首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Williams WM  Chung YW 《Life sciences》2006,79(17):1638-1644
Effects of aging and oxidative stress were studied in cerebral microvessels and microvessel-depleted brain from 6-, 18-, and 24-month-old C57Bl/6J mice exposed to normoxia, 24 or 48 h hyperoxia, or 24 h hyperoxia followed by 24 h normoxia. Microvessels lacked smooth muscle and consisted predominantly of endothelium. Following exposure and isolation of microvessel and parenchymal proteins, Western blot analysis was performed for detection of cytosolic thioredoxin 1 (TRx 1) and mitochondrial thioredoxin 2 (TRx 2), protein carbonyl, and mitochondrial superoxide dismutase (MnSOD). Both microvessel and parenchymal TRx 1 levels were increased by hyperoxia; however, the microvascular response was limited and delayed in comparison to that of the parenchymal fraction. Whereas TRx 2 levels in microvessels were increased in older mice, irrespective of exposure condition, hyperoxia per se had little or no apparent effect. Parenchymal cells showed no age-related increase in TRx 2 level under normoxic conditions, but showed increased levels following hyperoxia. Microvessel MnSOD was lower than that in parenchymal cells, but increased with age under normoxia, and also was correlated with the duration of hyperoxia. Although hyperoxia augmented MnSOD levels in young (6 months) and middle-aged (18 months) animals, the response was less pronounced in microvessels from senescent, 24-month-old mice. Unlike microvessels, which showed a sustained age-related increase in MnSOD level under each exposure condition, parenchymal cells from normoxic mice showed no increase, and hyperoxia-induced elevations declined with prolonged 48 h exposure. These results indicate that the microvessel endothelium is (1) subjected to a more intense oxidative environment than neurons and glia and (2) is limited by aging in its ability to respond to oxidative insult.  相似文献   

2.
Human manganese superoxide dismutase (Sod2p) has been expressed in yeast and the protein purified from isolated yeast mitochondria, yielding both the metallated protein and the less stable apoprotein in a single chromatographic step. At 30 °C growth temperature, more than half of the purified enzyme is apoprotein that can be fully activated following reconstitution, while the remainder contains a mixture of manganese and iron. In contrast, only fully metallated enzyme was isolated from a similarly constructed yeast strain expressing the homologous yeast manganese superoxide dismutase. Both the manganese content and superoxide dismutase activity of the recombinant human enzyme increased with increasing growth temperatures. The dependence of in vivo metallation state on growth temperature resembles the in vitro thermal activation behavior of human manganese superoxide dismutase observed in previous studies. Partially metallated human superoxide dismutase is fully active in protecting yeast against superoxide stress produced by addition of paraquat to the growth medium. However, a splice variant of human manganese superoxide dismutase (isoform B) is expressed as insoluble protein in both Escherichia coli and yeast mitochondria and did not protect yeast against superoxide stress.  相似文献   

3.
Previous studies have demonstrated that the mitochondrial respiratory chain and cytochrome c oxidase participate in oxygen sensing and the induction of some hypoxic nuclear genes in eukaryotes. In addition, it has been proposed that mitochondrially-generated reactive oxygen and nitrogen species function as signals in a signaling pathway for the induction of hypoxic genes. To gain insight concerning this pathway, we have looked at changes in the functionality of the yeast respiratory chain as cells experience a shift from normoxia to anoxia. These studies have revealed that yeast cells retain the ability to respire at normoxic levels for up to 4 h after a shift and that the mitochondrial cytochrome levels drop rapidly to 30--50% of their normoxic levels and the turnover rate of cytochrome c oxidase (COX) increases during this shift. The increase in COX turnover rate cannot be explained by replacing the aerobic isoform, Va, of cytochrome c oxidase subunit V with the more active hypoxic isoform, Vb. We have also found that mitochondria retain the ability to respire, albeit at reduced levels, in anoxic cells, indicating that yeast cells maintain a functional mitochondrial respiratory chain in the absence of oxygen. This raises the intriguing possibility that the mitochondrial respiratory chain has a previously unexplored role in anoxic cells and may function with an alternative electron acceptor when oxygen is unavailable.  相似文献   

4.
Pamela S. David 《BBA》2005,1709(2):169-180
Previous studies have demonstrated that the mitochondrial respiratory chain and cytochrome c oxidase participate in oxygen sensing and the induction of some hypoxic nuclear genes in eukaryotes. In addition, it has been proposed that mitochondrially-generated reactive oxygen and nitrogen species function as signals in a signaling pathway for the induction of hypoxic genes. To gain insight concerning this pathway, we have looked at changes in the functionality of the yeast respiratory chain as cells experience a shift from normoxia to anoxia. These studies have revealed that yeast cells retain the ability to respire at normoxic levels for up to 4 h after a shift and that the mitochondrial cytochrome levels drop rapidly to 30-50% of their normoxic levels and the turnover rate of cytochrome c oxidase (COX) increases during this shift. The increase in COX turnover rate cannot be explained by replacing the aerobic isoform, Va, of cytochrome c oxidase subunit V with the more active hypoxic isoform, Vb. We have also found that mitochondria retain the ability to respire, albeit at reduced levels, in anoxic cells, indicating that yeast cells maintain a functional mitochondrial respiratory chain in the absence of oxygen. This raises the intriguing possibility that the mitochondrial respiratory chain has a previously unexplored role in anoxic cells and may function with an alternative electron acceptor when oxygen is unavailable.  相似文献   

5.
Summary Cultured type II pneumocyte responses to in vitro normoxia (95% air: 5% CO2) or hyperoxia (95% O2:5% CO2) were quantified. Normoxic culture (0 to 96 h) of rabbit type II cells resulted in enhanced cell-monolayer protein and DNA content. During this same time, cellular activities of superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH Px) decreased. Compared to cultures maintained in normoxia, hyperoxic exposure of cultures resulted in decreased cell-associated protein and DNA content. Exposure to hyperoxia also resulted in cytotoxicity as demonstrated by elevated cellular release of DNA, lactate dehydrogenase (LDH), and preincorporated 8-[14C]adenine. Cellular catalase and GSH Px activities in hyperoxic cells decreased similarly to normoxic controls. In contrast, cellular SOD activity in hyperoxic cells decreased less than in normoxic cultures. Cellular SOD activity in hyperoxic cultures, when normalized for cellular protein, but not DNA, was greater than normoxic values after 24 to 96 h of exposure. Unlike the decrease in cellular antioxidant enzymes during normoxic and hyperoxic culture, cellular LDH activity increased during both these exposures. Cellular LDH activity in 24 to 96 h hyperoxia-exposed cells increased to a lesser extent than normoxic controls. The extent of depression in LDH activity was dependent on whether the activity was normalized for cellular protein or DNA. Type II pneumocytes, which normally undergo hyperplasia and hypertrophy during hyperoxia in vivo, exhibited oxygen sensitivity in vitro. Exposure of type II cells to hyperoxia in vitro resulted in alterations in cellular SOD and LDH activities, but recognition of such changes were dependent on whether enzymatic activities were normalized for cellular DNA or protein. This work was supported by a grant from the Health Effects Institute, grant HL40458 from the National Institutes of Health, Bethesda, MD, and a grant from the American Lung Association, New York, NY.  相似文献   

6.
The mitochondrial respiratory chain is composed of four different protein complexes that cooperate in electron transfer and proton pumping across the inner mitochondrial membrane. The cytochrome bc1 complex, or complex III, is a component of the mitochondrial respiratory chain. This review will focus on the biogenesis of the bc1 complex in the mitochondria of the yeast Saccharomyces cerevisiae. In wild type yeast mitochondrial membranes the major part of the cytochrome bc1 complex was found in association with one or two copies of the cytochrome c oxidase complex. The analysis of several yeast mutant strains in which single genes or pairs of genes encoding bc1 subunits had been deleted revealed the presence of a common set of bc1 sub-complexes. These sub-complexes are represented by the central core of the bc1 complex, consisting of cytochrome b bound to subunit 7 and subunit 8, by the two core proteins associated with each other, by the Rieske protein associated with subunit 9, and by those deriving from the unexpected interaction of each of the two core proteins with cytochrome c1. Furthermore, a higher molecular mass sub-complex is that composed of cytochrome b, cytochrome c1, core protein 1 and 2, subunit 6, subunit 7 and subunit 8. The identification and characterization of all these sub-complexes may help in defining the steps and the molecular events leading to bc1 assembly in yeast mitochondria.  相似文献   

7.
The major regulatory protein in carbon repression in Aspergillus nidulans is CreA. Strains constitutively over-expressing creA show normal responses to carbon repression, indicating that auto-regulation of creA is not essential for CreA-mediated regulation. In these strains, high levels of CreA are present whether cells are grown in repressing or derepressing conditions, indicating large-scale degradation of CreA does not play a key role. CreA is located in the nucleus and cytoplasm in cells when grown in either repressing or derepressing conditions, and absence of CreB, CreD or AcrB does not affect either the localisation or amount of CreA. Therefore, CreA must require some modification or interaction to act as a repressor. Deletion analysis indicates that a region of CreA thought to be important for repression in Trichoderma reesei and Sclerotina sclerotiorum CreA homologues is not critical for function in Aspergillus nidulans.  相似文献   

8.
The major regulatory protein in carbon repression in Aspergillus nidulans is CreA. Strains constitutively over-expressing creA show normal responses to carbon repression, indicating that auto-regulation of creA is not essential for CreA-mediated regulation. In these strains, high levels of CreA are present whether cells are grown in repressing or derepressing conditions, indicating large-scale degradation of CreA does not play a key role. CreA is located in the nucleus and cytoplasm in cells when grown in either repressing or derepressing conditions, and absence of CreB, CreD or AcrB does not affect either the localisation or amount of CreA. Therefore, CreA must require some modification or interaction to act as a repressor. Deletion analysis indicates that a region of CreA thought to be important for repression in Trichoderma reesei and Sclerotina sclerotiorum CreA homologues is not critical for function in Aspergillus nidulans.  相似文献   

9.
The steady state levels of mitochondrial rRNAs, 5 tRNAs, the 9 S RNA, and the RNA products from the genes coding for subunits 6 and 9 of the ATP synthase, cytochrome b, and subunit 1 of cytochrome oxidase have been determined after growth of yeast under conditions of respiratory repression or derepression. The analysis indicates that the mitochondrial rRNAs are present in 2000 or 9000 copies/cell in repressed or derepressed yeast, respectively. The levels of the other RNAs also differed to a similar extent, with the exception of the level of the tRNAfMet which differs by only 1.7-fold. The levels of the individual protein coding RNAs varied from 480 copies/cell for the Oli-1 RNA to 100 copies/cell for the Oli-2 RNA under derepressive conditions and from 130 copies/cell to 33 copies/cell for the same RNAs in glucose repressive conditions. The levels of the tRNAs varied even more markedly, ranging from 4200 copies/cell for the tRNAPhe to 240 copies/cell for the tRNACys after growth in derepressive conditions and from 800 copies/cell for the tRNAfMet to 30 copies/cell for the tRNACys of glucose repressed yeast. These results indicate that glucose repression uniformly decreases the levels of the individual mitochondrial RNAs studied. This decrease is related to a lower synthesis of mitochondrial RNA in the glucose repressed cells as compared to derepressed cells.  相似文献   

10.
Pulmonary vascular endothelial injury resulting from lipopolysaccharide (LPS) and oxygen toxicity contributes to vascular simplification seen in the lungs of premature infants with bronchopulmonary dysplasia. Whether the severity of endotoxin-induced endothelial injury is modulated by ambient oxygen tension (hypoxic intrauterine environment vs. hyperoxic postnatal environment) remains unknown. We posited that ovine fetal pulmonary artery endothelial cells (FPAEC) will be more resistant to LPS toxicity under hypoxic conditions (20–25 Torr) mimicking the fetal milieu. LPS (10 μg/ml) inhibited FPAEC proliferation and induced apoptosis under normoxic conditions (21% O2) in vitro. LPS-induced FPAEC apoptosis was attenuated in hypoxia (5% O2) and exacerbated by hyperoxia (55% O2). LPS increased intracellular superoxide formation, as measured by 2-hydroxyethidium (2-HE) formation, in FPAEC in normoxia and hypoxia. 2-HE formation in LPS-treated FPAEC increased in parallel with the severity of LPS-induced apoptosis in FPAEC, increasing from hypoxia to normoxia to hyperoxia. Differences in LPS-induced apoptosis between hypoxia and normoxia were abolished when LPS-treated FPAEC incubated in hypoxia were pretreated with menadione to increase superoxide production. Apocynin decreased 2-HE formation, and attenuated LPS-induced FPAEC apoptosis under normoxic conditions. We conclude that ambient oxygen concentration modulates the severity of LPS-mediated injury in FPAEC by regulating superoxide levels produced in response to LPS.  相似文献   

11.
In evaluating the relative expression of copper-zinc and manganese superoxide dismutase (CuZnSOD and MnSOD) in vivo in states like Down syndrome in which one dismutase is present at increased levels, we measured activities of both enzymes, in tissues of control and transgenic mice constitutively expressing increased levels of CuZnSOD, during exposure to normal and elevated oxygen tensions. Using SOD gel electrophoresis assay, CuZnSOD and MnSOD activities of brain, lung, heart, kidney, and liver from mice exposed to either normal (21%) or elevated (>99% oxygen, 630 torr) oxygen tensions for 120 h were compared. Whereas CuZnSOD activity was elevated in tissues of transgenic relative to control mice under both normoxic or hyperoxic conditions, MnSOD activities in organs of transgenic mice were remarkably similar to those of controls under both conditions. To confirm the accuracy of this method in quantitating MnSOD relative to CuZnSOD expression, two other methods were utilized. In lung, which is the organ exposed to the highest oxygen tension during ambient hyperoxia, a sensitive, specific ELISA for MnSOD was used. Again, MnSOD protein was not different in transgenic relative to control mice during exposure to air or hyperoxia. In addition, lung MnSOD protein was not changed significantly by exposure to hyperoxia in either group. In kidney, a mitochondrion-rich organ, SOD assay, before and after inactivation of CuZnSOD with diethyldithiocarbamate, was used. MnSOD activity was not different in organs from air-exposed transgenic relative to control mice. The data indicated that expression of MnSOD in vivo was not affected by overexpression of the CuZnSOD and, therefore, the two enzymes are probably regulated independently.  相似文献   

12.
Aspects of the utilization of copper by the fungus, Dactylium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells grown in medium containing 30 nM copper or less concentrate exogenous metal at all levels of added copper; copper uptake is essentially complete within 15 min and is not inhibited by cycloheximide, dinitrophenol or cyanide. These results indicate that copper absorption is not an energy-dependent process. The relationship between fungal copper status and the activities of three copper-containing enzymes, galactose oxidase, and extracellular enzyme, the cytosolic, Cu/Zn superoxide dismutase and cytochrome oxidase, has also been established. The synthesis of galactose oxidase protein (holoenzyme plus apo-enzyme) is independent of copper concentration. Cells grown in copper-free medium (less than 10 nM copper) excrete normal amounts of galactose oxidase as an apoprotein. At medium copper levels below 5 micrometer, new cultures contain enough total copper to enable the limited number of cells to attain sufficient intracellular copper to support hologalactose oxidase production. As a result of cell division, however, the amount of copper available per cell drops to a threshold of approx. 10 ng/mg below which point only apogalactose oxidase is secreted. Above 5 micrometer medium copper, holoenzyme secretion is maintained throughout cell growth. The levels of the Cu/Zn superoxide dismutase respond differently in that the protein itself apparently is synthesized in only limited amounts in copper-depleted cells. Total cellular superoxide dismutase activity is maintained under such conditions by an increase in activity associated with the mitochondrial, CN(-)-insensitive, manganese form of this enzyme. Cells grown at 10 micrometer copper show 83% of their superoxide dismutase activity to be contributed by the Cu/Zn form compared to a 17% contribution to the total activity in cells grown at 30 nM copper, indicating that the biosynthesis of the Cu/Zn and Mn-containing enzymes is coordinated. The data show that the level of copper modulates the synthesis of the cytosolic superoxide dismutase. In contrast, the cytochrome oxidase activity of D. dendroides is independent of cellular copper levels obtainable. Thus, the data also suggest that these three enzymes utilize different cellular copper pools. As cells are depleted of copper by cell division, the available copper is used to maintain Cu/Zn superoxide dismutase and cytochrome oxidase activity; at very low levels of copper, only the latter activity is maintained. The induction of the manganisuperoxide dismutase in copper-depleted cells should have practical value in the isolation of this protein.  相似文献   

13.
Escherichia coli has two terminal oxidases for its respiratory chain: cytochrome o (low O2 affinity) and cytochrome d (high O2 affinity). Expression of the cyo operon, encoding cytochrome o, is decreased by anaerobic growth, whereas expression of the cyd operon, encoding cytochrome d, is increased by anaerobic growth. We show by the use of lac gene fusion that the expressions of cyo and cyd are under the control of the two-component arc system. In a cyo+ cyd+ background, expression of phi(cyo-lac) is higher when the organism is grown aerobically than when it is grown anaerobically. A mutation in either the sensor gene arcB or the pleiotropic regulator gene arcA almost abolishes the anaerobic repression. In the same background, expression of phi(cyd-lac) is higher under anaerobic growth conditions than under aerobic growth conditions. A mutation in arcA or arcB lowers both the aerobic and anaerobic expressions, suggesting that ArcA plays an activating role instead of the typical repressing role. Under aerobic growth conditions, double deletions of cyo and cyd lower phi(cyo-lac) expression but enhance phi(cyd-lac) expression. The double deletions also prevent elevated aerobic induction of the lct operon (encoding L-lactate dehydrogenase), another target operon of the arc system. In contrast, these deletions do not circumvent aerobic repression of the nar operon (encoding the anaerobic respiratory enzyme nitrate reductase) under the control of the pleiotropic fnr gene product. It thus appears that ArcB senses the presence of O2 by level of an electron transport component in reduced form or that of an nonautoxidizable compound linked to the process by a redox reaction, whereas Fnr senses O2 by a different mechanism.  相似文献   

14.
Genetic dissection of carbon catabolite repression in Aspergillus nidulans has identified two genes, creB and creC, which, when mutated, affect expression of many genes in both carbon catabolite repressing and derepressing conditions. The creB gene encodes a functional deubiquitinating enzyme and the creC gene encodes a protein that contains five WD40 repeat motifs, and a proline-rich region. These findings have allowed the in vivo molecular analysis of a cellular switch involving deubiquitination. We demonstrate that overexpression of the CreB deubiquitinating enzyme can partially compensate for a lack of the CreC WD40-repeat protein in the cell, but not vice versa and, thus, the CreB deubiquitinating enzyme acts downstream of the CreC WD40-repeat protein. We demonstrate using co-immunoprecipitation experiments that the CreB deubiquitinating enzyme and the CreC WD40-repeat protein interact in vivo in both carbon catabolite repressing and carbon catabolite derepressing conditions. Further, we show that the CreC WD40-repeat protein is required to prevent the proteolysis of the CreB deubiquitinating enzyme in the absence of carbon catabolite repression. This is the first case in which a regulatory deubiquitinating enzyme has been shown to interact with another protein that is required for the stability of the deubiquitinating enzyme.  相似文献   

15.
CuZn superoxide dismutase is a highly stable dimer of identical subunits with a combined molecular mass of 32,000 daltons. Two human superoxide dismutase genes have been joined in the same translational reading frame, using spacers of different lengths, to encode single chain proteins consisting of two identical human superoxide dismutase subunits. The first construct encodes two directly linked subunits; the terminal glutamine codon of the first gene was changed to a methionine codon and followed immediately by the second gene. The second construct encodes two subunits linked by a 19-amino-acid human immunoglobulin IgA1 hinge sequence. Both constructs produce high levels of catalytically active superoxide dismutase when expressed in Escherichia coli. The protein containing the IgA1 hinge sequence forms polymers up to 750,000 in molecular weight, which are linked together noncovalently by the hydrophobic bonding of the dimer interface. The polymers are soluble, thermostable, and of near normal specific activity. Site-directed in vitro mutagenesis was used to inactivate one of the two human superoxide dismutase subunits. The resulting human superoxide dismutase polymers have approximately 50% activity, thus confirming that the products of both genes are catalytically active. Large amounts of individual polymeric forms have been purified from recombinant yeast and tested for serum stability in rats. The serum half-life is approximately 7 min for both the two-chain wild type human superoxide dismutase dimer (Mr 32,000) and the single chain molecule consisting of a human superoxide dismutase dimer covalently linked by the immunoglobulin hinge region (Mr 34,000), whereas the higher molecular weight polymers (Mr greater than or equal to 68,000) all have half-lives of approximately 145 min.  相似文献   

16.
Immunoblotting, using antibodies raised against electrophoreticallypure nitrate reductase, was used to study the regulation ofsynthesis of nitrate reductase in cultured spinach cells. Theextent of the loss of nitrate reductase activity that occurredwhen cultures were transferred to a glutamine-containing mediumwas correlated with the decrease in the level of cross-reactingmaterial (repression). Removal of exogenous glutamine resultedin the appearance of nitrate reductase activity as well as ofimmunoreactive protein (derepression). The activity of nitratereductase in spinach cells under "repressing" or "derepressing"conditions appears to be regulated by changes in the amountof the enzyme protein rather than by inactivation and activationof preexisting protein. (Received August 22, 1991; Accepted May 28, 1992)  相似文献   

17.
18.
A mutation causing resistance to carbon catabolite repression in gene HEX2, mutant allele hex2-3, causes an extreme sensitivity to maltose when in combination with the genes necessary for maltose metabolism. This provided a convenient system for the selective isolation of mutations in genes specifically required for maltose metabolism and other genes involved in general carbon catabolite repression. In addition to reversion of the hex2-3 allele, mutations in three other genes were detected. These genes were called CAT1, CAT3, and MUR1 and in a mutated form abolished maltose inhibition caused by mutant allele hex2-3. Mutant alleles cat1 and cat3 also restored normal repression in the presence of the hex2-3 allele. Segregants having only mutant alleles cat1 or cat3 were obtained by tetrad analysis. These segregants could not grow on nonfermentable carbon sources. Mutant alleles of gene CAT1 were allelic to a mutant allele cat1-1 previously isolated (Zimmermann et al., Mol. Gen. Genet. 151:95-103). Such mutants prevented derepression not only of the maltose catabolizing system, the selected property, but also of glyoxylate shunt and gluconeogenic enzymes. However, respiratory activities and invertase formation were not affected under derepressing conditions. cat3 mutants had the same phenotypic properties as cat1 mutants. This showed that carbon metabolism in yeast cells is under a very complex and ramified control of repressing and derepressing genes, which are interdependent.  相似文献   

19.
A. Sakai  Y. Shimizu    F. Hishinuma 《Genetics》1988,119(3):499-506
We have isolated mutants responsible for an oversecretion phenotype in Saccharomyces cerevisiae, using a promoter of SUC2 and the gene coding for alpha-amylase from mouse as a marker of secretion. These mutations defined two complementation groups, designated as ose1 (over secretion) and rgr1 (resistant to glucose repression). The ose1 mutant produced an oversecretion of amylase by 12- to 15-fold under derepressing conditions; however, the amylase mRNA was present at nearly the same amount as it was in the parent cells. No expression of the amylase gene was detected under repressing conditions. The rgr1 mutant oversecreted amylase by 11- to 13-fold under repressing conditions by 15- to 18-fold under derepressing conditions. The rgr1 mutant showed pleiotropic effects on the following cellular functions: (1) resistance to glucose repression, (2) temperature-sensitive lethality, (3) sporulation deficieny in homozygous diploid cells, and (4) abnormal cell morphology. The rgr1 mutation was not allelic with ssn6 and cyc9, and failed to suppress snf1.  相似文献   

20.
We have previously reported the isolation of the gene coding for a 25-kDa polypeptide present in a purified yeast QH2:cytochrome c oxidoreductase preparation, which was thus identified as the gene for the Rieske iron-sulphur protein [Van Loon et al. (1983) Gene 26, 261-272]. Subsequent DNA sequence analysis reported here reveals, however, that the encoded protein is in fact manganese superoxide dismutase, a mitochondrial matrix protein. Comparison with the known amino acid sequence of the mature protein indicates that it is synthesized with an N-terminal extension of 27 amino acids. In common with the N-terminal extensions of other imported mitochondrial proteins, the presequence has several basic residues but lacks negatively charged residues. The function of these positive charges and other possible topogenic sequences are discussed. Sequences 5' of the gene contain two elements that may be homologous to the suggested regulatory sites, UAS 1 and UAS 2 in the yeast CYC1 gene [Guarente et al. (1984) Cell 36, 503-511]. The predicted secondary structures in manganese superoxide dismutase appear to be very similar to those reported for iron superoxide dismutase, suggesting similar three-dimensional structures. Making use of the known three-dimensional structure of the Fe enzyme, the Mn ligands are predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号