首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent findings in chronically instrumented animals challenge the classic concept that baroreflexes do not play a role in the chronic regulation of arterial pressure. As alterations in renal excretory function are of paramount importance in the chronic regulation of arterial pressure, several of these recent studies have focused on the long-term interactions between the baroreflex and the kidneys during chronic perturbations in arterial pressure and body fluid volumes. An emerging body of evidence indicates that the baroreflex is chronically activated in several experimental models of hypertension, but in most cases, the duration of these studies has not exceeded 2 wk. Although these studies suggest that the baroreflex may play a compensatory role in attenuating the severity of the hypertension, possibly even in primary hypertension with uncertain causes of sympathetic activation, there has been only limited assessment of the quantitative importance of this interaction in the regulation of arterial pressure. In experimental models of secondary hypertension, baroreflex suppression of renal sympathetic nerve activity is sustained and chronically promotes sodium excretion. This raises the possibility that the renal nerves may be the critical efferent link for baroreceptor-induced suppression of central sympathetic output through which long-term compensatory reductions in arterial pressure are produced. This contention is supported by strong theoretical evidence but must be corroborated by experimental studies. Finally, although it is now clear that pressure-induced increases in baroreflex activity persist for longer periods of time than previously suggested, studies using new tools and novel approaches and extending beyond 2 wk of hypertension are needed to elucidate the true role of the baroreflex in the pathogenesis of clinical hypertension.  相似文献   

2.
Rat thyrotropin-releasing hormone prohormone (pro-TRH) is a protein containing five copies of TRH, separated by connecting peptides. We have recently developed radioimmunoassays to synthetic peptides corresponding to prepro-TRH(160-169) and prepro-TRH(178-199). In the present study we have used these assays to investigate the ontogenesis of pro-TRH-derived peptides in the rat pancreas. Reverse-phase HPLC analysis of pancreatic extracts from 2-day-old rats showed the presence of two major immunoreactive peptides exhibiting the same retention time as synthetic prepro-TRH(160-169) and prepro-TRH(178-199), respectively. The concentrations of TRH and pro-TRH cryptic peptides in the rat pancreas rose rapidly after birth, reached a maximum at day 2-4 and decreased gradually afterwards. Streptozotocin treatment of newborn rats induced a marked decrease of TRH (96%), prepro-TRH(160-169) (97%) and prepro-TRH(178-199) content (94%) in pancreatic extracts. These results indicate that the evolution of TRH and pro-TRH-derived peptides follows the same pattern during the postnatal period. Our results also suggest that beta-cells are the only source of pro-TRH-derived peptides in the rat pancreas.  相似文献   

3.
Obesity and cigarette smoking are both important risk factors for insulin resistance, cardiovascular disease, and cancer. Smoking reduces appetite, which makes many people reluctant to quit. Few studies have documented the metabolic impact of combined smoke exposure (se) and high-fat-diet (HFD). Neuropeptide Y (NPY) is a powerful hypothalamic feeding stimulator that promotes obesity. We investigated how chronic se affects caloric intake, adiposity, plasma hormones, inflammatory mediators, and hypothalamic NPY peptide in animals fed a palatable HFD. Balb/c mice (5 wk old, male) were exposed to smoke (2 cigarettes, twice/day, 6 days/wk, for 7 wk) with or without HFD. Sham-exposed mice were handled similarly without se. Plasma leptin, hypothalamic NPY, and adipose triglyceride lipase (ATGL) mRNA were measured. HFD induced a 2.3-fold increase in caloric intake, increased adiposity, and glucose in both sham and se cohorts. Smoke exposure decreased caloric intake by 23%, with reduced body weight in both dietary groups. Fat mass and glucose were reduced only by se in the chow-fed animals. ATGL mRNA was reduced by HFD in se animals. Total hypothalamic NPY was reduced by HFD, but only in sham-exposed animals; se increased arcuate NPY. We conclude that although se ameliorated hyperphagia and reversed the weight gain associated with HFD, it failed to reverse fat accumulation and hyperglycemia. The reduced ATGL mRNA expression induced by combined HFD and se may contribute to fat retention. Our data support a powerful health message that smoking in the presence of an unhealthy Western diet increases metabolic disorders and fat accumulation.  相似文献   

4.
5.
Although Lew/Crl rats are central to a classic model of renal transplantation and may provide a valid system for evaluating the effect of obesity on transplantation outcomes, their response to high-fat diet has not been evaluated sufficiently. The objective of this study was to evaluate biometric and basic metabolic data of Lew/Crl rats fed a 60% kcal, lard-based, very high-fat diet (HFD) compared with those fed a 10% kcal fat control diet (CD). Rats were maintained for 17 wk; body parameters and caloric intake were monitored weekly. Biometric data were collected and calculated before and after euthanasia. Serum was evaluated for liver enzyme activity and total bilirubin, glucose, triglyceride, cholesterol, insulin, leptin, and creatinine concentrations, and urine was evaluated for protein, glucose, specific gravity, and ketones. Tissues were harvested, weighed, and evaluated histologically. Compared with CD rats, HFD rats consumed more calories and weighed more after 3 wk. After 17 wk, HFD rats had significantly increased body weight, girth, volume, epididymal fat pad weight, omental weight, and body fat. In addition, HFD rats had mild elevations in some liver enzymes and a lower serum triglyceride concentration than did CD rats. Histologic assessment and other metabolic markers of disease were not different between the 2 groups. Lew/Crl rats fed a 60% kcal HFD become obese, but they lack significant metabolic abnormalities frequently associated with obesity in other rat strains.  相似文献   

6.
α-Melanocyte-stimulating hormone (α-MSH) is a critical regulator of energy metabolism. Prolyl carboxypeptidase (PRCP) is an enzyme responsible for its degradation and inactivation. PRCP-null mice (PRCP(gt/gt)) showed elevated levels of brain α-MSH, reduced food intake, and a leaner phenotype compared with wild-type controls. In addition, they were protected against diet-induced obesity. Here, we show that PRCP(gt/gt) animals have improved metabolic parameters compared with wild-type controls under a standard chow diet (SD) as well as on a high-fat diet (HFD). Similarly to when they are exposed to SD, PRCP(gt/gt) mice exposed to HFD for 13 wk showed a leaner phenotype due to decreased fat mass, increased energy expenditure, and locomotor activity. They also showed improved insulin sensitivity and glucose tolerance compared with WT controls and a significant reduction in fasting glucose levels. These improvements occured before changes in body weight and composition were evident, suggesting that the beneficial effect of PRCP ablation is independent of the adiposity levels. In support of a reduced gluconeogenesis, liver PEPCK and G-6-Pase mRNA levels were reduced significantly in PRCP(gt/gt) compared with WT mice. A significant decrease in liver weight and hepatic triglycerides were also observed in PRCP(gt/gt) compared with WT mice. Altogether, our data suggest that PRCP is an important regulator of energy and glucose homeostasis since its deletion significantly improves metabolic parameters in mice exposed to both SD and HFD.  相似文献   

7.
Both genetic and dietary factors determine the development of hypertension. Whether dietary factor impacts the development of hereditary hypertension is unknown. Here, we evaluated the effect of daily high-fructose diet (HFD) on the development of hypertension in adolescent spontaneously hypertensive rats (SHR). Six-week-old SHR were randomly divided into two groups to receive HFD or normal diet (ND) for 3 weeks. The temporal profile of systolic blood pressure, alongside the sympathetic vasomotor activity, in the SHR-HFD showed significantly greater increases at 9–12 weeks of age compared with the age-matched SHR-ND group. Immunofluorescence was used to identify the distribution of reactive oxygen species (ROS), oxidants and antioxidants in rostral ventrolateral medulla (RVLM) where sympathetic premotor neurons reside. In RVLM of SHR-HFD, the levels of ROS accumulation and lipid peroxidation were elevated. The changes in protein expression were measured by Western blot. NADPH oxidase subunit gp91phox and angiotensin II type I receptor were up-regulated in RVLM neuron. On the other hand, the expression of extracellular superoxide dismutase was suppressed. Both molecular and hemodynamic changes in the SHR-HFD were rescued by oral pioglitazone treatment from weeks 7 to 9. Furthermore, central infusion with tempol, a ROS scavenger, effectively ameliorated ROS accumulation in RVLM and diminished the heightened pressor response and enhanced sympathetic activity in the SHR-HFD. Together, these results suggest that HFD intake at adolescent SHR may impact the development of hypertension via increasing oxidative stress in RVLM which could be effectively attenuated by pioglitazone treatment.  相似文献   

8.
It has long been proposed that the renin-angiotensin system exerts a stimulatory influence on the sympathetic nervous system, including augmentation of central sympathetic outflow and presynaptic facilitation of norepinephrine release from sympathetic nerves. We tested this proposition in 19 patients with essential hypertension, evaluating whether the angiotensin receptor blockers (ARBs) eprosartan and losartan had identifiable antiadrenergic properties. This was done in a prospective, randomized, three-way placebo-controlled study of crossover design. Patients were randomized to 600 mg of eprosartan daily, 50 mg of losartan daily, or placebo. The treatment period was 4 wk, with 2-wk washout periods. Multiunit firing rates in efferent sympathetic nerves distributed to skeletal muscle vasculature (muscle sympathetic nerve activity, MSNA) were measured with microneurography, testing whether ARBs inhibit central sympathetic outflow. In parallel, isotope dilution methodology was used to measure whole body norepinephrine spillover to plasma. Mean blood pressure on placebo was 151/98 mmHg, with both ARBs causing reductions of approximately 11 mmHg systolic and 6 mmHg diastolic pressure, placebo corrected. Both MSNA [35 +/- 12 bursts/min (mean +/- SD) on placebo] and whole body norepinephrine spillover [366 +/- 247 ng/min] were unchanged by ARB administration, indicating that the ARBs did not materially inhibit central sympathetic outflow or act presynaptically to reduce norepinephrine release at existing rates of nerve firing. These findings contrast with the easily demonstrable reduction in sympathetic nervous activity produced by antihypertensive drugs of the imidazoline-binding class, which are known to act within the brain to inhibit sympathetic nervous outflow. We conclude that sympathetic nervous inhibition is not a major component of the blood pressure-lowering action of ARBs in essential hypertension.  相似文献   

9.
Growing evidence suggests that oxytocin plays an important role in the regulation of energy balance and that central oxytocin administration induces weight loss in diet-induced obese (DIO) animals. To gain a better understanding of how oxytocin mediates these effects, we examined feeding and neuronal responses to oxytocin in animals rendered obese following exposure to either a high-fat (HFD) or low-fat diet (LFD). Our findings demonstrate that peripheral administration of oxytocin dose-dependently reduces food intake and body weight to a similar extent in rats maintained on either diet. Moreover, the effect of oxytocin to induce weight loss remained intact in leptin receptor-deficient Koletsky (fa(k)/fa(k)) rats relative to their lean littermates. To determine whether systemically administered oxytocin activates hindbrain areas that regulate meal size, we measured neuronal c-Fos induction in the nucleus of the solitary tract (NTS) and area postrema (AP). We observed a robust neuronal response to oxytocin in these hindbrain areas that was unexpectedly increased in rats rendered obese on a HFD relative to lean, LFD-fed controls. Finally, we report that repeated daily peripheral administration of oxytocin in DIO animals elicited a sustained reduction of food intake and body weight while preventing the reduction of energy expenditure characteristic of weight-reduced animals. These findings extend recent evidence suggesting that oxytocin circumvents leptin resistance and induces weight-loss in DIO animals through a mechanism involving activation of neurons in the NTS and AP, key hindbrain areas for processing satiety-related inputs.  相似文献   

10.
Our group recently demonstrated that maternal high-fat diet (HFD) consumption is associated with non-alcoholic fatty liver disease, increased apoptosis, and changes in gluconeogenic gene expression and chromatin structure in fetal nonhuman primate (NHP) liver. However, little is known about the long-term effects that a HFD has on hepatic nervous system development in offspring, a system that plays an important role in regulating hepatic metabolism. Utilizing immunohistochemistry and Real-Time PCR, we quantified sympathetic nerve fiber density, apoptosis, inflammation, and other autonomic components in the livers of fetal and one-year old Japanese macaques chronically exposed to a HFD. We found that HFD exposure in-utero and throughout the postnatal period (HFD/HFD), when compared to animals receiving a CTR diet for the same developmental period (CTR/CTR), is associated with a 1.7 fold decrease in periportal sympathetic innervation, a 5 fold decrease in parenchymal sympathetic innervation, and a 2.5 fold increase in hepatic apoptosis in the livers of one-year old male animals. Additionally, we observed an increase in hepatic inflammation and a decrease in a key component of the cholinergic anti-inflammatory pathway in one-year old HFD/HFD offspring. Taken together, these findings reinforce the impact that continuous exposure to a HFD has in the development of long-term hepatic pathologies in offspring and highlights a potential neuroanatomical basis for hepatic metabolic dysfunction.  相似文献   

11.
Prepro-thyrotropin-releasing hormone (TRH) contains five TRH progenitor sequences and at least six other potential peptides (Lechan, R. M., Wu, P., Jackson, I. M. D., Wolf, H., Cooperman, S., Mandel, G., and Goodman, R. H. (1986a) Science 231, 159-161). Previous studies using radioimmunoassays developed against discrete regions of prepro-TRH have demonstrated that several of the potential peptides are present in rat brain and pancreas (Wu, P., Lechan, R. M., and Jackson, I. M. D. (1987) Endocrinology 121, 108-115; Wu, P. and Jackson, I. M. D. (1988a) Brain Res. 456, 22-28; Wu, P., and Jackson, I. M. D. (1988b) Regul. Pept. 22, 347-360). However, the low level of peptides present in intact tissues has made isolation of the peptides difficult. CA77 cells, a medullary thyroid carcinoma cell line, also express prepro-TRH and display processing similar to that found in tissues. However, peptide content in this tumor cell line is enhanced only 3-fold compared with normal tissues (Sevarino, K. A., Wu, P., Jackson, I. M. D., Roos, B. A., Mandel, G., and Goodman, R. H. (1988) J. Biol. Chem. 263, 620-623). To achieve higher levels of expression for facilitating peptide sequencing studies and to see if alternate processing of prepro-TRH could be detected in different cell types, we transfected into 3T3, GH4, AtT20, and RIN 5F cells a cDNA vector under control of the cytomegalovirus immediate-early promoter. 3T3 and GH4 cells failed to process prepro-TRH beyond cleavage of the signal sequence. Both AtT20 and RIN 5F cells efficiently cleaved the precursor at dibasic sites to generate mature TRH and the non-TRH peptides previously identified in vivo. Peptide content was up to 30 times greater than in hypothalamic extracts and 10 times greater than in CA77 cells. Secretion experiments with transfected AtT20 cells demonstrated that both mature TRH and the non-TRH peptides were secreted via a regulated secretory pathway similar to that utilized by endogenously synthesized peptides. We isolated several of the non-TRH peptides synthesized by transfected AtT20 cells and characterized these peptides by sequential Edman degradation. These studies identified the signal sequence cleavage site and determined that the non-TRH peptides are generated by cleavage at the dibasic sites flanking the five TRH progenitor sequences. Further, we determined that processing occurs at the Arg51-Arg52 site located in the amino-terminal portion of the precursor, the only dibasic site not flanking a TRH progenitor sequence.  相似文献   

12.
Neonatal STZ (nSTZ) treatment results in damage of pancreatic B-cells and in parallel depletion of insulin and TRH in the rat pancreas. The injury of B-cells is followed by spontaneous regeneration but dysregulation of the insulin response to glucose persists for the rest of life. Similar disturbance in insulin secretion was observed in mice with targeted TRH gene disruption. The aim of present study was to determine the role of the absence of pancreatic TRH during the perinatal period in the nSTZ model of impaired insulin secretion. Neonatal rats were injected with STZ (90 microg/g BW i.p.) and the effect of exogenous TRH (10 ng/g BW/day s.c. during the first week of life) on in vitro functions of pancreatic islets was studied at the age 12-14 weeks. RT-PCR was used for determination of prepro-TRH mRNA in isolated islets. Plasma was assayed for glucose and insulin, and isolated islets were used for determination of insulin release in vitro. The expression of prepro-TRH mRNA was only partially reduced in the islets of adult nSTZ rats when compared to controls. nSTZ rats had normal levels of plasma glucose and insulin but the islets of nSTZ rats failed to response by increased insulin secretion to stimulation with 16.7 mmol/l glucose or 50 mmol/l KCl. Perinatal TRH treatment enhanced basal insulin secretion in vitro in nSTZ animals of both sexes and partially restored the insulin response to glucose stimulation in nSTZ females.  相似文献   

13.
To investigate possible mechanisms of green tea’s anti-obesity and anti-diabetic effects in the hypothalamus, the central regulator of metabolism, of mice fed with high-fat diet (HFD), we analyzed proteins of the toll-like receptor 4 (TLR4) pathway and serotoninergic proteins involved in energy homeostasis. Thirty-day-old male Swiss mice were fed with HFD rich in saturated fat and green tea extract (GTE) for 8 weeks. After that, body weight and mass of fat depots were evaluated. Oral glucose tolerance test was performed 3 days prior to euthanasia; serum glucose, insulin and adiponectin were measured in fasted mice. Hypothalamic TLR4 pathway proteins, serotonin receptors 1B and 2C and serotonin transporter were analyzed by Western blotting or enzyme-linked immunosorbent assay. A second set of animals was used to measure food intake in response to fluoxetine, a selective serotonin reuptake inhibitor. Mice fed with HFD had increased body weight and mass of fat depots, impaired oral glucose tolerance, elevated glucose and insulin and decreased adiponectin serum levels. TLR4, IκB-α, nuclear factor κB p50 and interleukin 6 were increased by HFD. Concomitant GTE treatment ameliorated these parameters. The serotoninergic system remained functional after HFD treatment despite a few alterations in protein content of serotonin receptors 1B and 2C and serotonin transporter. In summary, the GTE attenuated the deleterious effects of the HFD investigated in this study, partially due to reduced hypothalamic inflammation.  相似文献   

14.
Leptin plays an important role in the central regulation of body weight and arterial pressure via activation of leptin receptors (Ob-Rs) in the hypothalamic area, including the hypothalamic paraventricular nucleus (PVN). The present study was undertaken to investigate whether endogenous leptin in the PVN plays a dual role in the tonic regulation of body weight and arterial pressure. Adult, male normal-weight Sprague-Dawley rats, which were anesthetized and maintained with propofol, were used. A direct bilateral microinjection into the PVN of an antisense oligonucleotide against Ob-R mRNA (ASON1, 50 pmol) significantly increased the daily food intake and body weight gain, effects which lasted for at least 14 days. The same treatment, on the other hand, had no appreciable effect on the basal mean systemic arterial pressure (SAP), heart rate (HR), or power density of the vasomotor components of SAP signals, the experimental index of neurogenic sympathetic vasomotor tone. ASON1 treatment also exerted an insignificant effect on the baroreceptor reflex control of HR. Western blot analysis revealed that a bilateral microinjection into the PVN of ASON1 (50 pmol) significantly decreased the expression of the Ob-R protein in the hypothalamus. The same treatment also attenuated hypertension, tachycardia, and the increase in the power density of the vasomotor components of the SAP signals induced by exogenous bilateral application of leptin (5 or 50 ng) into the PVN. Control application of sense (SON, 50 pmol) or a scrambled antisense Ob-R oligonucleotide (ASON2, 50 pmol) into the bilateral PVN promoted no discernible effect on Ob-R protein expression in the hypothalamus, on daily food intake, or on cardiovascular performance. Our results indicate that whereas the Ob-Rs in the PVN are involved in the tonic regulation of food intake, they might not be actively involved in the tonic regulation of cardiovascular functions.  相似文献   

15.
Defects in fat metabolism may contribute to the development of obesity, but what these defects are and where they occur in the feeding/fasting cycle are unknown. In the present study, basal fat metabolism was characterized using a high-fat diet (HFD)-induced model of obesity development. Male rats consumed a HFD (45% fat, 35% carbohydrate) ad libitum for either 1 or 5 wk (HFD1 or HFD5). After 1 wk on the HFD, rats were separated on the basis of body weight gain into obesity-prone (OP, > or =48 g) or obesity-resistant (OR, 相似文献   

16.
The enzymes responsible for the posttranslational processing of precursor proteins to form alpha-amidated peptide hormones require the availability of several cofactors, including zinc, copper and ascorbate ions. Major changes in the availability of these cofactors, as well as the rate of hormone precursor conversion to active hormone, occur during neonatal development, aging and caloric restriction. The effects of 6 weeks of a zinc-deficient (ZD1) diet, pair feeding (PF) and partial zinc deficiency (ZD6) compared to a control diet on the enzymatic cleavage and processing of prepro-TRH to form TRH have been studied in the hypothalamus, brain, and pituitary of young adult male Sprague-Dawley rats. Reverse phase high pressure liquid chromatography (HPLC) revealed that TRH was the major TRH-IR component of the hypothalamus, brain and pituitary. The effect of zinc deficiency on the TRH-Gly-IR HPLC profile of rat brain was to reduce selectively the are of the peaks for TRH-Gly and other low molecular weight pro-TRH peptide fragments with a C-terminal Gly compared to the corresponding TRH-Gly-IR peaks of the control group. We conclude that the processing of prepro-TRH to form TRH is zinc dependent via posttranslational processing enzymes such as carboxypeptidase H.  相似文献   

17.
18.
Exercise promotes weight loss and improves insulin sensitivity. However, the molecular mechanisms mediating its beneficial effects are not fully understood. Obesity correlates with increased production of inflammatory cytokines, which in turn, contributes to systemic insulin resistance. To test the hypothesis that exercise mitigates this inflammatory response, thereby improving insulin sensitivity, we developed a model of voluntary exercise in mice made obese by feeding of a high fat/high sucrose diet (HFD). Over four wk, mice fed chow gained 2.3 +/- 0.3 g, while HFD mice gained 6.8 +/- 0.5 g. After 4 wk, mice were subdivided into four groups: chow-no exercise, chow-exercise, HFD-no exercise, HFD-exercise and monitored for an additional 6 wk. Chow-no exercise and HFD-no exercise mice gained an additional 1.2 +/- 0.3 g and 3.3 +/- 0.5 g respectively. Exercising mice had higher food consumption, but did not gain additional weight. As expected, GTT and ITT showed impaired glucose tolerance and insulin resistance in HFD-no exercise mice. However, glucose tolerance improved significantly and insulin sensitivity was completely normalized in HFD-exercise animals. Furthermore, expression of TNF-alpha, MCP-1, PAI-1 and IKKbeta was increased in adipose tissue from HFD mice compared with chow mice, whereas exercise reversed the increased expression of these inflammatory cytokines. In contrast, expression of these cytokines in liver was unchanged among the four groups. These results suggest that exercise partially reduces adiposity, reverses insulin resistance and decreases adipose tissue inflammation in diet-induced obese mice, despite continued consumption of HFD.  相似文献   

19.
In this study, we investigated the metabolic phenotype of PKCtheta knockout mice (C57BL/6J) on chow diet and high-fat diet (HFD). The knockout (KO) mice are normal in growth and reproduction. On the chow diet, body weight and food intake were not changed in the KO mice; however, body fat content was increased with a corresponding decrease in body lean mass. Energy expenditure and spontaneous physical activity were decreased in the KO mice. On HFD, energy expenditure and physical activity remained low in the KO mice. The body weight and fat content were increased rapidly in the KO mice. At 8 wk on HFD, severe insulin resistance was detected in the KO mice with hyperinsulinemic euglycemic clamp and insulin tolerance test. Insulin action in both hepatic and peripheral tissues was reduced in the KO mice. Plamsa free fatty acid was increased, and expression of adiponectin in the adipose tissue was decreased, in the KO mice on HFD. This study suggests that loss of PKCtheta reduces energy expenditure and increases the risk of dietary obesity and insulin resistance in mice.  相似文献   

20.
In mice, obesity has been observed not only in those freely fed a high-fat diet (HFD) but also in those fed while physically inactive. In contrast, a HFD during physically active periods protects against obesity and the impairments in the circadian rhythm induced by free feeding of a HFD. Although exercise is known to be effective for obesity prevention and management, the optimal timing of exercise has not yet been determined. In the present experiments, we aimed to determine the best combination of daily timing of HFD consumption and exercise for the prevention of HFD-induced weight gain in mice. In this experiment, “morning” refers to the beginning of the active phase (the “morning” for nocturnal animals). Increases in body weight related to free feeding of a HFD was significantly reduced with 4?h of exercise during the late (evening) or middle (noon) active period compared to 4?h of exercise during the early (morning) active period or free access to exercise, which resulted in hours of exercise similar to that of morning exercise. These results suggested that eating in the morning or at noon followed by exercise in the evening could prevent weight gain more effectively than exercise in the morning followed by eating at noon or in the evening. The group fed a HFD for 4?h in the morning had lower body weight than the group fed a HFD for 4?h in the evening without exercise. The last group of experiments tested the hypothesis that there would be an interaction between mealtime and exercise time (i.e. time of day) versus order (i.e. which comes first) effects. We compared groups that exercised for 4?h at noon and were fed either in the morning or evening and groups that were fed for 4?h at noon and either exercised in the morning or evening. We found that the groups that were fed before exercise gained less body and fat weight and more skeletal muscle weight compared to the groups that exercised before eating. Corresponding to the body and fat weight changes, the respiratory exchange ratio (RER) was lower and energy expenditure was higher in the groups fed before exercise than in the groups fed after exercise, and these effects on energy metabolism were also observed in the early stage of HFD feeding before obesity. When obese mice fed a HFD for 12 weeks were exposed to a combination of feeding and exercise timing in an effort to reduce body weight, eating followed by exercise resulted in greater weight loss, similar to the experiments conducted to prevent weight gain. These results demonstrate that a combination of daily timing of eating and exercise may influence weight gain and that eating followed by exercise may be effective for minimizing increases in body and fat weight as well as maximizing increases in skeletal muscle weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号