry》1990,20(3):275-284
The transient synthesis of a class of proteins known as heat shock or stress response proteins was induced when Cf124 cells were incubated at high temperature. When cells were infected with Chilo iridescent virus and simultaneously heat shocked, heat shock protein (hsp) synthesis was delayed, and the shut-off of hsp synthesis was suppressed. In previously heat shocked cells, inhibition of hsp synthesis was dependent upon the multiplicity of infection, however, when infection preceded heat shock, the synthesis of hsp started immediately after heat shock. In all cases, hsp synthesis was dependent upon newly synthesized messenger RNA.  相似文献   

5.
A single hyperthermic exposure can render cells transiently resistant to subsequent high temperature stresses. Treatment of rat embryonic fibroblasts with cycloheximide for 6 h after a 20-min interval at 45 degrees C inhibits protein synthesis, including heat shock protein (hsp) synthesis, and results in an accumulation of hsp 70 mRNA, but has no effect on subsequent survival responses to 45 degrees C hyperthermia. hsp 70 mRNA levels decreased within 1 h after removal of cycloheximide but then appeared to stabilize during the next 2 h (3 h after drug removal and 9 h after heat shock). hsp 70 mRNA accumulation could be further increased by a second heat shock at 45 degrees C for 20 min 6 h after the first hyperthermic exposure in cycloheximide-treated cells. Both normal protein and hsp synthesis appeared increased during the 6-h interval after hyperthermia in cultures which received two exposures to 45 degrees C for 20 min compared with those which received only one treatment. No increased hsp synthesis was observed in cultures treated with cycloheximide, even though hsp 70 mRNA levels appeared elevated. These data indicate that, although heat shock induces the accumulation of hsp 70 mRNA in both normal and thermotolerant cells, neither general protein synthesis nor hsp synthesis is required during the interval between two hyperthermic stresses for Rat-1 cells to express either thermotolerance (survival resistance) or resistance to heat shock-induced inhibition of protein synthesis.  相似文献   

6.
7.
The expression of metallothionein (MT) and heat shock protein gene families was investigated in normal and in HeLa-derived cadmium-resistant cells, named H454. In the absence of amplification of MT genes H454 cells accumulated elevated concentrations of cadmium ions and synthesized higher levels of MT proteins than unselected HeLa cells. Northern blot analyses revealed higher levels of MT mRNAs in the resistant cells than in wild-type cells after Cd2+and Zn2+exposure. Evaluation of the cytotoxic potential of the different metals confirmed the high resistance to cadmium of the H454 cells. Two proteins of the heat shock family, hsp70 and GRP78, were synthesized in Cd2+-exposed H454 cells at levels comparable to the ones present in Cd2+-treated normal cells. Northern blot analyses of the mRNA levels corresponding to these proteins revealed elevated expression of both hsp70 and GRP78 mRNAs in H454 cells upon exposure to cadmium ions and no response to zinc induction. These data suggest the existence in the H454 cells of a cadmium-specific pathway of regulation of MT and heat shock genes.  相似文献   

8.
Constitutive expression of human hsp27 resulted in a 100-fold increase in survival to a single lethal heat shock in CHO cells without effecting the development of thermotolerance. A possible mechanism for the thermoprotective function of hsp27 may be increased recovery of protein synthesis and RNA synthesis following a heat shock. A lethal heat shock (44°C, 30 min) results in a 90% reduction in the rate of protein synthesis in non-tolerant cells. Control transfected cells recovered protein synthesis to a pre-heat shock rate 10 h after the heat shock; while cell lines that constitutively express human hsp27 recovered 6 h after the heat shock. Thermotolerant cells had a 50% reduction in protein synthesis, which recovered within 7 h following the heat shock. The same lethal heat shock (44°C, 30 min) reduced RNA synthesis by 60% in the transfected cell lines, with the controls recovering in 7 h; while the hsp27 expressing cell lines recovered within 5 h. Thermotolerant cells had a 40% reduction in RNA synthesis and were able to recover within 4 h. The enhanced ability of hsp27 to facilitate recovery of protein synthesis and RNA synthesis following a heat shock may provide the cell with a survival advantage. J. Cell. Biochem. 66:153–164, 1997. © 1997 Wiley-Liss Inc.  相似文献   

9.
Summary When the body temperature of rats is elevated to 42°C, four heat shock proteins, with the molecular weights of 70000, 71000, 85000, and 100000 (hsp 70, hsp 71, hsp 85, and hsp 100, respectively), are induced in various tissues of rats (Fujio et al., J Biochem 101, 181–187, 1987). Heat shock proteins are induced by various stresses other than heat in varieties of cultured cells, so we studied whether heat shock proteins are induced in intact rats by different treatments. Analysis of the translation products of poly(A) + RNA isolated from the livers of rats recovering from ischemia of the liver showed that mRNAs for hsp 70, hsp 71, and hsp 85 were induced. These hsp-mRNAs were also induced in the livers of rats 6 h after a partial hepatectomy, and had returned to control levels 24 h after the surgery. These results suggested that heat shock proteins have not only the function of protection against various stresses but also physiological functions in the normal growth and development of animals.  相似文献   

10.
11.
The complex molecular response of cells to sudden temperature changes is a well-characterized phenomenon. Although it is clear that the induction of heat shock proteins provides protection from heat in all of the organisms so far tested, very little is known about the role that this set of proteins plays in cellular homeostasis. Recently, putative roles for hsp60 and hsp70-like proteins have been proposed in Saccharomyces cerevisiae. hsp70-like proteins have been shown to be necessary for translocation of precursor polypeptides into mitochondria and endoplasmic reticulum, while hsp60 is required for the assembly of precursor polypeptides into oligomeric complexes following incorporation into the mitochondrial matrix. In this paper, we report that a brief temperature shock (44 degrees C) impairs coupling of oxidative phosphorylation in S. cerevisiae as measured indirectly by the Cl-CCP/oligomycin assay. Furthermore, at high temperature oligomycin stimulates rather than inhibits oxygen uptake under nonthermotolerant conditions. Pretreatment of cells for a short period of time at 37 degrees C, prior to exposure to higher temperatures rescues the capacity to maintain coupling between oxidative phosphorylation and electron transport. Inhibition of cytoplasmic RNA or protein synthesis during heat shock prevents the protection of this mitochondrial activity. We propose that one of the roles of the induction of heat shock proteins (or related activities) is to protect mitochondrial ATPase activity under conditions of further increase in temperature.  相似文献   

12.
In the yeast Saccharomyces cerevisiae, the splicing of mRNA precursors is disrupted by a severe heat shock. Mild heat treatments prior to severe heat shock protect splicing from disruption, as was previously reported for Drosophila melanogaster. In contrast to D. melanogaster, protein synthesis during the pretreatment is not required to protect splicing in yeast cells. However, protein synthesis is required for the rapid recovery of splicing once it has been disrupted by a sudden severe heat shock. Mutations in two classes of yeast hsp genes affect the pattern of RNA splicing during the heat shock response. First, certain hsp70 mutants, which overproduce other heat shock proteins at normal temperatures, show constitutive protection of splicing at high temperatures and do not require pretreatment. Second, in hsp104 mutants, the recovery of RNA splicing after a severe heat shock is delayed compared with wild-type cells. These results indicate a greater degree of specialization in the protective functions of hsps than has previously been suspected. Some of the proteins (e.g., members of the hsp70 and hsp82 gene families) help to maintain normal cellular processes at higher temperatures. The particular function of hsp104, at least in splicing, is to facilitate recovery of the process once it has been disrupted.  相似文献   

13.
14.
J L Zimmerman  W Petri  M Meselson 《Cell》1983,32(4):1161-1170
During normal development in D. melanogaster, messenger RNAs for three of the seven heat shock proteins (hsp83, hsp28 and hsp26) accumulate in adult ovaries and are abundant in embryos until blastoderm. The three mRNAs appear to originate in nurse cells and subsequently pass, during stages 10-11, into the oocyte. Little if any of the four other heat shock mRNAs is present in unshocked ovaries or embryos at any time examined. Pre-blastoderm embryos fail to accumulate these heat shock mRNAs even if subjected to heat shock. The accumulation in normal oogenesis of mRNAs for only three of the seven heat shock proteins indicates the existence of differential, possibly multiple controls of heat shock gene expression, and suggests that heat shock proteins hsp83, hsp28 and hsp26 function in the oocyte or early embryo.  相似文献   

15.
16.
Lack of heat-shock response in preovulatory mouse oocytes   总被引:5,自引:0,他引:5  
The response to heat (hs response) of preovulatory mouse oocytes was compared with that of mouse granulosa cells and characterized in regard to in vitro resumption of meiosis, amino acid incorporation into total protein, and qualitative analysis of protein synthesized before and after the shock. Granulosa cells displayed a hs response typical of other mammalian systems. When incubated at 43 degrees C for 20-40 min, these cells maintained a normal level of amino acid incorporation into total protein, responded to stress by new synthesis of 33- and 68-kDa heat-shock proteins (hsps), and enhanced synthesis of 70-kDa heat-shock cognate protein (hsc70) and of 89- and 110-kDa hsps. In contrast to granulosa cells, preovulatory mouse oocytes were very sensitive to hyperthermia. Incubation at 43 degrees C for 20-40 min strongly inhibited oocyte resumption of meiosis and protein synthesis and did not induce a new or enhanced synthesis of hsps. Unstressed preovulatory mouse oocytes constitutively synthesized 70- and 89-kDa polypeptides resembling hsc70 and hsp89 of granulosa cells.  相似文献   

17.
Exposure of chick myotube cultures to a temperature (45 degrees C) higher than their normal growing temperature (37 degrees C) caused extensive synthesis of three major polypeptides of Mr = 25 000, 65 000 and 81 000 referred to as 'heat-shock polypeptides' (hsps). When these cells were allowed to recover from heat-shock treatment at 37 degrees C for 6-8 h, the rate of accumulation of isotope into the 65 000-Mr and 81 000-Mr hsps declined to levels comparable to those in control cultures maintained at 37 degrees C. However, incorporation of isotope in the 25 000-Mr hsp continued at an elevated rate for a longer period than the 65 000-Mr and 81 000-Mr hsps. When heat-shocked cells were allowed to recover at 37 degrees C in the presence of actinomycin D to block new mRNA synthesis, the hsp synthesis as measured by the incorporation of radioactive isotope in these polypeptides continued at levels comparable to those in heat-shocked cells prior to recovery. The block of recovery by actinomycin D was due to the presence of a greater amount of functional hsp mRNAs in the polysomes as compared to untreated controls. The role of competition between the mRNAs for hsps and normal cellular proteins for the translation machinery in regulating protein synthesis during the recovery from heat shock has been discussed.  相似文献   

18.
When Saccharomyces cerevisiae cells grown at 23 degrees C were transferred to 36 degrees C, they initiated synthesis of heat shock proteins, acquired thermotolerance to a lethal heat treatment given after the temperature shift, and arrested their growth transiently at the G1 phase of the cell division cycle. The bcy1 mutant which resulted in production of cyclic AMP (cAMP)-independent protein kinase did not synthesize the three heat shock proteins hsp72A, hsp72B, and hsp41 after the temperature shift. The bcy1 cells failed to acquire thermotolerance to the lethal heat treatment and were not arrested at the G1 phase after the temperature shift. In contrast, the cyr1-2 mutant, which produced a low level of cAMP, constitutively produced three heat shock proteins and four other proteins without the temperature shift and was resistant to the lethal heat treatment. The results suggest that a decrease in the level of cAMP-dependent protein phosphorylation results in the heat shock response, including elevated synthesis of three heat shock proteins, acquisition of thermotolerance, and transient arrest of the cell cycle.  相似文献   

19.
A Laszlo 《Radiation research》1988,116(3):427-441
The synthesis of the major heat-shock proteins (hsp) was compared in normal and heat-resistant Chinese hamster fibroblasts which express higher levels of the 70 kDa heat-shock protein (hsp70). Following exposure to a variety of experimental conditions that induce the elevated synthesis of the hsp, higher relative levels of hsp70 and lower relative levels of hsp89 and hsp110 were found in the heat-resistant variants. This effect was observed with all inducers tested. The relatively greater synthesis of hsp70 and relatively lower synthesis of hsp89 occurred at all temperatures tested and was found to be independent of cell culture conditions. The relatively greater increase in the levels of hsp70 in the heat-resistant variants after a mild heat shock was found to be a reflection of elevated levels of messenger RNA coding for this polypeptide. These results indicate that the heat-shock response in mammalian cells displays coordinate regulatory features and that the alteration of the expression of one of the hsp may affect the expression of the others.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号