首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K Banovac  L Bzik  M Sekso  M Petek 《Endokrinologie》1978,71(2):159-163
In 14 hyperthyroid patient serum T4:rT3 ratio was significantly lower (399 +/- 20) than in the control subjects (572 +/- 20; p less than 0.001). A similar pattern was found for serum T3:rT3 ratio. In the hyperthyroid group the ratio was significantly lower (10.5 +/- 0.5) than in the control group (12.5 +/- 0.6; p less than 0.05). The data suggest that in hyperthyroidism the organism might shift conversion of T4 from biologically active T3 to poorly calorigenic rT3. It seems possible that the proportionately increased generation of rT3 than that of T3 may be a defence mechanism of the body, as it was found in systemic illnesses and starvation.  相似文献   

2.
Although patients with primary hyperparathyroidism (1 degree HPT) were euthyroid, we measured serum thyroid hormone levels in 16 patients with 1 degree HPT together with 17 patients with hypercalcemia due to malignant diseases (HCM). In patients with 1 degree HPT, serum levels of T3, T4 and T3U were within normal range, but serum rT3 (reverse T3) levels (205 +/- 37 pg/ml, mean +/- SD) were significantly decreased as compared with those in normal controls (276 +/- 44 pg/ml, P less than 0.01). A significant inverse correlation was observed between the serum levels of rT3 and parathyroid hormone (PTH) (r = 0.54, P less than 0.05). After parathyroidectomy, serum rT3 levels were significantly elevated (240 +/- 56 pg/ml) compared to preoperative levels (P less than 0.01). Low levels of serum rT3 seemed to be attributed to the high levels of serum PTH. On the other hand, serum levels of T3 and T4 were low and serum rT3 levels were high in patients with HCM. Low serum rT3 allows for the differentiation of patients with 1 degree HPT from those with HCM.  相似文献   

3.
An excess of thyrotropin (TSH) with normal levels of tetraiodothyronine (T4) and of 3,5,3'-triiodothyronine (T3) was confirmed in the serum of 78 trisomy 21 children. A severe deficiency of 3,3',5'-triiodo-thyronine (rT3 or reverse T3) was observed and the decrease of the rT3/TSH ratio was highly significant. These new facts suggest that the rT3 deficiency plays a peculiar role in trisomy 21 (maybe through the regulation of one or few steps of monocarbons' metabolism). A systematic control of thyroid function (including the patient's rT3 level) is mandatory for the follow-up of every trisomy 21 patient.  相似文献   

4.
We have attempted to determine if mild hyperglucagonemia induced by exogenous glucagon infusion induces changes of serum thyroid hormone levels. Eleven healthy subjects, overnight fasting, received glucagon infusion (2 mg/90 min i.v.), whereas 5 healthy subjects (control group) received normal saline infusion. In the subjects infused with exogenous glucagon plasma glucagon concentrations increased from 130 +/- 24 pg/ml to 550 +/- 68 pg/ml at the end of infusion. At the same time no significant changes in serum T3, rT3 and T4 levels were found. A significant increase in serum rT3 levels was found 270 min after glucagon infusion withdrawal, whereas serum T4 levels remained unaltered during the whole period. Normal saline infusion failed to induce any variation in control group, however a late (at 6th hour) mild increase of serum rT3 in these subjects resulted comparable to the same increase of glucagon infused subjects. The results from this study suggest that mild increase in plasma glucagonemia, as found in patients with severe illness, does not induce a short-time significant lowering of serum T3 and a simultaneous rise of serum rT3 in normal subjects.  相似文献   

5.
Decreased serum T3 concentrations in elderly subjects and their possible relationship with the development of dementia have been indicated. To see the effects of a passive increase in the serum T3 concentration, low dose T3 administration was undertaken. Forty-four subjects from 65 to 93 years of age (average 81.0 +/- 7.8) were divided into 2 groups. The grade of dementia was determined by Hasegawa's dementia rating scale (DR score). In 22 subjects, 25 micrograms per day of T3 was administered for 4 W, while the control group was given a placebo. The DR score was measured before and immediately after the study. Changes in behaviour were monitored in a double-blind fashion. The administration of T3 induced a 0.65 nmol/l increase in serum T3 in 2 W and 0.36 nmol/l in 4 W. These T3 increases were not associated with significant changes in the DR score but 7 of 22 subjects showed apparent improvement in behaviour. TSH was suppressed to less than 1 mU/l in 2 W and then slightly increased by the 4th week, but T4, rT3 and fT4 all showed significant and progressive decreases. The DR score after T3 correlated significantly with the rT3/T4 ratio (before T3: -0.55, changes: +0.50) and also with changes in rT3 (r = 0.49). In conclusion, T3 administration to the elderly subjects was associated with behavioural improvement in some individuals, but the intellectual ability as assessed by the DR score in those with low T3 or elevated rT3 were hardly improved by passive T3 elevation.  相似文献   

6.
Iodothyronine content in the pig thyroid gland   总被引:2,自引:0,他引:2  
An analysis has been carried out on the contents and reciprocal proportions of three principal iodothyronines (T4, T3 and rT3) in the thyroids of fed and fasted piglets of 8-10 wk and in adult pigs. The mean T4 concentration averaged 62.0 +/- nmol/100 mg wet tissue (in adults: 18.5 +/- 4.3 nmol/100 mg tissue); T3, 9.5 +/- 0.9 nmol/100 mg tissue (in adults: 1.58 +/- 0.2 nmol/100 mg tissue); rT3, 3.0 +/- 0.3 nmol/100 mg tissue. The reciprocal ratios of the hormones in the piglets' thyroids were: for T3:T4, 0.150 (in adults, 0.114) and for rT3:T4, 0.050 (in adults, 0.023). Mean T4:T3:rT3 ratio in piglets and adult pigs was 20.5:3.1:1 and 66.1:5.6:1, respectively. The results from all examined iodothyronines, show the higher absolute concentration in piglets' than in adult pigs' thyroid tissue, while the reciprocal proportions of the hormones reveal smaller T4 thyroid contents (comparing with T3 and rT3) in piglets than in adults. No changes of absolute thyroidal contents or reciprocal ratios of the iodothyronines were observed in fed and fasted piglets. In a comparison, the pig thyroid contains more triiodothyronine and a higher ratio T3:T4 than that in some other species.  相似文献   

7.
In our previous study, we observed a tendency towards an age-related increase in the serum thyrotropin (TSH) concentration. Regulatory mechanisms of TSH secretion in elderly subjects were studied. In 43 elderly subjects, serum TSH did not correlate significantly with serum T4, T3 free T4 or rT3. Further, those with increased TSH (greater than 5 mU/l, 9 subjects) did not overlap with those with low T3 (less than 0.92 nmol/1, 8 subjects). Increases in serum TSH were not associated with the presence of circulating anti-thyroid autoantibodies. A TRH test using a 500 micrograms single bolus injection was performed in 15 subjects. TSH response (basal: 1.92 +/- 1.42 (s.d.) mU/1, peak: 11.25 +/- 5.33 mU/1, sigma: 26.74 +/- 12.89 mU/1, respectively) did not differ significantly from that of younger subjects. T3 response after TRH varied greatly and a close correlation was observed between basal T3 and peak T3 (r = 0.86), and also between peak T3 and delta T3 (r = 0.81). A significant correlation was observed between sigma TSH and basal T3 (r = 0.60). Neither plasma cortisol, epinephrine nor norepinephrine concentrations showed any significant correlation with basal and TRH-stimulated TSH or T3 concentrations. However, the plasma dopamine concentration correlated significantly with sigma TSH (r = 0.60) and basal T3 (r = 0.52), respectively. In conclusion, the increase in serum TSH observed in elderly subjects was felt to represent a physiological adaptation to maintain serum T3. Low T3 subjects appear to have a disturbance in this mechanism, with decreased TSH and T3 response to TRH stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Concentrations of thyroxine (T4), 3,5,3'-triiodothyronine (T3) and 3,3',5'-triiodothyronine (rT3) in the placenta were measured in 7 patients with abortion, in 9 patients with premature delivery, in 16 normal pregnancies and in 4 pregnant women with Graves' disease. The placentas, obtained at delivery, were homogenized and centrifuged at 800 X g. T4, T3 and rT3 concentrations in the supernatants were extracted with 3 vol. of 99% ethanol and measured by RIAs. In normal pregnancy, placental T4, T3 and rT3 concentrations were 18.8 +/- 5.9 (mean +/- SD), 0.026 +/- 0.012, and 1.70 +/- 0.49 ng/g tissue, respectively. Ratios of rT3/T3 and rT3/T4 in the placenta were about 12 and 2.3 times as high as those in the fetal sera, respectively. There was a significant positive correlation between the placental T4 and the maternal or cord serum T4 concentrations. However, no correlation was found between the placental T3 or rT3 concentrations and the maternal or cord T3 or rT3 concentrations. In 4 patients with Graves' disease, the placental T4 concentration was elevated. These results indicate that the placental T4 concentration is influenced by both the maternal and fetal serum T4, and elevated ratios of rT3/T3 and rT3/T4 in the placenta might be due to the active placental 5-monodeiodination.  相似文献   

9.
Several parameters of thyroid function were studied in 112 non-ketoacidotic youngsters with insulin-dependent diabetes mellitus (IDDM). Levels of thyroxine (T4), reverse triiodothyronine (rT3), thyroxine-binding globulin (TBG) and T3 were lower than in controls, whereas FT4, and FT3 were normal. T4 levels in IDDM patients were positively related to T3, rT3 and TBG, and inversely related to haemoglobin A1 (HbA1). However, only 4 patients showed biochemical hypothyroidism (T4 less than 5 micrograms/100 ml), whereas their FT4, FT3 and thyroid-stimulating hormone (TSH) levels were normal. Concurrent variations of T3 and rT3 levels were found in IDDM patients; thus, their T3/rT3 ratios were stable or higher than in controls, indicating that peripheral deiodination of T4 is preferentially oriented to production of rT3 only during ketoacidosis. Although changes in thyroid function may reflect the degree of metabolic control of diabetes in a large population, the clinical usefulness of serum thyroid hormone measurements in an individual case still appears to be limited.  相似文献   

10.
The thyroid hormones metabolism is considerably altered in many pathological processes including fever. Experiments performed on rabbits (n=62) showed that increase in the rectal temperature by 1 degrees C (after turpentine oil sc injections) decreased 5'-monodeiodinase activity, the enzyme responsible for deiodination of thyroxine to the most active thyroid hormone 3,3',5-triiodothyronine (T3), in the liver by 25% and in the kidney by 20%. Triiodothyronines concentration in serum decreased during fever from 1.57+/-0.12 to 0.52+/-0.02 nmolT3/l and from 0.17+/-0.01 to 0.07+/-0.02 nmol rT3/l. The increase in the body temperature intensified lipid peroxidation processes (malondialdehyde level increased from 1.2 times in kidney, and 1.4 times in the liver homogenates to 1.6 times in serum). The antioxidants (vitamin E and selenium) supplementation decreased lipid peroxidation processes during fever and partly restored the 5'-monodeiodinase activity. The present study confirmed our previous observations in vitro that lipid peroxidation (free radical formation) influences the 5'-monodeiodinase activity in tissues and alters the thyroid hormones metabolism.  相似文献   

11.
Serum sulphates of 5-androstene-3 beta,17 beta-diol (5-ADIOL-S), 5 alpha-androstane-3 alpha,17 beta-diol (3 alpha-DIOL-S) and dehydroepiandrosterone (DHEA-S), unconjugated androstene-dione (AD) and testosterone (T), sex hormone binding globulin (SHBG), free androgen index (FAI), 17 alpha-hydroxyprogesterone (17OHP), luteinising hormone (LH) and follicle stimulating hormone (FSH) were measured by specific radioimmunoassay in 28 hirsute women with polycystic ovarian disease (PCO) and in normal women (n = 73). Mean levels of steroids measured were significantly elevated, and SHBG significantly depressed, in the women with PCO with values (mean +/- SE) for 5-ADIOL-S (516 +/- 51 vs 267 +/- 10 nmol/l), 3 alpha-DIOL-S (130 +/- 9 vs 52 +/- 2 nmol/l), DHEA-S (7.3 +/- 0.5 vs 4.4 +/- 0.2 mumol/l), AD (11.3 +/- 1.1 vs 3.4 +/- 0.2 nmol/l), T (3.3 +/- 0.2 vs 1.5 +/- 0.1 nmol/l) and 17OHP (5.1 +/- 0.8 vs 2.8 +/- 0.2 nmol/l). SHBG levels were 31 +/- 2.9 vs 65 +/- 2.5 nmol/l, and the free androgen index [100 x T (nmol/l) divided by (SHBG nmol/l)] was 12.5 +/- 1.4 vs 2.4 +/- 0.1. The mean LH to FSH ratio was also elevated at 2.8 +/- 0.3. These studies suggest that the measurement of 5-ADIOL-S and DHEA-S may indicate adrenal gland involvement in PCO while 3 alpha-DIOL-S appears to be a reflection of peripheral androgen metabolism. A comprehensive biochemical profile of PCO should thus include the analysis of these sulphoconjugates as well as unconjugated steroids.  相似文献   

12.
Insulin secretion and sensitivity in hyperthyroidism   总被引:1,自引:0,他引:1  
To examine the effect of hyperthyroidism on carbohydrate metabolism, we studied glucose-stimulated insulin secretion and glucose utilization in 8 subjects with Graves' disease before and after treatment for hyperthyroidism and 8 age-, sex- and weight-matched normal subjects. Subjects with Graves' disease had significant elevated serum levels of thyroxine (24.81 +/- 2.44 micrograms/dl, mean +/- SEM) and triiodothyronine (459 +/- 5.5 ng/dl, mean +/- SEM). Simultaneous measurement of plasma glucose, serum insulin and C-peptide levels during fasting and every 30 minutes up to 180 minutes after 75 g oral glucose loading was determined. In addition, plasma glucose, serum insulin and serum C-peptide were measured during euglycemic glucose clamp with insulin infusion of 40 mU/m2 min-1. Mean fasting plasma glucose (P less than 0.05, serum insulin (P less than 0.005) and serum C-peptide (P less than 0.005) levels were significantly higher in the hyperthyroid patients. After glucose loading, the plasma glucose (P less than 0.05), serum insulin (P less than 0.05) and C-peptide (P less than 0.05) responses were significantly higher in hyperthyroid patients at all times up to 180 minutes. During euglycemic clamp studies, the steady-state serum insulin levels were identical in the two groups. The glucose disposal rate was lower in hyperthyroid patients before treatment (P less than 0.01) than in normal subjects. After thyroid function had been normalized for 2 to 4 weeks, the glucose disposal rate increased significantly (P less than 0.05), but was still significantly lower than those of normal subjects (P less than 0.05). Our data show that patients with Graves' hyperthyroidism manifest glucose intolerance, hyperinsulinemia and insulin resistance.  相似文献   

13.
Pharmacokinetic properties of pharmacological doses of 24,25-dihydroxyvitamin-D3 [24,25(OH)2D3] were determined in healthy volunteers. Four male subjects received 25 micrograms of 24,25(OH)2D3 as an intravenous bolus injection. Plasma concentrations of 24,25(OH)2D3, 25-hydroxyvitamin D and 1,25-dihydroxy-vitamin D were monitored during 14 days. In addition, serum ionized calcium, total calcium, inorganic phosphate, albumin, creatinine and intact hPTH(1-84) were measured during 14 days. The concentration-time curve of 24,25(OH)2D3 could be described by a two-exponential curve with half-lives of 3.0 +/- 0.9 hrs and 8.2 +/- 2.9 days (mean +/- SD). The volume of distribution was 0.19 +/- 0.02 liters/kg. None of the mentioned biochemical parameters, except serum 24,25(OH)2D3, changed markedly. In 18 subjects suffering from primary hyperparathyroidism, taking 25 micrograms of 24,25(OH)2D3 daily during three months, an average plateau level of 39 +/- 12 nmol/l of serum was observed. Bioavailability as estimated from this plateau level was approximately 70%.  相似文献   

14.
To investigate the thyroid hormone metabolism in altered states of thyroid function, serum concentrations of 3, 3'-diiodothyronine (3, 3'-T2), 3', 5'-T2 and 3, 5-T2 as well as T4, T3 and rT3 were determined by specific radioimmunoassays in 17 hyperthyroid and 10 hypothyroid patients, before and during the treatment. Serum T4, T3, rT3, 3, 3'-T2 and 3', 5'-T2 concentrations were all higher in the hyperthyroid patients than in age-matched controls and decreased to the normal ranges within 3 to 4 months following treatment with antithyroid drugs. In the hypothyroid patients, these iodothyronine concentrations were lower than in age-matched controls and returned to the normal ranges after 2 to 3 months treatment with T4. In contrast, serum 3, 5-T2 concentrations in hyperthyroid patients (mean +/- SE : 4.0 +/- 0.5 ng/dl) were not significantly different from those in controls (3.9 +/ 0.4 ng/dl), although they tended to decrease in 3 of 6 patients after the antithyroid drug therapy. Serum 3, 5-T2 levels in the hypothyroid patients (3.8 +/- 0.6 ng/dl) were also within the normal range and showed no significant change following the T4 replacement therapy. However, serum 3, 5-T2 as well as 3, 3'T2 concentrations rose significantly with a marked rise in serum T3 following T3 administration, 75 micrograms/day for 7 days, in Graves' patients in euthyroid state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
In 45 type 2 diabetics it was unable to be found a relation between the plasma lipids and the fasting blood glucose (G), HbA1c, reverse T3 (rT3), rT3/T3 ratio, and relative body weight (R.B.W.). The conclusion was reached that the alteration of the lipoprotein metabolism and the thyroid hormones in type 2 diabetics could be primitive and independent from the availability of the insulin.  相似文献   

16.
The effects of adrenaline (A) on liver T3 and rT3 neogenesis from T4 were studied in Wistar rats. The animals were implanted subcutaneously either with A or placebo (P) especially coated tablets which linearly released the hormone. The serum A values 6 hrs after implantation of 7.5, 15.0 and 45.0 mg tablets were 6.5 +/- 1.31, 6.8 +/- 1.8 and 16.4 +/- 1.9 ng/ml, respectively vs 4.4 +/- 2.5 ng/ml seen in P pretreated group. The output rates of A were 0.11 (7.5 mg), 0.18 (15 mg) and 0.52 microgram/ml (45 mg). The pretreatment with A led to hyperglycemia and the "low T3 syndrome". Neogenesis of T3 from T4 in medium containing liver microsomes of P pretreated rats was 5.49 +/- 0.25 pmol of T3/mg protein/min and decreased in A pretreated rats to 3.82 +/- 0.17, 3.12 +/- 0.27 and 3.06 +/- 0.11 pmol of T3/mg of protein/min. Neogenesis of rT3 from T4 in microsomes from P group was 1.52 +/- 0.09 pmol rT3/mg protein/min and increased after A to 2.71 +/- 0.11, 2.60 +/- 0.21 and 2.21 +/- 0.34 pmol of rT3/mg protein/min thus showing no dose dependency. Enrichment of microsomes medium with cytosol either from P or A pretreated rats had no effect on T3 generation thus excluding effect of A on cytosolic cofactor. Although cytosol further increased rT3 neogenesis this was seen regardless of whether cytosol was obtained from A or P implanted rats. It is concluded that A decreases the activity of T4-5'-deiodinase in liver, and possibly increases the activity of T4-5-deiodinase.  相似文献   

17.
3,3'5'-triiodothyronine (rT3) levels have been documented to be low in patients with Down syndrome but the metabolic implications of this finding remain unknown. A highly significant correlation was found between the in vitro variations of the mitotic index in lymphocyte cultures when rT3 or known inhibitors of inosine monophosphate dehydrogenase: mycophenolic acid, 6-mercaptopurine or 2-3-diphosphoglycerate were added. No significant difference was found between the response of trisomy 21 or normal lymphocytes. The finding suggests that rT3 may be a physiological modulator of inosine monophosphate dehydrogenase. The implications on cellular differentiation are discussed.  相似文献   

18.
Recently we reported that hyperglucagonemia induced by glucagon infusion causes a decline in serum Triiodothyronine (T3) and a rise in reverse T3 (rT3) in euthyroid healthy volunteers. These changes in T3 and rT3 levels were attributed to altered T4 metabolism in peripheral tissues. However, the contribution of altered release of thyroid hormones by the thyroid gland could not be excluded. Since the release of thyroid hormones is suppressed by exogenous administration of L-thyroxine (L-T4) in appropriate dosage, we studied thyroid hormone levels for up to 6 hours after intravenous administration of glucagon in euthyroid healthy subjects after administration of L-T4 for 12 weeks. A control study was conducted using normal saline infusion. Plasma glucose rose promptly following glucagon administration demonstrating its physiologic effect. Serum T4, Free T4 and T3 resin uptake were not altered during both studies. Glucagon infusion induced a significant decline in serum T3 (P less than 0.01) and a marked rise in rT3 (P less than 0.01) whereas saline administration caused no alterations in T3 or rT3 levels. Thus the changes in T3 and rT3 were significantly different during glucagon study when compared to saline infusion. (P less than 0.01 for both comparisons). Therefore, this study demonstrates that changes in serum T3 and rT3 caused by hyperglucagonemia may be secondary to altered thyroid hormone metabolism in peripheral tissues and not due to altered release by the thyroid gland, since the release of thyroid hormones is suppressed by exogenous L-T4 administration.  相似文献   

19.
The pituitary-thyroid axis of 12 acromegalic patients was evaluated by measurement of the serum concentrations (total and free) of thyroxine (T4), triiodothyronine (T3) and reverse T3 (rT3) and thyrotropin (TSH), growth hormone (GH) and prolactin (PRL) before and after iv stimulation with thyrotropin releasing hormone (TRH). Using an ultrasensitive method of TSH measurement (IRMA) basal serum TSH levels of the patients (0.76, 0.07-1.90 mIU/l) were found slightly, but significantly (P less than 0.01), lower than in 40 healthy controls (1.40, 0.41-2.50 mIU/l). The total T4 levels (TT4) were also reduced (84, 69-106 nmol/l vs 100, 72-156 nmol/l, P less than 0.01) and significantly correlated (P less than 0.02, R = 0.69) to the TSH response to TRH, suggesting a slight central hypothyroidism. The acromegalics had, however, normal serum levels of TT3 (1.79, 1.23-2.52 nmol/l vs 1.74, 0.78-2.84 nmol/l, P greater than 0.10), but significantly decreased levels of TrT3 (0.173, 0.077-0.430 nmol/l vs 0.368, 0.154-0.584 nmol/l, P less than 0.01) compared to the controls. The serum concentration of the free iodothyronines (FT4, FT3, FrT3) showed similar differences between acromegalics and normal controls. All the acromegalics showed a rise of serum TSH, GH and PRL after TRH. Positive correlation (P less than 0.05, R = 0.59) was found between the TSH and GH responses, but not between these two parameters and the PRL response to TRH. These findings may be explained by the existence of a central suppression of the TSH and GH secretion in acromegalic subjects, possibly exerted by somatostatin. Euthyroidism might be maintained by an increased extrathyroidal conversion of T4 to T3.  相似文献   

20.
In order to know thyroid function during physical activity, just studied by several authors without univocal findings, we have submitted 10 young subjects, non athletes, aged 22-25 years (mean age 23, 6 +/- 1, 43) to a biologically maximal exercise on a bicycle ergometer. We have also examined the change of TSH serum levels during exercise. Our data show an evident increase of T4 (18, 60% at 10'), p less than 0.025, an increment of FT4 (28, 49 soon after the strain), and no relevant change of T3 and rT3 serum levels. Moreover TSH values show a reduction at 30' (-26, 15%) in comparison with the basal level. Our findings confirm the known increment of T4 and FT4 serum level after physical activity. It can be due, more than an hemoconcentration supported by others, to a real rise of thyroid incretion as in our opinion TSH levels reduction suggests. Concluding we think that the increase of T4 and decrease of TSH could be due to a direct influence of the physical activity on the system interested in their production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号