首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: A primary histopathological feature of Alzheimer's disease is the accumulation of β-amyloid (Aβ) in the brain of afflicted individuals. However, Aβ is produced continuously as a soluble protein in healthy individuals where it is detected in serum and CSF, suggesting the existence of cellular clearance mechanisms that normally prevent its accumulation and aggregation. Here, we demonstrate that Aβ forms stable complexes with activated α2-macroglobulin (α2M), a physiological ligand for the low-density lipoprotein receptor-related protein (LRP) that is abundantly expressed in the CNS. These α2M/125I-Aβ complexes are immunoreactive with both anti-Aβ and anti-α2M IgG and are stable under various pH conditions, sodium dodecyl sulfate, reducing agents, and boiling. We demonstrate that α2M/125I-Aβ complexes can be degraded by glioblastoma cells and fibroblasts via LRP, because degradation is partially inhibited by receptor-associated protein (RAP), an antagonist of ligand interactions with LRP. In contrast, the degradation of free 125I-Aβ is not inhibited by RAP and thus must be mediated via an LRP-independent pathway. These results suggest that LRP can function as a clearance receptor for Aβ via a physiological ligand.  相似文献   

2.
Abstract: Amyloid β protein (Aβ) deposition in the cerebral arterial and capillary walls is one of the major characteristics of brains from patients with Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D). Vascular Aβ deposition is accompanied by degeneration of smooth muscle cells and pericytes. In this study we found that Aβ1–40 carrying the "Dutch" mutation (HCHWA-D Aβ1–40) as well as wild-type Aβ1–42 induced degeneration of cultured human brain pericytes and human leptomeningeal smooth muscle cells, whereas wild-type Aβ1–40 and HCHWA-D Aβ1–42 were inactive. Cultured brain pericytes appeared to be much more vulnerable to Aβ-induced degeneration than leptomeningeal smooth muscle cells, because in brain pericyte cultures cell viability already decreased after 2 days of exposure to HCHWA-D Aβ1–40, whereas in leptomeningeal smooth muscle cell cultures cell death was prominent only after 4–5 days. Moreover, leptomeningeal smooth muscle cell cultures were better able to recover than brain pericyte cultures after short-term treatment with HCHWA-D Aβ1–40. Degeneration of either cell type was preceded by an increased production of cellular amyloid precursor protein. Both cell death and amyloid precursor protein production could be inhibited by the amyloid-binding dye Congo red, suggesting that fibril assembly of Aβ is crucial for initiating its destructive effects. These data imply an important role for Aβ in inducing perivascular cell pathology as observed in the cerebral vasculature of patients with Alzheimer's disease or HCHWA-D.  相似文献   

3.
Aggregation of amyloid-β (Aβ) peptides is a central phenomenon in Alzheimer's disease. Zn(II) and Cu(II) have profound effects on Aβ aggregation; however, their impact on amyloidogenesis is unclear. Here we show that Zn(II) and Cu(II) inhibit Aβ42 fibrillization and initiate formation of non-fibrillar Aβ42 aggregates, and that the inhibitory effect of Zn(II) (IC50 = 1.8 μmol/L) is three times stronger than that of Cu(II). Medium and high-affinity metal chelators including metallothioneins prevented metal-induced Aβ42 aggregation. Moreover, their addition to preformed aggregates initiated fast Aβ42 fibrillization. Upon prolonged incubation the metal-induced aggregates also transformed spontaneously into fibrils, that appear to represent the most stable state of Aβ42. H13A and H14A mutations in Aβ42 reduced the inhibitory effect of metal ions, whereas an H6A mutation had no significant impact. We suggest that metal binding by H13 and H14 prevents the formation of a cross-β core structure within region 10–23 of the amyloid fibril. Cu(II)-Aβ42 aggregates were neurotoxic to neurons in vitro only in the presence of ascorbate, whereas monomers and Zn(II)-Aβ42 aggregates were non-toxic. Disturbed metal homeostasis in the vicinity of zinc-enriched neurons might pre-dispose formation of metal-induced Aβ aggregates, subsequent fibrillization of which can lead to amyloid formation. The molecular background underlying metal-chelating therapies for Alzheimer's disease is discussed in this light.  相似文献   

4.
Abstract: Studies of processing of the Alzheimer β-amyloid precursor protein (βAPP) have been performed to date mostly in continuous cell lines and indicate the existence of two principal metabolic pathways: the "β-secretase" pathway, which generates β-amyloid (Aβ1–40/42; ∼4 kDa), and the "α-secretase" pathway, which generates a smaller fragment, the "p3" peptide (Aβ17–40/42; ∼3 kDa). To determine whether similar processing events underlie βAPP metabolism in neurons, media were examined following conditioning by primary neuronal cultures derived from embryonic day 17 rats. Immunoprecipitates of conditioned media derived from [35S]methionine pulse-labeled primary neuronal cultures contained 4- and 3-kDa Aβ-related species. Radiosequencing analysis revealed that the 4-kDa band corresponded to conventional Aβ beginning at position Aβ(Asp1), whereas both radio-sequencing and immunoprecipitation-mass spectrometry analyses indicated that the 3-kDa species in these conditioned media began with Aβ(Glu11) at the N terminus, rather than Aβ(Leu17) as does the conventional p3 peptide. Either activation of protein kinase C or inhibition of protein phosphatase 1/2A increased soluble βAPPα release and decreased generation of both the 4-kDa Aβ and the 3-kDa N-truncated Aβ. Unlike results obtained with continuously cultured cells, protein phosphatase 1/2A inhibitors were more potent at reducing Aβ secretion by neurons than were protein kinase C activators. These data indicate that rodent neurons generate abundant Aβ variant peptides and emphasize the role of protein phosphatases in modulating neuronal Aβ generation.  相似文献   

5.
Abstract: Cerebrovascular amyloid β-protein (Aβ) deposition is a key pathological feature of Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D). Aβ1–40 containing the E22Q HCHWA-D mutation, but not wild-type Aβ1–40, potently induces several pathologic responses in cultured human cerebrovascular smooth muscle cells, including cellular degeneration and a robust increase in the levels of cellular Aβ precursor. In the present study, we show by several quantitative criteria, including thioflavin T fluorescence binding, circular dichroism spectroscopy, and transmission electron microscopic analysis, that at a concentration of 25 µ M neither HCHWA-D Aβ1–40 nor wild-type Aβ1–40 appreciably assembles into β-pleated sheet-containing fibrils in solution over a 6-day incubation period. In contrast, at the same concentrations, HCHWA-D Aβ1–40, but not wild-type Aβ1–40, selectively binds and assembles into abundant fibrils on the surfaces of cultured human cerebrovascular smooth muscle cells. The simultaneous addition of an equimolar concentration of the dye Congo red prevents the cell surface fibril assembly of HCHWA-D Aβ1–40. Moreover, Congo red effectively blocks the key pathologic responses induced by HCHWA-D Aβ1–40 in these cells. The present findings suggest that the surface of human cerebrovascular smooth muscle cells may selectively orchestrate the assembly of pathogenic Aβ fibrils and that cell surface Aβ fibril formation plays an important role in causing the pathologic responses in these cells.  相似文献   

6.
Abstract: Amyloid β protein (Aβ), the central constituent of senile plaques in Alzheimer's disease (AD) brain, is known to exert toxic effects on cultured neurons. The role of the voltage-sensitive Ca2+ channel (VSCC) in β(25–35) neurotoxicity was examined using rat cultured cortical and hippocampal neurons. When L-type VSCCs were blocked by application of nimodipine, β(25–35) neurotoxicity was attenuated, whereas application of ω-conotoxin GVIA (ω-CgTX-GVIA) or ω-agatoxin IVA (ω-Aga-IVA), the blocker for N- or P/Q-type VSCCs, had no effects. Whole-cell patch-clamp studies indicated that the Ca2+ current density of β(25–35)-treated neurons is about twofold higher than that of control neurons. Also, β(25–35) increased Ca2+ uptake, which was sensitive to nimodipine. The 2',7'-dichlorofluorescin diacetate assay showed the ability of β(25–35) to produce reactive oxygen species. Nimodipine had no effect on the level of free radicals. In contrast, vitamin E, a radical scavenger, reduced the level of free radicals, neurotoxicity, and Ca2+ uptake. These results suggest that β(25–35) generates free radicals, which in turn, increase Ca2+ influx via the L-type VSCC, thereby inducing neurotoxicity.  相似文献   

7.
Abstract: The frequency of the ε4 allele of apolipoprotein E(apoE) is increased in late-onset and sporadic forms of Alzheimer's disease (AD). ApoE also binds to β-amyloid (Aβ) and both proteins are found in AD plaques. To further investigate the potential interaction of apoE and Aβ in the pathogenesis of AD, we have determined the binding, internalization, and degradation of human apoE isoforms in the presence and absence of Aβ peptides to rat primary hippocampal neurons. We demonstrate that the lipophilic Aβ peptides, in particular Aβ1–42, Aβ1–40, and Aβ25–35, increase significantly apoE-liposome binding to hippocampal neurons. For each Aβ peptide, the increase was significantly greater for the apoE4 isoform than for the apoE3 isoform. The most effective of the Aβ peptides to increase apoE binding, Aβ25–35, was further shown to increase significantly the internalization of both apoE3- and apoE4-liposomes, without affecting apoE degradation. Conversely, Aβ1–40 uptake by hippocampal neurons was shown to be increased in the presence of apoE-liposomes, more so in the presence of the apoE4 than the apoE3 isoform. These results provide evidence that Aβ peptides interact directly with apoE lipoproteins, which may then be transported together into neuronal cells through apoE receptors.  相似文献   

8.
Abstract: Deposit of β-amyloid protein (Aβ) in Alzheimer's disease brain may contribute to the associated neurodegeneration. We have studied the neurotoxicity of Aβ in primary cultures of murine cortical neurons, with the aim of identifying pharmacologic ways of attenuating the injury. Exposure of cultures to Aβ (25–35 fragment; 3–25 4mU M ) generally triggers slow, concentration-dependent neurodegeneration (over 24–72 h). With submaximal Aβ- (25–35) exposure (10 μ M ), substantial (>40% within 48 h) degeneration often occurs and is markedly attenuated by the presence of the Ca2+ channel blockers nimodipine (1–20 μ M ) and Co2+ (100 μ M ) during the Aβ exposure. However, Aβ neurotoxicity is not affected by the presence of glutamate receptor antagonists. We suggest that Ca2+ influx through voltage-gated Ca2+ channels may contribute to Aβ-induced neuronal injury and that nimodipine and Co2+, by attenuating such influx, are able to attenuate Aβ neurotoxicity.  相似文献   

9.
The deposition of amyloid β (Aβ) protein is a consistent pathological hallmark of Alzheimer's disease (AD) brains; therefore, inhibition of Aβ fibril formation and destabilization of pre-formed Aβ fibrils is an attractive therapeutic and preventive strategy in the development of disease-modifying drugs for AD. This study demonstrated that Paeonia suffruticosa , a traditional medicinal herb, not only inhibited fibril formation of both Aβ1–40 and Aβ1–42 but it also destabilized pre-formed Aβ fibrils in a concentration-dependent manner. Memory function was examined using the passive-avoidance task followed by measurement of Aβ burden in the brains of Tg2576 transgenic mice. The herb improved long-term memory impairment in the transgenic mice and inhibited the accumulation of Aβ in the brain. Three-dimensional HPLC analysis revealed that a water extract of the herb contained several different chemical compounds including 1,2,3,4,6-penta- O -galloyl-β- d -glucopyranose (PGG). No obvious adverse/toxic were found following treatment with PGG. As was observed with Paeonia suffruticosa , PGG alone inhibited Aβ fibril formation and destabilized pre-formed Aβ fibrils in vitro and in vivo . Our results suggest that both Paeonia suffruticosa and its active constituent PGG have strong inhibitory effects on formation of Aβ fibrils in vitro and in vivo . PGG is likely to be a safe and promising lead compound in the development of disease-modifying drugs to prevent and/or cure AD.  相似文献   

10.
Abstract: Epinephrine (Epi) mediates various physiological effects via α2A-adrenergic receptors (α2A-ARs). Studies in mice with a point mutation in the gene for α2A-AR have shown that these receptors are responsible for the centrally mediated depressor effects of α2-AR agonists. These studies underscore the importance of understanding the basic cellular mechanisms involved in the expression of α2A-ARs, of which little is known. We use astroglia cultured from the hypothalamus and brainstem of adult Sprague-Dawley rats as a model system in which to study factors that regulate α2A-AR expression. These cells contain α2-ARs, which are predominately of the α2A-AR subtype. Our studies have shown that Epi causes a dose- and time-dependent decrease in steady-state levels of α2A-AR mRNA and number of α2A-ARs, effects that are mediated via α1- and β-adrenergic receptors (α1-ARs and β-ARs). These effects of Epi on α2A-AR mRNA and α2A-AR number are mimicked by activation of protein kinase C or increases in cellular cyclic AMP, which are intracellular messengers activated by α1-ARs and β-ARs, respectively. Taken together, these results indicate that expression of α2A-ARs is regulated in a heterologous manner by Epi, via α1-AR- and β-AR-mediated intracellular pathways.  相似文献   

11.
β-amyloid peptide 1–42 (Aβ1–42) and hyperphosphorylated tau are associated with neurodegeneration in Alzheimer's disease. Emerging evidence indicates that Aβ1–42 can potentiate hyperphosphorylation of tau in cell lines and in transgenic mice, but the underlying mechanism(s) remains unclear. In this study, Aβ1–42-induced tau phosphorylation was investigated in differentiated PC12 cells. Treatment of cells with Aβ1–42 increased phosphorylation of tau at serine-202 as detected by AT8 antibody. This Aβ1–42-induced tau phosphorylation paralleled phosphorylation of glycogen synthase kinase-3β (GSK-3β) at tyrosine-216 (GSK-3β-pY216), which was partially inhibited by the GSK-3β inhibitor, CHIR98023. Aβ1–42-induced tau phosphorylation and increase in GSK-3β-pY216 phosphorylation were also partially attenuated by α7 nicotinic acetylcholine receptor (α7 nAChR) selective ligands including agonist A-582941 and antagonists methyllycaconitine and α-bungarotoxin. The α7 nAChR agonist and the GSK-3β inhibitor had no additive effect. These observations suggest that α7 nAChR modulation can influence Aβ1–42-induced tau phosphorylation, possibly involving GSK-3β. This study provides evidence of nAChR mechanisms underlying Aβ1–42 toxicity and tau phosphorylation, which, if translated in vivo , could provide additional basis for the utility of α7 nAChR ligands in the treatment of Alzheimer's disease.  相似文献   

12.
Abstract: β-Amyloid peptide (Aβ), a proteolytic fragment of the β-amyloid precursor protein, is a major component of senile plaques in the brain of Alzheimer's disease patients. This neuropathological feature is accompanied by increased neuronal cell loss in the brain and there is evidence that Aβ is directly neurotoxic. In the present study reduced cell viability in four different neuroblastoma cell types was observed after treatment with human Aβ1–42 for 1 day. Of the cell types tested rat PC12 and human IMR32 cells were most susceptible to Aβ toxicity. Chromosomal condensation and fragmentation of nuclei were seen in PC12, NB2a, and B104 cells but not in IMR32 cells irrespective of their high sensitivity to Aβ. Electrophoretic analysis of cellular DNA confirmed internucleosomal DNA fragmentation typical for apoptosis in all cell types except IMR32. These findings suggest that the form of Aβ-induced cell death (necrosis or apoptosis) may depend on the cell type.  相似文献   

13.
Abstract: There is mounting evidence that at least some of the neurotoxicity associated with Alzheimer's disease (AD) is due to proteolytic fragments of the β-amyloid precursor protein (βAPP). Most research has focused on the amyloid β protein (Aβ), which has been shown to possess ion channel activity. However, the possible role of other cleaved products of the βAPP is less clear. We have investigated the ability of various products of βAPP to induce membrane ion currents by applying them to Xenopus oocytes, a model system used extensively for investigating electrophysiological aspects of cellular, including neuronal, signalling. We focussed on the 105-amino-acid C-terminal fragment (CT105) (containing the full sequence Aβ), which has previously been found to be toxic to cells, although little is known about its mode of action. We have found that CT105 is exceedingly potent, with a threshold concentration of 100–200 n M , in inducing nonselective ion currents when applied from either outside or inside the oocyte and is more effective than either βAPP or the Aβ fragments, β25–35 or β1–40. The ion channel activity of CT105 was concentration dependent and blocked by a monoclonal antibody to Aβ. These results suggest the possible involvement of CT105 in inducing the neural toxicity characteristic of AD.  相似文献   

14.
Abstract: Increasing data suggest that the amyloid β-peptide (Aβ), which accumulates in the brains of Alzheimer's victims, plays a role in promoting neuronal degeneration. Cell culture studies have shown that Aβ can be neurotoxic and recent findings suggest that the mechanism involves destabilization of cellular calcium homeostasis. We now report that cytochalasin D, a compound that depolymerizes actin microfilaments selectively, protects cultured rat hippocampal neurons against Aβ neurotoxicity. Cytochalasin D was effective at concentrations that depolymerized actin (10–100 n M ). The elevation of [Ca2+]i induced by Aβ, and the enhancement of [Ca2+]i responses to glutamate in neurons exposed to Aβ, were markedly attenuated in neurons pretreated with cytochalasin D. The protective effect of cytochalasin D appeared to result from a specific effect on actin filaments and reduction in calcium influx, because cytochalasin E, another actin filament-disrupting agent, also protected neurons against Aβ toxicity; the microtubule-disrupting agent colchicine was ineffective; cytochalasin D did not protect neurons against the toxicity of hydrogen peroxide. These findings suggest that actin filaments play a role in modulating [Ca2+]i responses to neurotoxic insults and that depolymerization of actin can protect neurons against insults relevant to the pathogenesis of Alzheimer's disease.  相似文献   

15.
Abstract: Zinc added to buffered solutions of synthetic β-amyloid peptide (Aβ) has been reported to induce accelerated formation of insoluble aggregates. This observation suggests that zinc may play a role in the formation of senile plaques, which contain Aβ, in Alzheimer's disease. To test this hypothesis under conditions more representative of the brain, we investigated the ability of zinc to induce aggregation of Aβ in freshly drawn canine CSF, which contains the same sequence as human Aβ. Aggregates were separated from CSF by ultracentrifugation before and after incubation with zinc and assayed by quantitative western blotting and ELISA. We found that zinc induced the rapid aggregation of endogenous Aβ in CSF, with an EC50 of 120–140 µ M . The reaction was specific, because most (≥95%) CSF protein remained soluble under conditions where most Aβ was insoluble, as assayed by scanning densitometry of Coomassie-stained gels. Staining of the precipitated material resulted in the visualization of punctate regions that were thioflavin positive or birefringent when stained with Congo red, suggesting the formation of amyloid-related structures. These results suggest that zinc could play a role in amyloid deposition, because there is overlap between the regions of the brain where zinc concentrations are highest and regions with the highest amyloid content. It is surprising that zinc induced the aggregation of endogenous soluble APP at lower concentrations than required for Aβ (EC50 80 µ M ). The possibility that zinc-induced aggregation of APP may precede the deposition of Aβ into plaques is discussed. Investigation of aggregation of Aβ in CSF will aid in assessing the biological relevance of other agents that have been reported to accelerate amyloid formation.  相似文献   

16.
Abstract: H2O2 and free radical-mediated oxidative stresses have been implicated in mediating amyloid β(1–40) [Aβ(1–40)] neurotoxicity to cultured neurons. In this study, we confirm that addition of the H2O2-scavenging enzyme catalase protects neurons in culture against Aβ-mediated toxicity; however, it does so by a mechanism that does not involve its ability to scavenge H2O2. Aβ-mediated elevation in intracellular H2O2 production is suppressed by addition of a potent H2O2 scavenger without any significant neuroprotection. Three intracellular biochemical markers of H2O2-mediated oxidative stress were unchanged by Aβ treatment: (a) glyceraldehyde-3-phosphate dehydrogenase activity, (b) hexose monophosphate shunt activity, and (c) glucose oxidation via the tricarboxylic acid cycle. Ionspray mass spectra of Aβ in the incubation medium indicated that Aβ itself is an unlikely source of reactive oxygen species. In this study we demonstrate that intracellular ATP concentration is compromised during the first 24-h exposure of neurons to Aβ. Our results challenge a pivotal role for H2O2 generation in mediating Aβ toxicity, and we suggest that impairment of energy homeostasis may be a more significant early factor in the neurodegenerative process.  相似文献   

17.
Abstract: Amyloid β protein (Aβ), which accumulates in the senile plaques in the brain of Alzheimer's patients, is cytotoxic to neurons. A modified 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, in which a yellow redox dye, MTT, is reduced to purple formazan, is very sensitive to the effect of Aβ. In primary hippocampal cultures, inhibition of MTT reduction starts within 2 h after the addition of low concentrations of Aβ and reaches a plateau in 12 h. This effect of Aβ is not blocked by Ca2+ channel blockers or in Ca2+-free medium. In contrast, lactate dehydrogenase (LDH) release and trypan blue exclusion, which are indices of cell death, start 3 days after exposure to high concentrations of Aβ and are blocked by Ca2+ channel blockers such as Co2+, nicardipine, and diltiazem. When Aβ was washed out from the medium after 12 h, MTT reduction recovers and LDH release does not occur, suggesting that a long-lasting inhibition of the cellular redox system may be required to induce cell death. These observations demonstrate that Aβ toxicity consists of two phases—a Ca2+-independent early phase and a Ca2+-dependent late phase—and that the early phase may be required to induce the late phase.  相似文献   

18.
19.
20.
Abstract: The neurodegeneration of Alzheimer's disease has been theorized to be mediated, at least in part, by insoluble aggregates of β-amyloid protein that are widely distributed in the form of plaques throughout brain regions affected by the disease. Previous studies by our laboratory and others have demonstrated that the neurotoxicity of β-amyloid in vitro is dependent upon its spontaneous adoption of an aggregated structure. In this study, we report extensive structure-activity analyses of a series of peptides derived from both the proposed active fragment of β-amyloid, β25–35, and the full-length protein, β1–42. We examine the effects of amino acid residue deletions and substitutions on the ability of β-amyloid peptides to both form sedimentable aggregates and induce toxicity in cultured hippocampal neurons. We observe that significant levels of peptide aggregation are always associated with significant β-amyloid-induced neurotoxicity. Further, both N- and C-terminal regions of β25–35 appear to contribute to these processes. In particular, significant disruption of peptide aggregation and toxicity result from alterations in the β33–35 region. In β1–42 peptides, aggregation disruption is evidenced by changes in both electrophoresis profiles and fibril morphology visualized at the light and electron microscope levels. Using circular dichroism analysis in a subset of peptides, we observed classic features of β-sheet secondary structure in aggregating, toxic β-amyloid peptides but not in nonaggregating, nontoxic β-amyloid peptides. Together, these data further define the primary and secondary structures of β-amyloid that are involved in its in vitro assembly into neurotoxic peptide aggregates and may underlie both its pathological deposition and subsequent degenerative effects in Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号