首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Culture supernatants generated by alloantigenic or lectin stimulation of a cloned helper T lymphocyte, designated L2, contain interleukin 2 (IL 2), granulocyte/macrophage colony-stimulating factor (CSF), B cell stimulating factor (BCSF), macrophage (Ia+)-recruiting factor (MIRF), (Ia+)-inducing activity, gamma-interferon, Fc receptor-enhancing activity, macrophage migration inhibitory factor (MIF), macrophage activation factor (MAF), interleukin 3 (IL 3), and a factor responsible for prolonging the synthesis and secretion of the fourth and second components of complement by guinea pig peritoneal macrophages. Erythropoietin was not detected. A spontaneously arising variant of L2, designated L2V, produces much lower quantities of macrophage-stimulating activities, IL 2, and interferon. However, when compared to L2, L2V produces much higher levels of BCSF, equivalent amounts of IL 3, and slightly smaller amounts of CSF. Unlike L2V, a cytolytic clone, designated L3, secretes lymphokines that primarily affect macrophage function. The time course of lymphokine production by L2 cells indicates that for the six lymphokine activities studied there are three different times at which maximal or near maximal levels are reached, as follows: 1) IL 2, 12 to 24 hr; 2) IL 3 and CSF, 24 to 48 hr; and 3) (Ia+)-inducing activity, MAF, and interferon, 48 hr or later. Only IL 2 activity disappears during the 8-day culture cycle. The time course data and the differential production of activities by the three types of lymphocyte clones suggest that at least four terminal effector lymphokine molecules account for the ten biologic activities tested.  相似文献   

3.
Activation of alloreactive CD4 T cells occurs via the direct and indirect pathways of alloantigen presentation. A novel TCR/alloantigen transgenic system was designed that permitted in vivo visualization of CD4 T cell priming through these pathways. When both pathways of alloantigen presentation were intact, CD4 T cell activation in response to cardiac allografts was rapid and systemic by day 4 after transplantation, in contrast to that seen in response to skin allografts, which was delayed until 10-12 days after transplantation. Despite this systemic CD4 T cell activation in response to cardiac allografts, there was a paucity of activated graft-infiltrating CD4 T cells at 4 days posttransplantation. This finding suggests that the initial priming of alloimmune CD4 T cell responses occurs within draining lymphoid organs. Furthermore, alloantigens derived from cardiac allografts failed to promote thymic negative selection of developing thymocytes expressing the alloreactive TCR clonotype. In the absence of a functional direct pathway, the kinetics of activation, anatomic localization, and effector function of alloreactive CD4 T cells remained unchanged. Overall, the present study defines the anatomic and temporal characteristics of CD4 T cell alloimmune responses and demonstrates that CD4 T cell priming via the indirect pathway proceeds optimally in the absence of the direct pathway of alloantigen presentation.  相似文献   

4.
CsA interferes in a specific manner with the expansion of T cell clones in that it inhibits the antigen-driven component of the proliferative responses made by cloned helper T cells, cloned conventional cytolytic T cells, and cloned helper-independent cytolytic T cells. Cloned helper T cells and helper-independent cytolytic T cells, which share the ability to proliferate when cultured with specific alloantigen, fail to proliferate when cultured with specific alloantigen, fail to proliferate in response to this stimulus in the presence of CsA (10 to 100 ng/ml). In contrast, the proliferation observed when these cells are cultured with exogenous growth factors (but not alloantigen) is little influenced by as much as 1000 ng/ml CsA. When cloned helper T cells or helper-independent cytotoxic T cells are cultured with alloantigen plus exogenous growth factor, additive or synergistic proliferation occurs. However, CsA (10 to 1000 ng/ml) blocks only the component of proliferation induced by alloantigen, and leaves the lymphokine-driven component intact. CsA has similar effects on the proliferation of cloned conventional cytolytic T cells. Thus, CsA separates cloned T cell proliferation into two components: one driven by contact with alloantigens, the other driven by contact with mitogenic lymphokines.  相似文献   

5.
Analysis of cellular immune response to EBV by using cloned T cell lines   总被引:9,自引:0,他引:9  
Eight cloned T cell lines specific for Epstein Barr virus-transformed B lymphocytes were derived. In the presence of the autologous virus-infected B cells, the T cell lines show HLA-restricted cytotoxic activity and also secrete alpha-interferon in sufficient amounts to inhibit infection and transformation. Four of these clones showed restriction to a single HLA locus (two for A3, and two for B7) and three showed exquisite self-restriction lysing only autologous targets. These seven clones expressed the classical cell surface phenotype of cytotoxic T cells being T3, 8, 11, and la-positive and T4-negative. An eighth clone that lacked the T8 surface marker appeared to recognize both B7 and BW51. HLA restriction was confirmed: 1) by the ability of a monoclonal antibody against an HLA-A,B,C framework antigen (W6-32) to block the cytotoxicity; 2) the failure of the clones to lyse Daudi, an EBV-positive, HLA-A,B, C-negative cell line; and 3) successful competition of the cytotoxicity by autologous but not allogeneic cold targets. The cloned T cells do not kill EBV-negative targets such as autologous pokeweed mitogen blasts and cell lines including CEM and the natural killer cell target K562. The results suggest T cell clones may be generated against an EBV-associated membrane antigen on transformed B cells, perhaps equivalent to the lymphocyte-determined membrane antigen, and that the recognition is restricted by a single HLA determinant. We propose that single T cells can play multiple roles in controlling EBV infection in vitro and in vivo including the elimination of transformed cells by cytotoxicity and the prevention by secreted interferon of further re-infection and transformation.  相似文献   

6.
A model of accessory cell-dependent lectin-mediated T cell activation was investigated by utilizing a mitogen-inducible T cell hybridoma. A continuous MHC-restricted antigen-specific T cell line was fused with the azaguanine-resistant AKR thymoma BW5147. A hybrid, RF1.16B, was identified that is minimally inducible by Con A stimulation alone but is stimulated by Con A in the presence of T cell-depleted accessory cells to produce interleukin 2. The accessory cell function can be replaced by the monokine interleukin 1. Thus the lectin is a sufficient trigger for the hybrid in the absence of MHC restriction elements. The accessory cell function from splenocytes is provided by a non-B, non-T, predominantly Ia-bearing radioresistant cell. The interaction between the RF1.16B hybrid and the accessory cell population is not H-2-restricted. Control experiments, including the use of a cloned source of accessory cells, ruled out contaminating T cells or direct lectin effects as an explanation for the lack of H-2 restriction. The finding that an Ia-bearing cell is required for activation in an MHC-nonrestricted manner is discussed, and a hypothesis is raised that Ia antigens may play a role in addition to that of being a restriction element.  相似文献   

7.
We have studied the activation of interleukin 1 (IL 1)-dependent and IL 1-independent T cell lines, specifically their capacity to produce and secrete interleukin 2 (IL 2). The IL 1-dependent T cell lymphoma LBRM33-1A5.47, which requires phytohemagglutinin (PHA) and IL 1 to produce IL 2, was compared with the IL 1-independent T cell lymphoma LBRM33-5A4 and T cell hybridomas DO-11.10/S4.4 and 3DO-54.8. The latter hybridomas do not require exogenous IL 1 to produce IL 2 in response to mitogens or ovalbumin (OVA)/I-Ad. Even though IL 1 is not required by these IL 1-independent T cell lines, we tested whether IL 1 could modulate their response but found no significant effect of exogenous IL 1. We then studied the activation of these T cell lines by the calcium ionophore A23187 and phorbol myristate acetate (PMA). In the case of the IL 1-dependent line LBRM33-1A5.47, there was a strong response when both A23187 and PMA were used simultaneously. We subsequently found that A23187 can replace PHA, and PMA can replace IL 1 in the activation of this cell line to IL 2 production. These observations suggest that the signal(s) provided by PHA and IL 1 involve at least in part a calcium flux, and activation of protein kinase C. Parallel experiments with the use of the IL 1-independent T cell lines showed a strong response to both agents when used simultaneously. A modest response observed to A23187 alone was always enhanced by the addition of PMA. No response was observed to PMA alone. IL 1-rich P388D1 supernatant could replace the enhancing effect of PMA in the response of the IL 1-independent T cell lines. We suggest that the activating signals provided by A23187 and PMA are at least part of the sequence of events that lead to production of IL 2 in either IL 1-dependent or IL 1-independent T cell lines. In IL 1-independent T cell lines, however, both of the activating signals studied may be delivered through stimulation of the Antigen-MHC T cell receptor.  相似文献   

8.
Certain allele-specific alloreactive T cell clones do not recognize the products expressed by some B cell lines that, according to typing methods other than sequencing, carry the allelic molecules recognized by these clones. In order to characterize the naturally occurring sequence polymorphisms putatively responsible for the differential allorecognition of these class II molecules, we have determined the third and/or second exon nucleotide sequences of HLA-DRB1, -DRB3/4/5, -DQB1, and -DQA1 genes from 35 representative lymphoblastoid cell lines. In some cases, the lack of recognition correlates with the presence of single amino acid substitutions in either the second or third hypervariable region (HVR) of the first domain of these molecules. In other cases, the differentially allorecognized class II molecules have identical second and/or first domain amino acid sequences. These findings indicate that a) class II MHC-alloreactive T cell clones can distinguish between molecules with identical amino acid sequences expressed by B cell lines established from unrelated individuals; b) allorecognition of class II molecules is sensitive to naturally occurring single amino acid substitutions in either the second HVR of class II molecules, which is unavailable to interact with TCR residues, or the third HVR. Our results also suggest that 1) in different B cell lines, identical class II molecules may present different endogenous peptides, which may behave as histocompatibility Ag; 2) the peptide-binding specificity of a class II molecule may be affected by amino acid substitutions in its second HVR (Ag-binding site); and 3) human class II allorecognition may be restricted by epitopes contributed by residues of their third HVR.  相似文献   

9.
The role of IgD in the immune response has remained elusive, although the predominance of IgD on the B cell surface and the paucity of IgD in serum have suggested a receptor function. In support of this hypothesis, it has recently been shown that receptors for IgD on helper T cells can be induced by exposure to IgD in vivo and in vitro. Such IgD receptor-positive T cells (i.e., T delta cells), detectable as RFC using IgD-coated SRBC, augment antibody responses. In this report, we demonstrate that cloned, antigen-specific T cells of helper phenotype show only very low percentages of IgD-RFC, if allowed to rest in vitro after antigen exposure in the absence of IL 2. Exposure to IgD or to IL 2 for 24 hr causes the IgD-specific RFC to increase as much as 25-fold to nearly 80%. Clones that have recently been stimulated with antigen, or T cell hybridomas prepared from such clones, exhibit 40 to 50% IgD-RFC before exposure and twofold higher levels after exposure to IgD. IL 2 also causes a dose-dependent induction of OgD-RFC in normal splenic T cells. Thus, antigen stimulation, IL 2 and IgD can all induce these receptors for IgD which presumably enable helper T cells to interact more effectively with IgD+ B cells.  相似文献   

10.
A primary rat MLR was initiated, and on each of 8 consecutive days during the evolving culture, an aliquot of cells was separated into its constitutive helper/inducer (W3/25+) and suppressor/cytotoxic (OX8+) T cell subsets by a monoclonal antibody, Degalan-bead immunoadsorbent column technique. This allowed a detailed kinetic analysis of T cell proliferation, the generation of effector cells, and the production of IL 2 by each subset relative to net whole culture supernatant IL 2 activity. The primary MLR demonstrates an early period of helper/inducer cell proliferation, IL 2 production and accumulation, followed by a period of suppressor/cytotoxic cell (OX8+) proliferation and IL 2 consumption during which there are distinct waves of allospecific suppressor, followed by cytotoxic activity. If fresh T cells of the helper/inducer or suppressor/cytotoxic phenotype were preseparated and then cultured alone with irradiated allogeneic stimulator cells, proliferation was noted in both subsets despite no demonstrable IL 2 activity in cultures of the suppressor/cytotoxic cells. Finally, a suppressed primary MLR exhibited proliferative inhibition of both T cell subsets.  相似文献   

11.
Macrophage-T interactions are required for the Con A-induced generation of human Ts capable of inhibiting PHA-induced blastogenesis among autologous PBMC. Con A treatment of adherent cell-depleted PBMC, or PBMC recovered after a 7-day incubation in FCS, failed to generate Ts. Addition of adherent cells to either of these populations restored Con A inducible Ts. Discontinuous density gradient fractionation of adherent cells demonstrated that the required accessory cell was a low density macrophage bearing the human equivalent of murine Ia.  相似文献   

12.
We have previously demonstrated that the introduction of the bm12 mutation into NZB mice results in animals that spontaneously produce high titer IgG autoantibodies to dsDNA. The observation that NZB.H-2bm12 develop lupus although NZB.H-2b control mice do not, provides a unique system to study the role of Th cells in the production of antibodies to dsDNA. We have isolated, in the absence of a known stimulating autoantigen, a series of seven autoreactive T cell clones that provide help in vitro for the production of IgG anti-dsDNA antibodies by syngeneic B cells. The data on these seven cloned T cell lines was compared to two cloned T cell lines specific for keyhole limpet hemocyanin. The seven cloned T cell lines, coined clones 19D, 23G, 410F, 410H, C1, C15, and C52 all show significant help in vitro for production of IgM and IgG antibodies to ssDNA and dsDNA; antibody levels increased 7- to 30-fold compared to cultures without T cells. Clones C1, C15, and C52 were furthered studied and were shown to provide help for IgM antihistone and anti-OVA responses but provided significantly less help for IgG antibodies. In contrast, keyhole limpet hemocyanin-specific cloned T cell lines TK2 and TK5 provided help for IgM antibodies to ssDNA, dsDNA, and histone, but failed to significantly increase IgG antibodies to ssDNA, dsDNA, or histone. The cloned T cell lines were restricted to H-2bm12 and proliferated only in response to APC from NZB.H-2bm12 and B6.C-H-2bm12 but not NZB.H-2b or NZB.H-2d mice; their in vitro helper activity was inhibited by antibodies to class II. All cloned T cell lines expressed Thy-1, CD5, and TCR-alpha/beta. Three of the seven clones used TCR-V beta 4. However, the V beta expression of the four remaining autoreactive T cell clones could not be determined. All of the autoreactive cloned T cell lines produce significant IL-4 but no detectable IL-2 or IFN-gamma. We believe that HPLC-purified peptides eluted from I-Abm12 molecules from APC can potentially provide insight on the putative autoantigen.  相似文献   

13.
The accessory cell requirements for the induction of the IL 2 receptor by the lectin Con A on murine T cell subsets were directly assayed with anti-IL 2 receptor monoclonal antibodies. Substantial levels of IL 2 receptor expression were induced on T lymphocytes of the MHC class I-restricted, suppressor/cytotoxic phenotype (L3T4-, Ly-2+) in the presence and absence of accessory cells. In contrast, high levels of IL 2 receptor expression could only be induced on T cells of the MHC class II-restricted, helper/inducer phenotype (L3T4+, LY-2-) in the presence, but not in the absence, of accessory cells. Ia- cells such as the P388D1 macrophage line or cultured fibroblasts (DAP X 3) were as efficient as the Ia+ B cell hybridoma LB in providing accessory cell function for the L3T4+, Ly-2- subset. PMA, but not purified human IL 1, could substitute for accessory cells for both IL 2 receptor expression and IL 2 secretion by the L3T4+, Ly-2- subset. These data suggest that IL 2 receptor induction on the L3T4+, Ly-2- subset is complex, possibly requiring a T cell-accessory cell interaction, whereas the lectin may directly trigger IL 2 receptor expression on L3T4-, Ly-2+ T cells.  相似文献   

14.
Recent evidence has shown that cloned, murine CTL cell lines are resistant to the cytotoxic components of the toxic granules they release upon specific interaction with their target cells. Inasmuch as the resistance might be due to selection in culture over many months by repeated exposure to these cytolytic components (which are released repeatedly as a result of the cultured CTL being periodically stimulated by target cells), we asked whether primary CTL are also resistant. The primary CTL were elicited in vivo by i.p. injection of allogeneic tumor cells or in vitro by 5- to 6-day MLC or by 48-h exposure to the lectin Con A. The responding cells were separated into purified CD8+ (i.e., CD4-, CD8+) and purified CD4+ (i.e., CD4+, CD8-) T cell populations that were analyzed for cytolytic activity and for resistance to lysis by toxic secretory granules derived from cloned CTL cell lines. The CD8+ T cells were highly cytolytic and relatively resistant; they retained their cytolytic activity and were lysed to a minimal extent (0 to 10%) by quantities of isolated granules that lysed 80 to 90% of the P815 tumor cell line (tested as a representative standard cell line). The CD4+ T cells, in contrast, had only minimal cytolytic activity and were far more susceptible to granule-mediated lysis. Although the resistance of primary CD8+ T cells is impressive, it is not as pronounced as the resistance of the cloned CTL cell lines, indicating that during long-term culture there is some selection for increased resistance to granule-mediated lysis. In contrast to T cells (especially CD8+ T cells), Ia+ macrophages, isolated from primary immune peritoneal exudates, were highly susceptible to granule-mediated lysis.  相似文献   

15.
Mls-specific T cell clones derived by limiting dilution were tested for cytotoxic activity in a lectin-dependent 51Cr-release assay. All the T cell clones tested were cytotoxic in such an assay in apparent contrast to previous reports. However, only those target cells sensitive to cytolysis by other L3T4a+ cytolytic T cells were killed by Mls-specific T cell clones in short term 51Cr-release assays, possibly explaining this discrepancy. All the T cell clones tested were L3T4a+, Lyt-2- and stimulated B cells from Mlsa,d strains of mice to proliferate and secrete immunoglobulin. Furthermore, lysis of innocent bystander targets was observed when the T cells were stimulated with Mls-disparate stimulator cells. These results are consistent with those obtained with L3T4a+ T cells specific for protein antigen:self Ia and that express cytotoxic potential.  相似文献   

16.
We have described a trinitrophenyl (TNP)-specific inducer clone, clone Ly-1-T1, which responds to a variety of different stimuli, including a) soluble TNP-protein conjugates plus syngeneic (H-2d) spleen cells, b) TNP directly coupled to syngeneic or allogeneic spleen cells, and c) activated I-A identical B cells in the absence of nominal antigen. In the present study we used a panel of antibodies to investigate the recognition structures involved in the activation of clone Ly-1-T1 by these different stimuli. We show that allogeneic spleen cells must be conjugated by using relatively high concentrations of TNBS to be efficient stimulators of the clone. In contrast, syngeneic spleen cells conjugated by using a much wider range of concentrations will activate the clone. The response of the clone to TNP-coupled allogeneic spleen cells is inhibited by anti-L3T4 and anti-Ia antibodies. In contrast, stimulation of the clone with syngeneic spleen cells coupled by using the same concentrations of TNBS is not inhibited with either anti-Ia or anti-L3T4 antibody. The inhibition pattern observed with anti-Ia and anti-L3T4 antibodies was also determined by the nature of the accessory population used to present soluble TNP-protein conjugates. Anti-I-Ad antibodies blocked the activation of clone Ly-1-T1 by TNP-protein plus splenic adherent cells, indicating the involvement of polymorphic I-A determinants in this response. Anti-L3T4 antibody had little or no effect on this response, suggesting that a significant L3T4-Ia interaction is not required. Finally, the response of the clone to activated B cells in the presence or absence of TNP-protein is exquisitely sensitive to inhibition by anti-L3T4 as well as anti-I-A antibodies. The data suggest that the requirement for an L3T4-I interaction depends on the combination of antigen and accessory cell type used to stimulate the clone.  相似文献   

17.
To minimize complicating interactions inherent in heterogeneous cell populations, we used a panel of cloned murine autoreactive (E8.A1) and antigen-specific (HEL.C10, HEL.B14) T cell hybridomas to examine the effect of prostaglandin E2 (PGE2) on T cell activation. These T cells secrete interleukin 2 (IL 2) when co-cultured with a cloned population of I region-matched stimulator cells (TA3), or with mitogenic signals in the absence of TA3 stimulator cells. Physiologic concentrations of PGE2 inhibited the induction of IL 2 secretion by the T cell hybridomas tested, when they were activated either by TA3 cells or by mitogenic signals. IL 2 production was inhibited in a dose-dependent manner by concentrations of PGE2 between 10(-7) and 10(-11) M, with 50% inhibition occurring at 10(-10) M. Pretreatment of the T hybridoma cells with 10(-7) M PGE2 for 1 hr before culture also resulted in marked inhibition of IL 2 secretion. Similar pretreatment of the TA3 cells did not affect their ability to activate the T cell hybridomas. PGE2 at 10(-8) M induced a 30-fold increase in cAMP levels within 25 min of addition to culture of the E8.A1 T cell hybridoma, but caused no significant elevation of cAMP levels in TA3 cells. The direct addition of dibutyryl cAMP (dcAMP) to cultures of E8.A1 cells resulted in marked inhibition of IL 2 secretion when stimulated by TA3 or by mitogenic signals, with an average of 80% inhibition occurring at 10(-4) M dcAMP. PGE2 and dcAMP also inhibited the growth of E8.A1 cells. Initially, cell growth was virtually halted, but began to recover between 24 and 48 hr after the addition of either PGE2 or dcAMP. Neither PGE2 nor dcAMP inhibited the division of TA3 cells. High affinity binding sites for PGE2 were detected in the E8.A1 T cell hybridomas with an apparent Kd of 7.6 X 10(-10) M, which is consistent with the functional data. No specific binding was detected in the TA3 stimulator cells. These findings suggest that the immunosuppressive effects of PGE2 are localized to the T cell, are receptor regulated, and may be mediated by the associated increase of cAMP levels in the T cell hybridomas.  相似文献   

18.
A monoclonal H-2d-specific antibody markedly inhibits target-cell lysis mediated by two influenza virus A/JAP/57-specific, H-2K d -restricted cloned CTL lines. Three other A/JAP/57-specific, H-2 d -restricted CTL clones (two of which are also restricted to H-2K d in target-cell recognition) are only minimally inhibited by this monoclonal antibody. The inhibitory effect of the antibody is not due to selective binding to certain cloned CTL lines but rather is due to blocking of a determinant on the target cell. The monoclonal antibody produces partial inhibition of lysis mediated by a heterogeneous population of A/JAP/57-specific, H-2 d -restricted CTL. Likewise the profound, selective inhibition of cytolysis produced by the H-2d-specific monoclonal antibody could not be reproduced with a conventional H-2d alloantiserum. These observations suggest that more than one site on a particular H-2K or H-2D molecule can serve as a determinant for H-2-restricted CTL recognition. They furthermore imply that there is more than one recognition structure (receptor) for self MHC products clonally distributed among a population of H-2-restricted CTL directed to a particular antigen.  相似文献   

19.
Human peripheral lymphoid cells pretreated with Concanavalin A for 48 hr can markedly suppress the proliferative response of untreated autologous lymphoid cells in MLC. Isolation studies with Sephadex G-200 anti-F(ab')2 affinity chromatography, nylon adherence, and E rosetting indicate that the Con A-induced suppressor cell is a T cell. Further fractionation into TH2+ and TH2- cell subsets with an equine-anti TH2 serum show that both subsets can be activated by Con A to an equivalent degree. After activation only the TH2+ subset can suppress autologous responder cells in MLC. The TH2- subset, which comprises 80% of peripheral human T cells, although induced by Con A to proliferate, cannot itself suppress the MLC response. Nevertheless, the TH2- subset can be shown to modulate the generation of suppressor TH2+ cells at 24 hr but not at 48 hr. These studies support the notion that the Con A-induced suppressor cell is confined to a distinct T cell subset in man and that T-T interactions are important in the overall expression of the immune response.  相似文献   

20.
We have investigated virus-lymphocyte interactions by using cloned subpopulations of interleukin-2-dependent effector lymphocytes maintained in vitro. Cloned lines of H-2-restricted hapten- or virus-specific cytotoxic T lymphocytes (CTL) and alloantigen-specific CTL were resistant to productive infection by vesicular stomatitis virus (VSV). In contrast, cloned lines of natural killer (NK) cells were readily and persistently infected by VSV, a virus which is normally highly cytolytic. VSV-infected NK cells continued to proliferate, express viral surface antigen, and produce infectious virus. Furthermore, persistently infected NK cells showed no marked alteration of normal cellular morphology and continued to lyse NK-sensitive target cells albeit at a slightly but significantly reduced level. The persistence of VSV in NK cells did not appear to be caused by the generation of temperature-sensitive viral mutants, defective interfering particles, or interferon. Consequently, studies comparing the intracellular synthesis and maturation of VSV proteins in infected NK and mouse L cells were conducted. In contrast to L cells, in which host cell protein synthesis was essentially totally inhibited by infection, the infection of NK cells caused no marked diminution in the synthesis of host cell proteins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of immunoprecipitates of viral proteins from infected cells showed that the maturation rate and size of VSV surface G glycoprotein were comparable in L cells and NK cells. Nucleocapsid (N) protein synthesis also appeared to be unaffected in NK cells. In contrast, the viral proteins NS and M appeared to be selectively degraded in NK cell extracts. Mixing experiments suggested that a protease in NK cells was responsible for the selective breakdown of VSV NS protein. Finally, VSV-infected NK cells were resistant to lysis by virus-specific CTL, suggesting that persistently infected NK cells may harbor virus and avoid cell-mediated immune destruction in an immunocompetent host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号