首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial lipopolysaccharide (LPS) triggers innate immune responses through Toll-like receptor (TLR) 4, a member of the TLR family that participates in pathogen recognition. TLRs recruit a cytoplasmic protein, MyD88, upon pathogen recognition, mediating its function for immune responses. Two major pathways for LPS have been suggested in recent studies, which are referred to as MyD88-dependent and -independent pathways. We report in this study the characterization of the MyD88-independent pathway via TLR4. MyD88-deficient cells failed to produce inflammatory cytokines in response to LPS, whereas they responded to LPS by activating IFN-regulatory factor 3 as well as inducing the genes containing IFN-stimulated regulatory elements such as IP-10. In contrast, a lipopeptide that activates TLR2 had no ability to activate IFN-regulatory factor 3. The MyD88-independent pathway was also activated in cells lacking both MyD88 and TNFR-associated factor 6. Thus, TLR4 signaling is composed of at least two distinct pathways, a MyD88-dependent pathway that is critical to the induction of inflammatory cytokines and a MyD88/TNFR-associated factor 6-independent pathway that regulates induction of IP-10.  相似文献   

2.
In vitro studies have indicated the importance of Toll-like receptor (TLR) signaling in response to the fungal pathogens Candida albicans and Aspergillus fumigatus. However, the functional consequences of the complex interplay between fungal morphogenesis and TLR signaling in vivo remain largely undefined. In this study we evaluate the impact of the IL-1R/TLR/myeloid differentiation primary response gene 88 (MyD88)-dependent signaling pathway on the innate and adaptive Th immunities to C. albicans and A. fumigatus in vivo. It was found that 1) the MyD88-dependent pathway is required for resistance to both fungi; 2) the involvement of the MyD88 adapter may occur through signaling by distinct members of the IL-1R/TLR superfamily, including IL-1R, TLR2, TLR4, and TLR9, with the proportional role of the individual receptors varying depending on fungal species, fungal morphotypes, and route of infection; 3) individual TLRs and IL-1R activate specialized antifungal effector functions on neutrophils, which correlates with susceptibility to infection; and 4) MyD88-dependent signaling on dendritic cells is crucial for priming antifungal Th1 responses. Thus, the finding that the innate and adaptive immunities to C. albicans and A. fumigatus require the coordinated action of distinct members of the IL-1R/TLR superfamily acting through MyD88 makes TLR manipulation amenable to the induction of host resistance to fungi.  相似文献   

3.
Salmonella typhimurium can colonize the gut, invade intestinal tissues, and cause enterocolitis. In vitro studies suggest different mechanisms leading to mucosal inflammation, including 1) direct modulation of proinflammatory signaling by bacterial type III effector proteins and 2) disruption or penetration of the intestinal epithelium so that penetrating bacteria or bacterial products can trigger innate immunity (i.e., TLR signaling). We studied these mechanisms in vivo using streptomycin-pretreated wild-type and knockout mice including MyD88(-/-) animals lacking an adaptor molecule required for signaling via most TLRs. The Salmonella SPI-1 and the SPI-2 type III secretion systems (TTSS) contributed to inflammation. Mutants that retain only a functional SPI-1 (M556; sseD::aphT) or a SPI-2 TTSS (SB161; DeltainvG) caused attenuated colitis, which reflected distinct aspects of the colitis caused by wild-type S. typhimurium: M556 caused diffuse cecal inflammation that did not require MyD88 signaling. In contrast, SB161 induced focal mucosal inflammation requiring MyD88. M556 but not SB161 was found in intestinal epithelial cells. In the lamina propria, M556 and SB161 appeared to reside in different leukocyte cell populations as indicated by differential CD11c staining. Only the SPI-2-dependent inflammatory pathway required aroA-dependent intracellular growth. Thus, S. typhimurium can use two independent mechanisms to elicit colitis in vivo: SPI-1-dependent and MyD88-independent signaling to epithelial cells and SPI-2-dependent intracellular proliferation in the lamina propria triggering MyD88-dependent innate immune responses.  相似文献   

4.
Activation of pulmonary defenses against Pseudomonas aeruginosa requires myeloid differentiation factor 88 (MyD88), an adaptor for Toll-like receptor (TLR) signaling. To determine which TLRs mediate recognition of P. aeruginosa, we measured cytokine responses of bone marrow cells from wild-type mice and mice lacking TLR2 (TLR2(-/-)), TLR4 (TLR4(-/-)), TLR2 and TLR4 (TLR2/4(-/-)), or MyD88 (MyD88(-/-)) to wild-type P. aeruginosa and to fliC P. aeruginosa, which lacks the TLR5 ligand flagellin. Mice also were challenged with aerosolized bacteria to determine cytokine responses, lung inflammation, and bacterial clearance. TNF induction required MyD88 and was absent in TLR2/4(-/-) cells in response to fliC but not wild-type P. aeruginosa, whereas TLR2(-/-) cells exhibited augmented responses. In vivo, TLR4(-/-) mice responded to wild-type P. aeruginosa with reduced cytokine production and inflammation, but intact bacterial clearance, while TLR2(-/-) mice had partially impaired cytokine responses and delayed bacterial killing despite normal inflammation. When challenged with fliC, MyD88(-/-) mice failed to mount early cytokine and inflammatory responses or control bacterial replication, resulting in necrotizing lung injury and lethal disseminated infection. TLR4(-/-) and TLR2/4(-/-) mice responded to fliC infection with severely limited inflammatory and cytokine responses but intact bacterial clearance. TLR2(-/-) mice had partially reduced cytokine responses but augmented inflammation and preserved bacterial killing. These data indicate that TLR4- and flagellin-induced signals mediate most of the acute inflammatory response to Pseudomonas and that TLR2 has a counterregulatory role. However, MyD88-dependent pathways, in addition to those downstream of TLR2, TLR4, and TLR5, are required for pulmonary defense against P. aeruginosa.  相似文献   

5.
Lipopolysaccharide (LPS) engages Toll-like receptor 4 (TLR4) on various cells to initiate inflammatory and angiogenic pathways. FADD is an adaptor protein involved in death receptor-mediated apoptosis. Here we report a role for FADD in regulation of TLR4 signals in endothelial cells. FADD specifically attenuates LPS-induced activation of c-Jun NH(2)-terminal kinase and phosphatidylinositol 3'-kinase in a death domain-dependent manner. In contrast, FADD-null cells show hyperactivation of these kinases. Examining physical associations of endogenous proteins, we show that FADD interacts with interleukin-1 receptor-associated kinase 1 (IRAK1) and MyD88. LPS stimulation increases IRAK1-FADD interaction and recruitment of the IRAK1-FADD complex to activated MyD88. IRAK1 is required for FADD-MyD88 interaction, as FADD does not associate with MyD88 in IRAK1-null cells. By shuttling FADD to MyD88, IRAK1 provides a mechanism for controlled and limited activation of the TLR4 signaling pathway. Functionally, enforced FADD expression inhibited LPS- but not vascular endothelial growth factor-induced endothelial cell sprouting, while FADD deficiency led to enhanced production of proinflammatory cytokines induced by stimulation of TLR4 and TLR2, but not TLR3. Reconstitution of FADD reversed the enhanced production of proinflammatory cytokines. Thus, FADD is a physiological negative regulator of IRAK1/MyD88-dependent responses in innate immune signaling.  相似文献   

6.
Bacterial pathogens are recognized by the innate immune system through pattern recognition receptors, such as Toll-like receptors (TLRs). Engagement of TLRs triggers signaling cascades that launch innate immune responses. Activation of MAPKs and NF-kappaB, elements of the major signaling pathways induced by TLRs, depends in most cases on the adaptor molecule MyD88. In addition, Gram-negative or intracellular bacteria elicit MyD88-independent signaling that results in production of type I interferon (IFN). Here we show that in mouse macrophages, the activation of MyD88-dependent signaling by the extracellular Gram-positive human pathogen group A streptococcus (GAS; Streptococcus pyogenes) does not require TLR2, a receptor implicated in sensing of Gram-positive bacteria, or TLR4 and TLR9. Redundant engagement of either of these TLR molecules was excluded by using TLR2/4/9 triple-deficient macrophages. We further demonstrate that infection of macrophages by GAS causes IRF3 (interferon-regulatory factor 3)-dependent, MyD88-independent production of IFN. Surprisingly, IFN is induced also by GAS lacking slo and sagA, the genes encoding cytolysins that were shown to be required for IFN production in response to other Gram-positive bacteria. Our data indicate that (i) GAS is recognized by a MyD88-dependent receptor other than any of those typically used by bacteria, and (ii) GAS as well as GAS mutants lacking cytolysin genes induce type I IFN production by similar mechanisms as bacteria requiring cytoplasmic escape and the function of cytolysins.  相似文献   

7.
MyD88-dependent signalling is important for secretion of early inflammatory cytokines and host protection in response to Legionella pneumophila infection. Although toll-like receptor (TLR)2 contributes to MyD88-dependent clearance of L. pneumophila , TLR-independent functions of MyD88 could also be important. To determine why MyD88 is critical for host protection to L. pneumophila , the contribution of multiple TLRs and IL-18 receptor (IL-18R)-dependent interferon-gamma (IFN-γ) production in a mouse was examined. Mice deficient for TLR5 or TLR9, or deficient for TLR2 along with either TLR5 or TLR9, were competent for controlling bacterial replication and had no apparent defects in cytokine production compared with control mice. MyD88-dependent production of IFN-γ in the lung was mediated primarily by natural killer cells and required IL-18R signalling. Reducing IFN-γ levels did not greatly affect the kinetics of L. pneumophila replication or clearance in infected mice. Additionally, IFN-γ-deficient mice did not have a susceptibility phenotype as severe as the MyD88-deficient mice and were able to control a pulmonary infection by L. pneumophila . Thus, MyD88-dependent innate immune responses induced by L. pneumophila involve both TLR-dependent responses and IL-18R-dependent production of IFN-γ by natural killer cells, and these MyD88-dependent pathways can function independently to provide host protection against an intracellular pathogen.  相似文献   

8.
Microglia, the innate immune effector cells of the CNS parenchyma, express TLR that recognize conserved motifs of microorganisms referred to as pathogen-associated molecular patterns (PAMP). All TLRs identified to date, with the exception of TLR3, use a common adaptor protein, MyD88, to transduce activation signals. Recently, we reported that microglial activation in response to the Gram-positive bacterium Staphylococcus aureus was not completely attenuated following TLR2 ablation, suggesting the involvement of additional receptors. To assess the functional role of alternative TLRs in microglial responses to S. aureus and its cell wall product peptidoglycan as well as the Gram-negative PAMP LPS, we evaluated primary microglia from MyD88 knockout (KO) and wild-type mice. The induction of TNF-alpha, IL-12 p40, and MIP-2 (CXCL2) expression by S. aureus- and peptidoglycan-stimulated microglia was MyD88 dependent, as revealed by the complete inhibition of cytokine production in MyD88 KO cells. In addition, the expression of additional pattern recognition receptors, including TLR9, pentraxin-3, and lectin-like oxidized LDL receptor-1, was regulated, in part, via a MyD88-dependent manner as demonstrated by the attenuated expression of these receptors in MyD88 KO microglia. Microglial activation was only partially inhibited in LPS-stimulated MyD88 KO cells, suggesting the involvement of MyD88-independent pathways. Collectively, these findings reveal the complex mechanisms for microglia to respond to diverse bacterial pathogens, which occur via both MyD88-dependent and -independent pathways.  相似文献   

9.
10.

Background

Previous studies by us and other have provided evidence that leukocytes play a critical role in the development of diabetic retinopathy, suggesting a possible role of the innate immune system in development of the retinopathy. Since MyD88 is a convergence point for signaling pathways of the innate immune system (including Toll-Like Receptors (TLRs) and interleukin-1ß (IL-1ß)), the purpose of this study was to assess the role of MyD88 and its dependent pathways on abnormalities that develop in retina and white blood cells related to diabetic retinopathy.

Methods

C57BL/6J mice were made diabetic with streptozotocin. Chimeric mice were generated in which MyD88-dependent pathways were deleted from bone marrow-derived only. Mice were sacrificed at 2 mos of diabetes for assessment of, leukostasis, albumin accumulation in neural retina, leukocyte-mediated killing of retinal endothelial cells, and cytokine/chemokine generation by retinas of diabetic mice in response to TLR agonists,

Results

IL-6 and CXCL1 were generated in retinas from diabetic (but not nondiabetic mice) following incubation with Pam3CysK/TLR2, but incubation with other TLR ligands or IL-1ß did not induce cytokine production in retinas from nondiabetic or diabetic mice. Diabetes-induced abnormalities (leukostasis, ICAM-1 expression on the luminal surface of the vascular endothelium, retinal superoxide generation) were significantly inhibited by removing either MyD88 or the signaling pathways regulated by it (TLRs 2 and 4, and IL-1ß) from bone marrow-derived cells only. Leukocyte-mediated killing of endothelial cells tended to be decreased in the marrow-derived cells lacking TLR2/4, but the killing was significantly exacerbated if the marrow cells lacked MyD88 or the receptor for IL-1ß (IL-1ßr).

Conclusions

MyD88-dependent pathways play an important role in the development of diabetes-induced inflammation in the retina, and inhibition of MyD88 might be a novel target to inhibit early abnormalities of diabetic retinopathy and other complications of diabetes.  相似文献   

11.
IL-18, produced as biologically inactive precursor, is secreted from LPS-stimulated macrophages after cleavage by caspase-1. In this study, we investigated the mechanism underlying caspase-1-mediated IL-18 secretion. Kupffer cells constantly stored IL-18 and constitutively expressed caspase-1. Inhibition of new protein synthesis only slightly reduced IL-18 secretion, while it decreased and abrogated their IL-1beta and IL-12 secretion, respectively. Kupffer cells deficient in Toll-like receptor (TLR) 4, an LPS-signaling receptor, did not secrete IL-18, IL-1beta, and IL-12 upon LPS stimulation. In contrast, Kupffer cells lacking myeloid differentiation factor 88 (MyD88), an adaptor molecule for TLR-mediated-signaling, secreted IL-18 without IL-1beta and IL-12 production in a caspase-1-dependent and de novo synthesis-independent manner. These results indicate that MyD88 is essential for IL-12 and IL-1beta production from Kupffer cells while their IL-18 secretion is mediated via activation of endogenous caspase-1 without de novo protein synthesis in a MyD88-independent fashion after stimulation with LPS. In addition, infection with Listeria monocytogenes, products of which have the capacity to activate TLR, increased serum levels of IL-18 in wild-type and MyD88-deficient mice but not in caspase-1-deficient mice, whereas it induced elevation of serum levels of IL-12 in both wild-type and caspase-1-deficient mice but not in MyD88-deficient mice. Taken together, these results suggested caspase-1-dependent, MyD88-independent IL-18 release in bacterial infection.  相似文献   

12.
Research into intracellular sensing of microbial products is an up and coming field in innate immunity. Toll-like receptors (TLRs) recognize Brucella spp. and bacterial components and initiate mononuclear phagocyte responses that influence both innate and adaptive immunity. Recent studies have revealed the intracellular signaling cascades involved in the TLR-initiated immune response to Brucella infection. TLR2, TLR4 and TLR9 have been implicated in host interactions with Brucella; however, TLR9 has the most prominent role. Further, the relationship between specific Brucella molecules and various signal transduction pathways needs to be better understood. MyD88-dependent and TRIF-independent signaling pathways are involved in Brucella activation of innate immune cells through TLRs. We have recently reported the critical role of MyD88 molecule in dendritic cell maturation and interleukin-12 production during B. abortus infection. This article discusses recent studies on TLR signaling and also highlights the contribution of NOD and type I IFN receptors during Brucella infection. The better understanding of the role by such innate immune receptors in bacterial infection is critical in host-pathogen interactions.  相似文献   

13.
Toll receptors and pathogen resistance   总被引:11,自引:2,他引:9  
Toll receptors in insects, mammals and plants are key players that sense the invasion of pathogens. Toll-like receptors (TLRs) in mammals have been established to detect specific components of bacterial and fungal pathogens. Furthermore, recent evidence indicates that TLRs are involved in the recognition of viral invasion. Signalling pathways via TLRs originate from the conserved Toll/IL-1 receptor (TIR) domain. The TIR domain-containing MyD88 acts as a common adaptor that induces inflammatory cytokines; however, there exists a MyD88-independent pathway that induces type I IFNs in TLR4 and TLR3 signalling. Another TIR domain-containing adaptor, TIRAP/Mal has recently been shown to mediate the MyD88-dependent activation in the TLR4 and TLR2 signalling pathway. Thus, individual TLRs may have their own signalling systems that characterize their specific activities.  相似文献   

14.
The incidence of infections with Enterococcus faecium is increasing worldwide. TLRs have been implicated in the recognition of pathogens and the initiation of an adequate innate immune response. We here sought to determine the roles of MyD88, the common adaptor protein involved in TLR signaling, TLR2, TLR4, and CD14 in host defense against E. faecium peritonitis. MyD88 knockout (KO) mice demonstrated an impaired early response to E. faecium peritonitis, as reflected by higher bacterial loads in peritoneal fluid and liver accompanied by a markedly attenuated neutrophil influx into the abdominal cavity. In vitro, not only MyD88 KO macrophages but also TLR2 KO and CD14 KO macrophages displayed a reduced responsiveness to E. faecium. In accordance, transfection of TLR2 rendered human embryonic kidney 293 cells responsive to E. faecium, which was enhanced by cotransfection of CD14. TLR2 KO mice showed higher bacterial loads in peritoneal fluid after in vivo infection with E. faecium and a diminished influx of neutrophils, whereas CD14 KO mice had an unaltered host response. E. faecium phagocytosis and killing were not affected by MyD88, TLR2, or CD14 deficiency. TLR4 did not play a role in the immune response to E. faecium in vitro or in vivo. These data suggest that MyD88 contributes to the effective clearance of E. faecium during peritonitis at least in part via TLR2 and by facilitating neutrophil recruitment to the site of the infection.  相似文献   

15.
IFN-gamma-inducible protein 10 (IP-10) is a chemokine important in the attraction of T cells, which are essential for resolution of chlamydial genital tract infection. During infections with Gram-negative bacteria, the IP-10 response mediated through type I IFNs usually occurs as a result of TLR4 stimulation by bacterial LPS. However, we found that levels of IP-10 in genital tract secretions of Chlamydia trachomatis-infected female wild-type mice were similar to those of infected TLR2- and TLR4-deficient mice but significantly greater than those of infected MyD88-deficient mice. We investigated the mechanism of IP-10 and IFN-beta induction during chlamydial infection using mouse macrophages and fibroblasts infected ex vivo. The induction of IP-10 and IFN-beta was unchanged in Chlamydia-infected TLR2- and TLR4-deficient cells compared with wild-type cells. However, infection of MyD88-deficient cells resulted in significantly decreased responses. These results suggest a role for MyD88-dependent pathways in induction of IP-10 and IFN-beta during chlamydial infection. Furthermore, treatment of infected macrophages with an endosomal maturation inhibitor significantly reduced chlamydial-induced IFN-beta. Because endosomal maturation is required for MyD88-dependent intracellular pathogen recognition receptors to function, our data suggest a role for the intracellular pathogen recognition receptor(s) in induction of IFN-beta and IP-10 during chlamydial infection. Furthermore, the intracellular pathways that lead to chlamydial-induced IFN-beta function through TANK-binding kinase mediated phosphorylation and nuclear translocation of IFN regulatory factor-3.  相似文献   

16.
Toll-like receptors (TLRs) are important for the activation of innate immune cells upon encounter of microbial pathogens. The present study investigated the potential roles of TLR2, TLR4, and the signaling protein myeloid differentiation factor 88 (MyD88) in polymicrobial septic peritonitis. Whereas both TLR2 and TLR4 were dispensable for host defense against septic peritonitis, MyD88-deficient mice were protected in this infection model. Recruitment of neutrophils to the septic focus and bacterial clearance were normal in MyD88-deficient mice. In contrast, the systemic inflammatory response was strongly attenuated in the absence of MyD88. Surprisingly, MyD88 deficiency did not alter cytokine and chemokine production in spleen, but markedly reduced the inflammatory response in liver and lung. Production of monocyte chemoattractant protein-1 and macrophage-inflammatory protein-1alpha was entirely independent of MyD88. These results imply a central role of MyD88 for the systemic immune pathology of polymicrobial sepsis and show that cytokine production in spleen and induction of certain chemokines are MyD88 independent.  相似文献   

17.
The opportunistic human pathogen Pseudomonas aeruginosa causes rapidly progressive and tissue-destructive infections, such as hospital-acquired and ventilator-associated pneumonias. Innate immune responses are critical in controlling P. aeruginosa in the mammalian lung, as demonstrated by the increased susceptibility of MyD88(-/-) mice to this pathogen. Experiments conducted using bone marrow chimeric mice demonstrated that radio-resistant cells participated in initiating MyD88-dependent innate immune responses to P. aeruginosa. In this study we used a novel transgenic mouse model to demonstrate that MyD88 expression by epithelial cells is sufficient to generate a rapid and protective innate immune response following intranasal infection with P. aeruginosa. MyD88 functions as an adaptor for many TLRs. However, mice in which multiple TLR pathways (e.g., TLR2/TLR4/TLR5) are blocked are not as compromised in their response to P. aeruginosa as mice lacking MyD88. We demonstrate that IL-1R signaling is an essential element of MyD88-dependent epithelial cell responses to P. aeruginosa infection.  相似文献   

18.
Several TLR ligands of bacterial origin induce innate immune responses. Although FimH, the adhesin portion of type 1 fimbria, plays an important role in the pathogenicity of some gram-negative bacteria, its ability to stimulate the innate immune system via TLR signaling remains unclear. In this study we report that FimH induces potent innate responses in a MyD88-dependent fashion. The FimH-induced innate activity was restricted to cells expressing TLR4. In addition, FimH was able to bind directly to TLR4. More importantly, cells unresponsive to LPS were responsive to FimH and the presence or absence of MD-2 and CD14 had no effect on FimH activity. Our data suggest that TLR4 is a functional receptor for the adhesin portion of bacterial type 1 fimbria.  相似文献   

19.
To understand how macrophages (Mphi) activated with IFN-gamma modulate the adaptive immune response to intracellular pathogens, the interaction of IFN-gamma-treated bone marrow-derived murine Mphi (BMphi) with Legionella pneumophila was investigated. Although Legionella was able to evade phagosome lysosome fusion initially, and was capable of de novo protein synthesis within IFN-gamma-treated BMphi, intracellular growth of Legionella was restricted. It was determined that activated BMphi infected with Legionella suppressed IFN-gamma production by Ag-specific CD4 and CD8 T cells. A factor sufficient for suppression of T cell responses was present in culture supernatants isolated from activated BMphi following Legionella infection. Signaling pathways requiring MyD88 and TLR2 were important for production of a factor produced by IFN-gamma-treated BMphi that interfered with effector T cell functions. Cyclooxygenase-2-dependent production of PGs by IFN-gamma-treated BMphi infected with Legionella was required for inhibition of effector T cell responses. From these data we conclude that activated Mphi can down-modulate Ag-specific T cell responses after they encounter bacterial pathogens through production of PGs, which may be important in preventing unnecessary immune-mediated damage to host tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号