首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellular life-span of cultivated human skin epidermis keratinocytes NHEK-F was shown to be extended up to 150% of population doubling levels (PDLs) by repetitive addition with two autooxidation-resistant derivatives of ascorbic acid (Asc), Asc-2-O-phosphate (Asc2P), and Asc-2-O-alpha-glucoside (Asc2G), respectively, but to be not extended with Asc itself. In contrast, hydrogen peroxide (H(2)O(2)) as dilute as 20 microM which was non-cytotoxic to the keratinocytes, or at 60 microM being marginally cytotoxic achieved the cellular longevity, unexpectedly, up to 160 and 120% of PDLs, respectively, being regarded as a hormesis-like stimulatory effect. The lifespan-extended cells that were administered with Asc2P, Asc2G, or 20 microM H(2)O(2) were prevented from senescence-induced symptoms such as PDL-dependent enlargement of a cell size of 14.7 microm finally up to 17.4 microm upon Hayflick's limit-called loss of proliferation ability as estimated with a channelizer, and retained young cell morphological aspects such as thick and compact shape and intense attachment to the culture substratum even upon advanced PDLs, whereas other non-extended cells looked like thin or fibrous shape and large size upon lower PDLs. The PDL-dependent shortening of telomeric DNA of 11.5 kb finally down to 9.12-8.10 kb upon Hayflick's limit was observed in common for each additive-given cells, but was decelerated in the following order: 20 microM H(2)O(2) > Asc2P = Asc2G > 60 microM H(2)O(2) > Asc = no additive, being in accord with the order of cell longevity. Intracellular reactive oxygen species (ROS) was diminished by Asc2P, Asc2G or 20 microM H(2)O(2), but not significantly by Asc or 60 microM H(2)O(2) as estimated by fluorometry using the redox indicator dye CDCFH. There was no appreciable difference among NHEK keratinocytes that were administered with or without diverse additives in terms of telomerase activity per cell, which was 1.40 x 10(4)-4.48 x 10(4) times lower for the keratinocytes than for HeLa cells which were examined as the typical tumor cells. Thus longevity of the keratinocytes was suggested to be achieved by slowdown of age-dependent shortening of telomeric DNA rather than by telomerase; telomeres may suffer from less DNA lesions due to the continuous and thorough repression of intracellular ROS, which was realized either by pro-vitamin C such as Asc2P or Asc2G that exerted an antioxidant ability more persistent than Asc itself or by 20 microM H(2)O(2) which diminished intracellular ROS assumedly through a hormesis-like effect.  相似文献   

2.
Irradiation with ultraviolet‐A (UVA) ray at doses of 20–100 J/cm2 diminished the cell viability of human keratinocytes HaCaT and human melanoma cells HMV‐II, both of which were protected by pre‐irradiational administration with the ascorbic acid (Asc) derivative, VC‐IP (2,3,5,6‐O‐tetra‐2′‐hexyldecanoyl‐L‐ascorbic acid; vitamin C‐isopalmityl tetraester), which is the first lipoidic‐liquiform pro‐vitamin C by itself that is materialized by esterization of all four intramolecular hydroxyl groups of an Asc molecule with branched chain fatty groups, resulting in molecular fluidity higher than that of the corresponding straight chains. Irradiation with UVA to HaCaT keratinocytes was shown to cause the formation of 8‐hydroxydeoxyguanosine (8‐OHdG), translocation of phosphatidylserine in the inner layer into the outer layer of cell membrane, and lowering of a mitochondrial membrane potential, all of which were repressed by pre‐irradiational administration with VC‐IP. Expression of p53 gene, another hallmark of UV‐induced DNA damages, was promoted by UVA irradiation to the keratinocytes but also repressed by VC‐IP. Administration with VC‐IP of 10–50 µM to human fibroblasts NHDF achieved the enhancement of collagen synthesis, repression of matrix metalloprotease‐2/9 activity, and increasing of intracellular Asc contents more markedly than that with Asc itself of the same concentrations. Thus UVA‐induced diverse harmful effects could be prevented by VC‐IP, which was suggested to ensue intrinsically from the persistent enrichment of intracellular Asc, through esterolytic conversion of VC‐IP to a free‐form Asc molecule, resulting in relief to UVA‐caused oxidative stress. J. Cell. Biochem. 106: 589–598, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Vascular endotheliocytes BAE-2 underwent the gradually proceeding cell death until 48 h after reoxygenation (Reox) following 3 h anoxia (Anox), but protected by pre-Anox administration with L-ascorbic acid (Asc)-2-O-phosphate (Asc2P), an autooxidation-resistant Asc derivative, but not by Asc itself. This cytoprotection with Asc2P was achieved in a glucose (Glc)-lacking buffer more advantageously than in a Glc-containing buffer where less efficiency had been demonstrated for Asc entry into BAE-2 cells than in a Glc-lacking buffer. Superoxide anion radicals were detected explosively in the extracellular space at 2-5 min after Reox following the Anox treatment of HUVE endotheliocytes, and were thereafter retained at levels as high as approximately one-half of the maximum level until 60 min after Reox, as shown by cytochrome c reduction assay. Superoxide anions at 3 and 60 min after Reox were suppressed by pre-Anox administration with Asc2P, but not with Asc or dehydro-Asc, and were not suppressed by post-Anox administration with Asc2P; the cytoprotection may need the intracellular accumulation of the ROS-scavenging effector Asc that is converted from Asc2P until 3 min after Reox. The ROS-generator tert-butylhydroperoxide (t-BuOOH) also induced both the diminished cell viability and nuclear DNA strand cleavages of BAE-2 endotheliocytes, which were also protected dose-dependently with Asc2P. The cytoprotection was attributed to reduction of intracellular ROS including hydroperoxide and hydrogen peroxide with Asc2P as shown by fluorometry with the redox indicator CDCFH-DA. Thus Anox/Reox-induced cell death can be prevented by Asc2P that suppresses ROS-generation immediately after Reox following Anox more efficiently in the intracellular sphere rather than in the extracellular space.  相似文献   

4.
The reactive oxygen species (ROS) are known to be generated upon post-ischemic reperfusion (I/R) of the heart, and to injure cardiac muscle cells. The hydrogen peroxide-induced mortality of rat cardiomyoblasts H2c9 was markedly inhibited by previous administration with auto-oxidation-resistant pro-vitamin C, the 2-O-phosphorylated derivative (Asc2P) of ascorbic acid (Asc). The cytoprotection was partially counteracted by an inhibitor of MAPK (mitogen-activated protein kinase) kinase (MEK) as shown by DNA strand cleavage assay and mitochondrial dehydrogenase assay. Immunostains indicated that phosphorylated MAPK increased in the hydrogen peroxide-treated cardiomyoblasts, and that this action was moderately inhibited by Asc2P and restored nearly to the initial, pretreatment level by combined administration of the MEK inhibitor and Asc2P. The I/R-induced cell injuries in perfused rat hearts as estimated by extracellular release of the cardiac enzyme CPK were inhibited by 2-O-alpha-glucosylascorbic acid (Asc2G) and Asc, whereas the observed cytoprotection for the cardiomyoblasts was partially counteracted by the MEK inhibitor. The increase in phosphorylated MAPK in I/R-operated hearts was moderately inhibited by pro-vitamin C, but restored nearly to the normal non-operated level by combined administration with the MEK inhibitor. This is in contrast to no alteration in levels of non-phosphorylated MAPK for all the cases examined as shown by Western blots, consistent with results of immunostains for the cardiomyoblasts. The inhibitory effect of the MEK inhibitor on MAPK phosphorylation was, therefore, suggested to counteract the cytoprotective effects of pro-vitamin C via a thorough interruption of the phosphorylated MAPK signaling pathway. This was not true of ROS-related events; the scavenging effects of Asc2G and Asc on hydroxyl radicals generated from I/R-operated heart were not affected by combined administration with the MEK inhibitor, as shown by the spin-trapping DMPO-based ESR method.  相似文献   

5.
Cellular life-span of neonatal human brain microvascular endotheliocytes (HBME) was estimated by population doubling levels (PDLs) for serial subcultivations until spontaneous proliferation stoppage, and was 2.4-fold longer for continuous administration with the 6-O-phosphorylated derivative (TocP) of alpha-tocopherol (Toc), being bio-available owing to its water-solubility, or TocP plus 2-O-phosphorylated ascorbate (Asc2P), and 1.3-fold longer with Asc2P, at a dose of 150 microM, than for the non-administered control. Enlarged cell diameters indicative of cellular aging were repressed for TocP-administered cells as analyzed with a channelizer. Age-dependent shortening of telomeric DNA length (291 bp/PDL) was slowed markedly for TocP (165 bp/PDL) or TocP plus Asc2P, but slightly for Asc2P. Telomerase activity as assessed by the PCR-based TRAP method was detectable slightly at younger ages but no longer at middle ages for the non-administered cells, but, for TocP-administered cells, was intensely detected at younger ages and appreciably until middle ages. Intracellular TocP amounts were not changed age-dependently in contrast to a marked decrease in Toc which accrued from TocP esterolysis. This may be partly attributed to age-dependent changes in the lipid peroxidation product acrolein (ACR), which was abundant at older ages in non-administered cells, but scarcely in TocP-administered cells. Furthermore, intracellular reactive oxygen species (ROS) such as H(2)O(2) and hydroperoxides as detected using the redox indicator CDCFH-DA was less abundant in TocP-administered cells than in non-administered cells. Thus the telomeric-DNA retention, concurrently with retained telomerase activity, was shown to be correlated with cellular longevity, and may be supported by diminished oxidative stress, in hydrophobic microenvironment, which can be achieved by TocP rather than AscP.  相似文献   

6.
前期研究表明Asc2P6Plm能够有效地抑制癌细胞的浸润转移,本文试图以Asc2P6Plm对人成纤维瘤细胞浸润转移作用探讨维生素C衍生物对癌细胞转移能力抑制的机理,对HT-1080细胞分别以50-300μmol/LAsc2P6Plm处理1h,随着Asc2P6Plm浓度的增大,细胞移动的数目明显减少,Asc2P6Plm对HT-1080细胞移动的抑制作用呈现出量效关系,Asc2P6Plm对ROS的清除作用,通过自旋捕集剂DMPO以电子自旋共振方法进行研究,HT-1080细胞经Asc2P6Plm处理后,细胞内的自由基水平与对照组相比有显著的降低,用F-actin的分子探针NBD研究表明,随处理时间延长,细胞内荧光强度与对照组相比显著降低,Western blots研究表明,细胞核内的RhoA蛋白量随Asc2P6Plm处理时间延长而逐渐增加,研究提示,Asc2P6Plm对癌细胞浸润转移能力的抑制作用是与抑制癌细胞内的ROS,提高细胞核内RhoA水平,降低细胞质内F-actin相关。  相似文献   

7.
Bovine aortic endothelial BAE-2 cells exposed to the peroxidizing agent, tert-butylhydroperoxide (t-BuOOH) or 2,4-nonadienal (NDE), suffered from disruption of cell membrane integrity and from reduction of mitochondrial dehydrogenase activity as assessed by fluorometry using ethidium homodimer and photometry using WST-1, respectively. The cells were protected from t-BuOOH-induced injury more markedly by L-ascorbic acid-2-O-phosphate (Asc2P) stably masked at the 2,3-enediol moiety, which is responsible for the antioxidant ability of L-ascorbic acid (Asc), than by Asc itself. In contrast, NDE-induced membrane disruption but not mitochondrial dysfunction was prevented by Asc2P, whereas Asc exhibited no prevention against both types of injury. The amount of intracellular Asc was 7.2- to 9.0-fold larger in Asc2P-administered BAE-2 cells, where the intact form Asc2P was not detected, than in Asc-administered cells as assessed by HPLC of cell extract with detection by coulometric ECD and W. During transmembrane influx into the cell, Asc2P was concentrated as highly as 70- to 90-fold relative to the extracellular Asc2P concentration, whereas Asc was 8-to 13-fold concentrated as estimated based on an intracellular water content of 0.59 pL/cell determined by [14C]PEG/gas chromatography. Thus, Asc2P but not Asc is highly concentrated in the aqueous phase of the cell after prompt dephosphorylation, and may thereby render the cell more resistant to t-BuOOH-peroxidation assumedly via scavenging of intracellular reactive oxygen species than to peroxidation with the less hydroplulic agent NDE.  相似文献   

8.
To search a regimen for prevention of post-ischemic reperfusional (I/R) injuries, I/R in the liver was induced by 30-min clamping and subsequent unfastening of the portal vein of a rat, which underwent previous intravenous administration with ascorbic acid (Asc) of 1 mg/kg or the autooxidation-resistant pro-vitamin C, 2-O-alpha-D-glucosylated Asc (Asc2G) or 2-O-phosphorylated Asc (Asc2P) of 1 mg Asc equivalent/kg from the viewpoint of utilization of antioxidants that can promptly scavenge I/R-derived reactive oxygen species. The administration with Asc, Asc2P or Asc2G prevented some features of hepatic I/R injuries such as release of hepatic marker enzymes GOT and GPT into the blood vessel, cellular degenerative symptoms including vacuolation and cell fragmentation, and nuclear DNA strand cleavage as detected by TUNEL staining. The preventive effects on I/R injuries were in the order: Asc2G > Asc2P >> Asc. This order of preventive degrees of three anti-oxidants is partly attributable to proper efficiency of conversion to vitamin C and stability in blood stream; Asc2P was moderately converted to a free monoanion form of Asc in human serum, but, in rat serum, so efficiently converted to Asc as to undergo the resultant oxidative decomposition before reaching the liver, whereas Asc2G underwent scarce conversion to Asc in human serum but moderate conversion in rat serum, suggesting that Asc2P might be less cytoprotective against I/R injury than Asc2G in the rat liver in a way different from the human liver. In contrast Asc was so susceptible to autooxidation as to be rapidly decomposed in either rat or human serum. The concentrations of ascorbyl radicals (AscR) in serum were unchanged during I/R for sham-operated rats, but appreciably diminished time-dependently for I/R-operated rats as shown by ESR spectra. A marked increase in serum AscR occurred in rats receiving Asc, Asc2G or Asc2P, but it was time-dependently restored down to the pre-ischemic level of AscR in I/R-operated rats more rapidly than in sham-operated rats. Thus, hepatic I/R injuries were shown to be prevented more markedly by Asc2G or Asc2P than by Asc, which is attributable to efficiencies of both vitamin C conversion and subsequent AscR retention.  相似文献   

9.
The maximum gene exhibition was shown to be achieved at 48 h after transfection with human bcl-2 (hbcl-2) genes built in an SV40 early promoter-based plasmid vector and HVJ-liposome for cultured rat hepatocytes. The similar procedure of hbcl-2 transfection was therefore conducted for livers in rats via the portal vein, and after 48 h followed by post-ischemic reperfusion (I/R) operation for some hepatic lobes. The I/R-induced hepatic injuries were in situ observed as both cell morphological degeneration and cellular DNA strand cleavages around capillary vessels of the ischemic liver lobes as detected by HE stain and TUNEL assay, and were biochemically observed as release of two hepatic marker enzymes AST and ALT into serum. All the I/R-induced injuries examined were appreciably repressed for rats transfected with hbcl-2; hbcl-2 was expressed in hepatocytes around the capillaries of ischemic regions such as the median lobe and the left lobe, but scarcely around those of non-ischemic regions. Thus cytoprotection against I/R-induced injuries may be attributed to the I/R-promoted expression of transferred hbcl-2 genes. The possibility was examined firstly by methylphenylindole method, which showed that I/R-enhanced lipid peroxidation in the reference vector-transfected livers were markedly repressed in the hbcl-2-transfected livers. Contents of ascorbic acid (Asc) in serum and livers of hbcl-2-transfected rats were enriched, unexpectedly, versus those of non-transfected rats, and were as abundant as 1.90-fold and 1.95- to 2.60-fold versus those in the pre-ischemic state, respectively. After I/R, an immediate decline in serum Asc occurred in hbcl-2-transfectants, and was followed by prompt restoration up to the pre-ischemic Asc levels in contrast to the unaltered lower Asc levels in non-transfectants except a transient delayed increase. Hepatic Asc contents were also diminished appreciably at the initial stage after I/R in the ischemic lobes of hbcl-2-transfectants, which however retained more abundant Asc versus non-transfectants especially at the initial I/R stage when scavenging of the oxidative stress should be most necessary for cytoprotection. The results showed a close correlation between cytoprotection by exogenously transferred hbcl-2 and repressive effects on the lipid peroxidation associated with Asc consumption or redistribution.  相似文献   

10.
The nectrotrophic fungus Alternaria alternata f.sp. lycopersici infects tomato plants of the genotype asc/asc by utilizing a host-selective toxin, AAL-toxin, that kills the host cells by inducing programmed cell death. Asc-1 is homologous to genes found in most eukaryotes from yeast to humans, suggesting a conserved function. A yeast strain with deletions in the homologous genes LAG1 and LAC1 was functionally complemented by Asc-1, indicating that Asc-1 functions in an analogous manner to the yeast homologues. Examination of the yeast sphingolipids, which are almost absent in the lag1Deltalac1Delta mutant, showed that Asc-1 was able to restore the synthesis of sphingolipids. We therefore examined the biosynthesis of sphingolipids in tomato by labeling leaf discs with l-[3-3H]serine. In the absence of AAL-toxin, there was no detectable difference in sphingolipid labeling between leaf discs from Asc/Asc or asc/asc leaves. In the presence of pathologically significant concentrations of AAL-toxin however, asc/asc leaf discs showed severely reduced labeling of sphingolipids and increased label in dihydrosphingosine (DHS) and 3-ketodihydrosphingosine (3-KDHS). Leaf discs from Asc/Asc leaves responded to AAL-toxin treatment by incorporating label into different sphingolipid species. The effects of AAL-toxin on asc/asc leaflets could be partially blocked by the simultaneous application of AAL-toxin and myriocin. Leaf discs simultaneously treated with AAL-toxin and myriocin showed no incorporation of label into sphingolipids or long-chain bases as expected. These results indicate that the presence of Asc-1 is able to relieve an AAL-toxin-induced block on sphingolipid synthesis that would otherwise lead to programmed cell death.  相似文献   

11.
A novel hydrogel system based on oligo(poly(ethylene glycol) fumarate) (OPF) is currently being investigated as an injectable carrier for marrow stromal cells (MSCs) for orthopedic tissue engineering applications. This hydrogel is cross-linked using the redox radical initiators ammonium persulfate (APS) and ascorbic acid (AA). In this study, two different persulfate oxidizing agents (APS and sodium persulfate (NaPS)) with three reducing agents derived from ascorbic acid (AA, sodium ascorbate (Asc), and magnesium ascorbate-2-phosphate (Asc-2)) and their combinations were examined to determine the relationship between pH, exposure time, and cytotoxicity for rat MSCs. In addition, gelation times for specific combinations were determined using rheometry. pH and cell viability data after 2 h for combinations ranging from 10 to 500 mM in each reagent showed that there was a smaller pH change and a corresponding higher viability at lower concentrations, regardless of the reagents used. At 10 mM, there was less than a 1.5 unit drop in pH and greater than 90% viability for all initiator combinations examined. However, MSC viability was significantly reduced with concentrations of 100 mM and higher of the initiator combinations. At 100 mM, exposure to NaPS/Asc-2 resulted in significantly more live cells than exposure to APS/AA or NaPS/Asc, but at this concentration, NaPS/Asc-2 exhibited significantly longer OPF gelation onset times than APS/AA. At all combination concentrations, exposure time (10 min vs 2 h) did not significantly affect MSC viability. These data indicate that final pH and/or radical formation have a large impact on MSC viability and that multiple, intertwined testing procedures are required for identification of appropriate initiators for cell encapsulation applications.  相似文献   

12.
ChrCrx (6-hydroxy-2, 5, 7, 8-tetramethyl-chroman-2-carboxylic acid) is a water-soluble analog in which 4', 8', 12'-trimethyltridecyl chain is deleted from an alpha-tocopherol molecule known as a hydrophobic antioxidant. Cell viability of human skin epidermal keratinocytes HaCaT was lowered by treatment with tert-butylhydroperoxide (t-BuOOH) of 50 microM for 48 h, designated as a subacute cytotoxicity, which was prevented by previous administration with ChrCrx in a dose-dependent manner as estimated by mitochondrial function-based WST-1 assay and cell morphological microscopy. In contrast an acute cytotoxicity due to treatment with t-BuOOH as dense as 200 microM for a period as short as 2 h could be also prevented with ChrCrx that was administered before and after, but was eliminated during, treatment with t-BuOOH. In contrast alpha-tocopherol was not cytoprotective against t-BuOOH. DNA strand cleavages were induced with t-BuOOH in the keratinocytes, and could be prevented by ChrCrx more effectively than alpha-tocopherol as assayed by TUNEL stain. The intracellular reactive oxygen species (ROS) was accumulated in a manner dependent on periods of t-BuOOH treatment in the cytoplasm more abundantly rather than the nucleus of keratinocytes, and was markedly diminished by ChrCrx as shown by fluorography using the redox indicator dye. Thus t-BuOOH-induced cell injuries and DNA cleavages of the keratinocytes can be prevented at least in part through efficient diminishment of ROS generated in the cytoplasm, to which the preferred distribution of ChrCrx may be advantageous over to the nucleus or membrane owing to its molecular hydrophilicity relative to alpha-tocopherol.  相似文献   

13.
Uptake of L-[1-14C]ascorbic acid (Asc) of 12.5-200 µM for 1 h intobovine aortic endothelial BAE-2 cells grown to confluence was as low as43-64% (per cell) of uptake into the cells grown to nearly one-fourthconfluence. [14C]Asc undergoing transmembrane uptake was concentrated andaccumulated in the cell less efficiently ([Asc]in/ex = 8-13) at confluencethan at subconfluence ([Asc]in/ex = 15-24). The declined Asc uptake atconfluence is attributable to slowdown of the cell cycle, because a similardecrease in [Asc]in/ex was shown by subconfluent cells precultured inserum-insufficient medium, resulting in an increase in G1 phase andconcurrent decreases in S and G2 + M phase distributions as determined byflow cytometry. [1-14C]Dehydroascorbic acid (DehAsc) was taken up andaccumulated as Asc, after metabolic reduction, without detectable DehAsc.The [Asc]in/ex values for DehAsc at confluence were as low as 15-69%of those at subconfluence in contrast to the values as retentive as62-75% for Asc, suggesting the moderate control of Asc uptake againstslowdown of the cell cycle. At either confluence or subconfluence,dose-dependence for DehAsc uptake was more marked than for Asc uptake asshown by an uphill slope in a curve of doses versus [Asc]in/ex for DehAsc incontrast to a downhill slope for Asc, suggesting the moderate control forAsc uptake against fluctuation of the dose. Increasing of coexistent glucoseof 5 mM to 20-40 mM, plasma concentrations in diabetic patients, declinedDehAsc uptake to 46-48%, which was less moderately controlled thanAsc uptake retained to 59-73%. Asc uptake did not compete with DehAscuptake, suggesting different transporter proteins for Asc and DehAsc. Thus,Asc uptake into the aortic endothelial cells is more moderately controlledagainst slowdown of the cell cycle, decreasing of the extracellularconcentrations or increasing of coexistent glucose than DehAsc uptake,suggesting a homeostatic advantage of Asc over DehAsc in terms of retentionof intracellular Asc contents within a definite range.  相似文献   

14.
This study aims to investigate the photoprotective properties of a Lomentaria hakodatensis ethanol extract (LHE) against ultraviolet B (UVB) radiation-induced cellular damage in human HaCaT keratinocytes. LHE exhibited scavenging activity against intracellular reactive oxygen species (ROS), which were generated by either hydrogen peroxide (H2O2) or UVB radiation. Moreover, LHE scavenged superoxide anion generated by the xanthine/xanthine oxidase system and hydroxyl radical generated by the Fenton reaction (FeSO4 + H2O2). Furthermore, LHE exhibited UVB absorptive properties and attenuated injury to cellular components (e.g., lipids, proteins and DNA), resulting from UVB-induced oxidative stress. In addition, LHE reduced apoptosis in response to UVB, as shown by decreased DNA fragmentation and the formation of apoptotic bodies. These results suggest that LHE protects human keratinocytes against UVB-induced oxidative stress by scavenging ROS and absorbing UVB rays; thereby reducing damage to biological components.  相似文献   

15.
Although it is well known that Bcl-2 can prevent apoptosis, the Bcl-2's anti-apoptotic mechanism is not fully understood. Here, we investigate the mechanism of oxidant-induced cell death and to investigate the role of Bcl-2 in the tert-butyl hydroperoxide (t-BuOOH)-induced oxidant injury in Rat-1 fibroblasts and their bcl-2 transfected counterparts, b5 cells. Treatment with t-BuOOH causes mitochondrial disfunction and induced morphological features consistent with apoptosis more markedly in Rat-1 cells than in b5 cells. The hydroperoxide t-BuOOH at concentrations less than 100 nM for as long as 48 h or with higher concentrations (up to 100 microM) for only 3 h induces death in Rat-1 cells, whereas their bcl-2 transfectants were significantly resistant to cytotoxicity by both time and all concentration other than 100 microM. The similar results were obtained also for DNA strand cleavages as detected by TUNEL stain. The bcl-2 transfectants significantly suppressed t-BuOOH-induced increases in both lipid peroxidation and caspase-3 activation 3 and 1 h after t-BuOOH exposure, respectively, but failed to suppress either caspase-1 activation or an enhanced production of the intracellular reactive oxygen species (ROS). Intracellular uptake of [1-(14)C] ascorbic acid (Asc) into the bcl-2 transfectants was superior to that into the non-transfectants always under examined conditions regardless of serum addition to culture medium and cell density. Upregulation of Bcl-2 proteins was rapidly induced after t-BuOOH exposure in the transfectants, but not in non-transfectants, and restored till 24 h to the normal Bcl-2 level. Thus suppressions of both lipid peroxidation and the subsequent cell death events such as caspase-3 activation and DNA cleavage were concerned with the inhibitory effects of Bcl-2 on the t-BuOOH-induced cytotoxicity. And some of these events may correlate with Bcl-2 expression-induced partial enhanced anti-oxidant cellular ability including enrichment of intracellular Asc and oxidative stress-induced upregulation of Bcl-2 protein. On the other hand, ROS production and caspase-1 activation were not related to cytoprotection by Bcl-2.  相似文献   

16.
Du CB  Liu JW  Su W  Ren YH  Wei DZ 《Life sciences》2003,74(6):771-780
L-ascorbic acid 2-phosphate-6-palmitate (Asc2P6P) was synthesized and its effect on the damage of PC12 cells induced by H2O2 was investigated. 200 microM H2O2 in a treatment period of 4 hours in our experiment resulted in substantial cell loss. With the increasing concentration of antioxidants, such H2O2-induced cytotoxicity was significantly prevented and the corresponding intracellular and extracellular ROS levels decreased concurrently by pre-treatment with Asc2P6P and Asc. It was found that Asc2P6P was superior to L-ascorbic acid in its protective role and showed a dose-dependent manner during a 24-hour treatment. The higher potency of Asc2P6P's protective role on PC12 cells was correlated with its more effective ROS scavenging ability. HPLC assay demonstrated that Asc2P6P could easily enter the cells and be converted into Asc persistently, which contributed to its distinguished role in protecting PC12 cells against H2O2-induced cytotoxicity.  相似文献   

17.
Apoptosis is an active form of cell death that is initiated by a variety of stimuli, including reactive oxygen species (ROS) and ultraviolet (UV) radiation. Poly (ADP-ribose) (PAR) is formed upon activation of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP), and therefore was suggested as a new marker of apoptosis. Since DNA of epidermal cells represents a well-known chromophore for UVB irradiation, and UVB is known to generate H2O2 in keratinocytes, we hypothesized that PAR is a very sensitive marker of UVB- and H2O2-induced apoptosis in keratinocytes. In order to test this hypothesis, human immortalized keratinocytes (HaCaT) were UVB-irradiated or treated with H2O2, and subsequently apoptosis was identified by comparing conventional parameters such as morphological analysis, DNA laddering, and TUNEL assay, with PAR formation. Both, UVB and H2O2 treatment induced PAR formation in HaCaT cells in a dose-dependent manner, and its formation was detected as early as 4 h after irradiation, and at lower UVB doses (10 mJ/cm2) than observed by DNA laddering and the TUNEL assay. In conclusion, the detection of PAR formation is a very sensitive and early method for the identification of apoptotic cells in UVB-induced apoptosis of human keratinocytes.  相似文献   

18.
Full expression of reflex cutaneous vasodilation (VD) is dependent on nitric oxide (NO) and is attenuated with essential hypertension. Decreased NO-dependent VD may be due to 1) increased oxidant stress and/or 2) decreased L-arginine availability through upregulated arginase activity, potentially leading to increased superoxide production through uncoupled NO synthase (NOS). The purpose of this study was to determine the effect of antioxidant supplementation (alone and combined with arginase inhibition) on attenuated NO-dependent reflex cutaneous VD in hypertensive subjects. Nine unmedicated hypertensive [HT; mean arterial pressure (MAP) = 112 +/- 1 mmHg] and nine age-matched normotensive (NT; MAP = 81 +/- 10 mmHg) men and women were instrumented with four intradermal microdialysis (MD) fibers: control (Ringer), NOS inhibited (NOS-I; 10 mM N(G)-nitro-L-arginine), L-ascorbate supplemented (Asc; 10 mM L-ascorbate), and Asc + arginase inhibited [Asc+A-I; 10 mM L-ascorbate + 5 mM (S)-(2-boronoethyl)-L-cysteine-HCl + 5 mM N(omega)-hydroxy-nor-L-arginine]. Oral temperature was increased by 0.8 degrees C via a water-perfused suit. N(G)-nitro-L-arginine was then ultimately perfused through all MD sites to quantify the change in VD due to NO. Red blood cell flux was measured by laser-Doppler flowmetry over each skin MD site, and cutaneous vascular conductance (CVC) was calculated (CVC = flux/MAP) and normalized to maximal CVC (%CVC(max); 28 mM sodium nitroprusside + local heating to 43 degrees C). During the plateau in skin blood flow (Delta T(or) = 0.8 degrees C), cutaneous VD was attenuated in HT skin (NT: 42 +/- 4, HT: 35 +/- 3 %CVC(max); P < 0.05). Asc and Asc+A-I augmented cutaneous VD in HT (Asc: 57 +/- 5, Asc+A-I: 53 +/- 6 %CVC(max); P < 0.05 vs. control) but not in NT. %CVC(max) after NOS-I in the Asc- and Asc+A-I-treated sites was increased in HT (Asc: 41 +/- 4, Asc+A-I: 40 +/- 4, control: 29 +/- 4; P < 0.05). Compared with the control site, the change in %CVC(max) within each site after NOS-I was greater in HT (Asc: -19 +/- 4, Asc+A-I: -17 +/- 4, control: -9 +/- 2; P < 0.05) than in NT. Antioxidant supplementation alone or combined with arginase inhibition augments attenuated reflex cutaneous VD in hypertensive skin through NO- and non-NO-dependent mechanisms.  相似文献   

19.
Local administration of ascorbic acid (Asc) at a supraphysiological concentration inhibits the cutaneous vasoconstrictor response to local cooling (LC). However, whether orally ingesting Asc inhibits the LC-induced vasoconstrictor response remains unknown. The purpose of the present study was to examine the acute influence of oral Asc on the adrenergic vasoconstrictor response to LC in human skin. In experiment 1, skin blood flow (SkBF) was measured by laser-Doppler flowmetry at three sites (forearm, calf, palm). The three skin sites were locally cooled from 34 to 24°C at -1°C/min and maintained at 24°C for 20 min before (Pre) and 1.5 h after (Post) oral Asc (2-g single dose) or placebo supplementation. Cutaneous vascular conductance (CVC) was calculated as the ratio of SkBF to blood pressure and expressed relative to the baseline value before LC. Oral Asc enhanced (P < 0.05) the reductions in CVC in the forearm (Pre, -50.3 ± 3.3%; Post, -57.8 ± 2.2%), calf (Pre, -52.6 ± 3.7%; Post, -66.1 ± 4.3%), and palm (Pre, -46.2 ± 6.2%; Post, -60.4 ± 5.6%) during LC. The placebo did not change the responses at any site. In experiment 2, to examine whether the increased vasoconstrictor response caused by oral Asc is due to the adrenergic system, the release of neurotransmitters from adrenergic nerves in forearm skin was blocked locally by iontophoresis of bretylium tosylate (BT). Oral Asc enhanced (P < 0.05) the reductions in CVC at untreated control sites but did not change the responses at BT-treated sites during LC. In experiment 3, to further examine whether adrenergically mediated vasoconstriction is enhanced by oral Asc, 0.1 mM tyramine was administered using intradermal microdialysis in the forearm skin at 34°C in the Pre and Post periods. Oral Asc increased (P < 0.05) the tyramine-induced reduction in CVC. These findings suggest that oral Asc acutely enhances the cutaneous vasoconstrictor responses to LC through the modification of adrenergic sympathetic mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号