首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K Fujikura  S Inoue 《Jikken dobutsu》1985,34(4):445-458
The regenerative capacity of hindlimb of Xenopus laevis was investigated by amputating the limbs at four levels in various developmental stages including younger postmetamorphosed froglets. Amputations of limbs were performed at the base of limb in stages 50, 51, 52, 53, 54, 55, 58, and 60 (Nieuwkoop and Faber's table), at the middle of limb bud in stages 50, 51, 52 and 54, and at mid-thigh and mid-shank in stages 58 and 60, and the froglets in 2 and 3 cm in snout-vent length. In the present experiments the regenerative capacity of limbs was expressed by the rate of regeneration and morphogenesis. Tadpoles in the stages after 55 failed to regenerate when the limbs were amputated at base level, but individuals in all the other experimental series exhibited regeneration in various rates irrespective of the level of amputation and the stage. The regenerative capacity increased distally along the proximo-distal axis of the limb when amputated at the same stage, while regeneration was better in younger stages than that in older stages when amputations were made at the same levels. The regenerates obtained by amputation of limbs in stages between 50 and 54, were mainly digitated in that they had 5 toes with 3 claws which is the same pattern with the normal limb, 4 toes with 2 claws, 3 toes with 2 claws or one, and 2 toes with one claw etc. Tadpoles at stage 50 could regenerate toes and claws without defect, but in the later the regenerative capacity gradually declined by reducing the number of toes and claws and accompanied by malformation of skeleton as the stage proceeded. The tadpoles in stages after 58, and the froglets of 2 and 3 cm, produced various types of heteromorphic regenerates of shapes such as cone, spike or rod of which the centra were occupied with cartilage rods. However these regenerates showed no morphological differences according to the developmental stages. These heteromorphic regenerates continued their growth even after one year without any sign of development of digitated feet.  相似文献   

2.
The aim of the present research is to ascertain whether in larval Xenopus laevis nerve-independence for the regeneration of early stage limbs and nerve-dependence of late stage limbs observed in a previous work (Filoni and Paglialunga, '90) is related to extrinsic (systemic) factors or to intrinsic changes taking place in the limb cells themselves during development. In this paper the regenerative capacity of early and late stage hindlimbs under the same extrinsic conditions, insofar as both are grafted onto the denervated hindlimbs of host larvae at the same developmental stage, is studied. All the grafted limbs are amputated after the host larvae have reached stage 57-58 (according to Nieuwkoop and Faber, '56). In experiment I, the grafted limb is amputated at stage 52, at the thigh level; in experiment II, the grafted limb is amputated at stage 54-55, at the tarsalia level; in experiment III the grafted limb is amputated at stage 57, at the tarsalia level. In all three experiments, together with the grafted limb, also the host limb is amputated at the tarsalia level. The results show that while grafted limbs amputated at stages 52 and 54-55 regenerate in the absence of nerves, grafted limbs amputated at stage 57 cannot. The failure of late stage grafted limbs to regenerate cannot be explained in terms of an immune-type inhibiting reaction since it has been observed also in denervated autografted limbs and in the host limbs. Since all the grafted limbs are in the same environmental conditions, the results show that in larval Xenopus laevis nerve-independence for regeneration of early stage limbs and nerve-dependence of late stage limbs are not related to factors extrinsic to the limb but to intrinsic changes taking place in the limb cells themselves during development.  相似文献   

3.
The paper is one of a series of studies of the ontogeny of the innervation of the vertebrate limb in which the histogenesis of the nerves is correlated with the development of the pattern of behaviour in the limb. Here, the motility of the developing limb in tadpoles of Xenopus laevis is described, both in the normal larva and those in which the spinal cord is isolated from the brain. In spinal tadpoles the responses of the limb to electrical stimulation are correlated with its normal behaviour.  相似文献   

4.
Regenerated hindlimbs of larval Xenopus laevis were reamputated at critical larval stages and levels, viz when amputation of the control limb at the same larval stage and level is followed by reduced regeneration. Reamputations were performed at the level of (1) the original plane of amputation, (2) the early regenerate (cone/palette stage), (3) the late regenerate (digit stage). Reamputation increased both the percentage rate of regeneration and the morphological complexity of the regenerates in all experimental series. Cell counts in lateral motor columns and spinal ganglia innervating the hindlimb, together with histological observations and mitotic index and labelling index determinations in reamputated and control limbs showed that improved regeneration in the reamputated limb was related to an increase in undifferentiated and proliferating cells in the stump. We did not find any evidence suggesting that renewed regeneration in reamputated anuran limbs results from an increase in innervation, as has previously been hypothesized. We support our conclusions by demonstrating an improvement in regenerationen in the reamputated and denervated hindlimbs.  相似文献   

5.
Transdifferentiation of ocular tissues in larval Xenopus laevis   总被引:4,自引:0,他引:4  
Transdifferentiation phenomena offer a useful opportunity to study experimentally the mechanisms on which cell phenotypic stability depends. The capacities of vertebrate eye tissues to reprogram cell differentiation are well known in avian and mammalian embryos, and in larval and adult newt. From research into the capacity of anuran eye tissues to reprogram differentiation into a new pathway, considerable data have accumulated concerning the transdifferentiative capacities of eye tissues in larval Xenopus laevis. This work reviews the data concerning the transdifferentiative phenomena of eye tissues in that species and, based on these, aims to establish the extent of our knowledge about the mechanism controlling these processes. In larval Xenopus laevis the outer cornea can regenerate a lens by a lens-transdifferentiation process triggered and substained by a factor(s), probably of a protein nature, produced by the neural retina. In a normal eye phenotypic stability of the outer cornea is guaranteed by the presence of the inner cornea and lens, which prevent the spread of retinal factor(s). The stimulus for lens transdifferentiation of the outer cornea can be supplied by other tissues as well, but this capacity is not widely distributed. The iris and retinal pigmented epithelium can transdifferentiate into neural retina if isolated from the surrounding tissues and implanted in the vitreous chamber. As for lens transdifferentiation of the outer cornea, retinal transdifferentiation of the iris can be stimulated by certain nonocular tissues as well.  相似文献   

6.
Xenopus laevis larvae at stages 51-57, according to Nieuwkoop and Faber, were subjected to amputation of the right hindlimb or of both limbs at the thigh or the tarsal level, as well as to somatic denervation of the right limb. Larvae at the same stage having undergone amputation of the right limb or of both limbs and sham denervation of the right limb were used as controls. In experimental series I a single denervation of the right limb was performed at the time of amputation. In experimental series II repeated denervations were performed (before, during and after amputation). Results show that in larvae at stages 51-53 subjected to limb amputation at the proximal level (thigh) even repeated denervation of the right limb did not prevent regeneration, although giving rise to various degrees of hypotrophy. In stage-55 larvae partial inhibition of the regenerative process in the right limb was clearly visible only after repeated denervations and amputation at the proximal level. After amputation at the distal level (tarsalia) the regenerative process in the right limb underwent no significant delay with respect to the controls, although the regenerated right limb was hypotrophic. In stage-57 larvae even a single denervation at the time of amputation was enough to inhibit regeneration of the right limb after either proximal or distal amputation. Therefore, in Xenopus laevis larvae, nerve-dependence for hindlimb regeneration takes place proximodistally as the nerve fibers grow in the limb and it gradually undergoes a process of proximodistal differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
The purpose of this study was to investigate the contribution of mitochondrial and cytoplasmic protein synthesis to the biogenesis of cytochrome oxidase (ferrocytochrome c:oxygen oxidoreductase EC 1.9.3.1) and rutamycin-sensitive adenosine triphosphatase (ATP phosphohydrolase EC 3.6.1.3) in cultured oocytes of the toad, Xenopus laevis. X. laevis cytochrome oxidase was purified over 23-fold with respect to specific activity and over 29-fold with respect to specific heme a content from oocyte submitochondrial particles. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate separated the enzyme into six subunits with molecular weights of 44,000, 33,000, 23,000, 17,000, 12,000 and 9,500. the synthesis of the three larger subunits is sensitive to chloramphenicol (an inhibitor of mitochondrial protein synthesis), indicating that these subunits are made on mitochondrial ribosomes; the synthesis of the three smaller subunits is sensitive to cycloheximide (an inhibitor of cytoplasmic protein synthesis) and therefore occurs on cytoplasmic ribosomes. X. laevis rutamycin-sensitive ATPase, purified over 19-fold from oocyte submitochondrial pparticles, consists of 10 subunits with molecular weights of 56,000, 53,000, 41,000, 32,000, 29,000, 24,000, 21,000, 17,500 (2), and 11,500 on sodium dodecyl sulfate-polyacrylamide gels. The 29,000, 21,000, and one of the 17,500-dalton polypeptides are synthesized in the presence of cycloheximide and are, therefore, products of mitochondrial protein synthesis; the synthesis of the remaining seven subunits occurs in the presence of chloramphenicol, indicating that these subunits are made on cytoplasmic ribosomes. The synthesis of protein by mitochondria in cultured oocytes appears to be dependent upon cytoplasmic protein synthesis. In the presence of cycloheximide, the mitoribosomal synthesis of the subunits of cytochrome oxidase and rutamycin-sensitive ATPase is detectable only after a prior inhibition of mitochondrial protein synthesis by chloramphenicol. Oocyte mitochondrial ribosomes synthesize at least nine polypeptides after chloramphenicol treatment, three of which are components of neither cytochrome oxidase nor rutamycin-sensitive ATPase.  相似文献   

9.
Xenopus laevis larval thymocytes do not express surface immunoglobulin   总被引:1,自引:0,他引:1  
Xenopus laevis larval thymocytes and splenocytes were examined for the presence of Ig determinants by an indirect immunofluorescence technique, using rabbit antiserum to deglycosylated Xenopus immunoglobulins. Thymocytes had no detectable surface membrane Ig, while Ig determinants were identified on the surface of a large percentage of the lymphocytes from the spleen. The positive fluorescent staining that one obtains on the surface of thymocytes using antisera to intact Ig's is due to antibody molecules directed to the carbohydrate determinants of the Ig's which cross-react with thymocytes' surface carbohydrate determinants.  相似文献   

10.
11.
12.
Xenopus laevis froglet forelimbs normally respond to amputational injury by forming a heteromorphic cartilaginous rod-shaped outgrowth. However, partial denervation of a forelimb by ablation of the N. radialis or the N. ulnaris, followed in 2 days by amputation through the mid radius-ulna, results in a size deficiency of the regenerative outgrowth 14 and 21 days postamputation. The decreasing quantity of forelimb innervation, as a result of partial denervation by 55 or 45%, apparently has a graded effect on the cell population and on the extent of cartilage development in the outgrowth. As a consequence of amputational injury, a nerve independent response of the periosteum was also found. This response produced considerable thickening in the periosteum and was due to cell proliferation in both the control and denervated cases.  相似文献   

13.
14.
Summary Xenopus laevis larvae at stage 52–53 (according to Nieuwkoop and Faber 1956) were subjected to amputation of both limbs at the thigh level as well as to repeated denervations of the right limb. Results obtained in larvae sacrificed during wound healing (1 after amputation), blastema formation (3 days) and blastema growth (5 and 7 days) showed that denervated right limbs have undergone the same histological modifications observed in innervated left limbs and have formed a regeneration blastema consisting of mesenchymal cells with a pattern of DNA synthesis and mitosis very similar to that in presence of nerves. Also, the patterns of cellular density in regenerating right and left limbs were very similar. On the whole, the data here reported show a highly remarkable degree of nerve-independence for regeneration in hindlimbs of larval Xenopus laevis at stage 52–53 and lend some substance to the hypothesis that, in early limbs, there would exist trophic factors capable of replacing those released by nerves, promoting DNA synthesis and mitosis in blastemal cells. Offprint requests to: S. Filoni  相似文献   

15.
Autoradiography following tritiated thymidine administration to Xenopus laevis tadpoles of stages 45–48 of larval development has revealed that, as the cells of the mesonephric kidney differentiate during organogenesis, there is a marked decrease in the percentage of cells synthesizing DNA (from 100% at stage 45 to less than 9% at stage 48). In the adult this figure is of the order of 0.1%. This reduced DNA synthetic activity was found to take place in the cells of both the proximal and distal tubules of the nephrons. Special mucous cells which serve as markers of distal tubules were not observed to synthesize DNA after the onset of their differentiation at stage 48 of larval development.Through the partial extirpation of tissue in one kidney of adult Xenopus laevis males, DNA synthesis was reactivated in differentiated cells. The increased DNA synthetic activity following partial unilateral nephrectomy was found to be maximal after 6 days of recovery when 19% of cells synthesize DNA. This increased DNA synthetic activity was found to occur only in the cells of the distal tubules, both mucous and nonmucous cells, while the cells of the proximal tubules did not respond to this reactivation.The apparent inability of proximal tubule cells to synthesize DNA following partial unilateral nephrectomy is discussed.  相似文献   

16.
The complete nucleotide sequence of the cDNA insert of the clone pXGL25 derived from the larval beta II-globin mRNA of Xenopus laevis has been determined. The sequence of 593 nucleotides represents part of the 5'nontranslated region, the coding region for 146 amino acids and the entire 3'nontranslated region. It diverges from the related larval beta I-sequence by 24.9% in the coding region. Alignment of the 5' and 3'nontranslated regions of the two related larval beta-sequences to maximum matching resulted in 31.2% and 46.7% divergence, respectively. Divergence between the corresponding adult and larval sequences considerably exceeds that of related larval sequences, suggesting that larval genes may have arisen by gene duplication prior to genome duplication. In contrast to mammalian beta-globin mRNAs, replacement and silent base substitutions are equally abundant, thus indicating less functional constraint on the larval Xenopus laevis beta-globin chains. The larval beta I- and beta II-globins diverge by 30.8% and show most variation in the alpha 1/beta 2-chain interaction sites.  相似文献   

17.
After lentectomy through the pupillary hole, the outer cornea of larval Xenopus laevis can undergo transdifferentiation to regenerate a new lens. This process is elicited by inductive factor(s) produced by the neural retina and accumulated into the vitreous chamber. During embryogenesis, the outer cornea develops from the outer layer of the presumptive lens ectoderm (PLE) under the influence of the eye cup and the lens. In this study, we investigated whether the capacity of the outer cornea to regenerate a lens is the result of early inductive signals causing lens-forming bias and lens specification of the PLE, or late inductive signals causing cornea formation or both signals. Fragments of larval epidermis or cornea developed from ectoderm that had undergone only one kind of inductive signals, or both kinds of signals, or none of them, were implanted into the vitreous chamber of host larvae. The regeneration potential and the lens-forming transformations of the implants were tested using an antisense probe for pax6 as an earlier marker of lens formation and a monoclonal antibody anti-lens as a definitive indicator of lens cell differentiation. Results demonstrated that the capacity of the larval outer cornea to regenerate a lens is the result of both early and late inductive signals and that either early inductive signals alone or late inductive signals alone can elicit this capacity.  相似文献   

18.
19.
We have analysed beta-globin mRNA sequences in total RNA extracted from embryos and tadpoles of Xenopus laevis at different stages of development and we have identified the most abundantly transcribed beta-globin mRNA (beta T1). The entire nucleotide sequence of a cDNA clone corresponding to this mRNA is known. We have now identified the gene corresponding to this mRNA and we have determined the nucleotide sequences of its immediate 5'-flanking region. Using a DNA fragment from within the coding region of the cloned beta T1 cDNA we show, by primer extension analysis, that beta T1 mRNA is first detectable at stage 28-32 of development. This is the time at which the first presumptive erythropoietic tissue, the ventral blood island, becomes observable histologically. We show that two minor beta-globin genes, distinct from beta T1, are expressed during early stages of development, and that their expression ceases shortly after the beginning of the feeding stage. We term these two early larval genes beta E1 and beta E2. A third minor beta-globin gene is expressed during early development but, unlike beta E1 and beta E2, it is also expressed throughout subsequent larval development. We term this gene beta T2 and show that it corresponds to a gene previously termed beta LII. Finally, using a primer derived from the major adult beta-globin gene (beta 1), we have analysed the accumulation of the major adult beta-globin mRNA during larval development, and we show that this sequence does not accumulate to any significant level before metamorphosis.  相似文献   

20.
Protamines from individual frogs of the subspecies Xenopus laevis laevis were compared by electrophoresis on polyacrylamide gels containing acetic acid, urea, and Triton X-100 to determine if the expression of protamine genes differs among individuals. Two electrophoretic bands, SP2a and SP2b, appeared to be expressed as allelic variants. Of 33 frogs, 19 expressed only SP2a, 11 expressed both SP2a and SP2b, and three expressed only SP2b. Electrophoretic analysis of partial V8 protease digests could not distinguish the peptides released from SP2a and SP2b. Differences in sperm development between individuals were not detected by light or electron microscopy. The results suggest that protamine polymorphism can exist among individuals of a species without an apparent effect on sperm development or sperm function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号