首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The specific binding of [N-methyl-3H]flunitrazepam ([3H]FNZP) to a membrane fraction from the supraoesophageal ganglion of the locust (Schistocerca gregaria) has been measured. The ligand binds reversibly with a KD of 47 nM. The binding is Ca2+-dependent, a property not found for the equivalent binding site in vertebrate brain. The pharmacological characteristics of the locust binding site show similarities to both central and peripheral benzodiazepine receptors in mammals. Thus binding is enhanced by gamma-aminobutyric acid (GABA), a feature of mammalian central receptors, whereas the ligand Ro 5-4864 was more effective in displacing [3H]FNZP than was clonazepam, which is the pattern seen in mammalian peripheral receptors. The locust benzodiazepine binding site was photoaffinity-labelled by [3H]FNZP, and two major proteins of Mr 45K and 59K were specifically labelled. In parallel experiments with rat brain membranes a single major protein of Mr 49K was labelled, a finding in keeping with many reports in the literature. We suggest that the FNZP binding site described here is part of the GABA receptor complex of locust ganglia. The insect receptor appears to have the same general organization as its mammalian counterpart but differs significantly in its detailed properties.  相似文献   

2.
The binding of the triazolopyridazine CL 218,872 to central benzodiazepine receptors identified with [3H]Ro 15-1788 was studied in extensively washed homogenates of rat spinal cord and cerebral cortex. CL 218,872 displacement curves were shallow in both spinal cord (nH = 0.67) and cortex (nH = 0.54), suggesting the presence of type 1 and type 2 benzodiazepine receptors in both tissues. CL 218,872 had lower affinity in spinal cord (IC50 = 825 nM) than cortex (IC50 = 152 nM), possibly reflecting the presence of fewer type 1 sites in the cord. Activating gamma-aminobutyric acid (GABA) receptors with 10 microM muscimol resulted in a two- to threefold increase in CL 218,872 affinity in both tissues without changes in the displacement curve slope. This indicates that GABA enhances CL 218,872 affinity for both type 1 and type 2 sites in both spinal cord and cerebral cortex.  相似文献   

3.
Ethanol and the γ-Aminobutyric Acid-Benzodiazepine Receptor Complex   总被引:1,自引:2,他引:1  
Abstract: Ethanol appears to enhance γ-aminobutyric acid (GABA)-mediated synaptic transmission. Using radioligand binding techniques, we investigated the possibility that the GABA-benzodiazepine receptor complex is the site responsible for this effect. Ethanol at concentrations up to 100 m M failed to alter binding of [3H]flunitrazepam (FNZ), [3H]Ro 15-1788, or [3H]methyl-γ-carboline-3-carboxylate (MBCC) to benzodiazepine receptors, or of [3H]muscimol to GABA receptors in rat brain membranes. Scatchard analyses of the binding of these radioligands at 4°C and 37°C revealed no significant effects of 100 m M ethanol on receptor affinity or number. A variety of drugs as well as chloride ion increased binding of [3H]FNZ and/or [3H]muscimol, but these influences were not modified by ethanol. These findings indicate that ethanol probably potentiates GABAergic neurotransmission at a signal transduction site beyond the GABA-benzodiazepine receptor complex.  相似文献   

4.
The binding of [3H]flunitrazepam and [3H]RO5-4864 was measured in unwashed brain homogenates and in extensively washed brain membranes from amygdala-kindled and "yoked" control rats sacrificed 2 weeks following the sixth stage 5 convulsion. In unwashed homogenates, [3H]flunitrazepam binding was reduced in both the hypothalamus and ipsilateral right cortex of kindled rats (unchanged in other areas). In washed brain membranes, [3H]flunitrazepam binding was unaltered in these regions; it was bilaterally elevated, however, in both the amygdala and hippocampus (unchanged in other areas). In washed membranes, the in vitro addition of gamma-aminobutyric acid enhanced [3H]flunitrazepam binding to a similar extent in kindled and control membranes. These data indicate that the type of benzodiazepine binding abnormality observed after kindling depends on the type of tissue preparation employed in the assay procedure.  相似文献   

5.
Using cerebellar, neuron-enriched primary cultures, we have studied the glutamate receptor subtypes coupled to neurotransmitter amino acid release. Acute exposure of the cultures to micromolar concentrations of kainate and quisqualate stimulated D-[3H]aspartate release, whereas N-methyl-D-aspartate, as well as dihydrokainic acid, were ineffective. The effect of kainic acid was concentration dependent in the concentration range of 20-100 microM. Quisqualic acid was effective at lower concentrations, with maximal releasing activity at about 50 microM. Kainate and dihydrokainate (20-100 microM) inhibited the initial rate of D-[3H]aspartate uptake into cultured granule cells, whereas quisqualate and N-methyl-DL-aspartate were ineffective. D-[3H]Aspartate uptake into confluent cerebellar astrocyte cultures was not affected by kainic acid. The stimulatory effect of kainic acid on D-[3H]aspartate release was Na+ independent, and partly Ca2+ dependent; the effect of quisqualate was Na+ and Ca2+ independent. Kynurenic acid (50-200 microM) and, to a lesser extent, 2,3-cis-piperidine dicarboxylic acid (100-200 microM) antagonized the stimulatory effect of kainate but not that of quisqualate. Kainic and quisqualic acid (20-100 microM) also stimulated gamma-[3H]-aminobutyric acid release from cerebellar cultures, and kynurenic acid antagonized the effect of kainate but not that of quisqualate. In conclusion, kainic acid and quisqualic acid appear to activate two different excitatory amino acid receptor subtypes, both coupled to neurotransmitter amino acid release. Moreover, kainate inhibits D-[3H]aspartate neuronal uptake by interfering with the acidic amino acid high-affinity transport system.  相似文献   

6.
The effect of early undernutrition and dietary rehabilitation on [3H]gamma-aminobutyric acid ([3H]GABA) binding in rat brain cerebral cortex and hippocampus was examined. Undernourished animals were obtained by exposing their mothers to a protein-deficient diet during both gestation and lactation. Saturation analysis of [3H]GABA binding in the cerebral cortex and hippocampus revealed high- and low-affinity components in the undernourished group, whereas control animals possessed only a low-affinity site. The concentration of low-affinity binding sites was greater in the undernourished animals. Rehabilitation of undernourished animals completely abolished the binding site differences. Treatment of brain membranes with Triton X-100 yielded two binding components in both the undernourished and control animals, although the concentration of lower affinity sites was still greater in the undernourished group. Neither the efficacy nor the potency of GABA to activate benzodiazepine binding in cerebral cortex was modified by undernutrition. These data suggest that early undernourishment modifies the characteristics of [3H]GABA binding, perhaps by reducing the brain content of endogenous inhibitors of the higher affinity binding site. The lack of effect on GABA-activated benzodiazepine binding suggests the possibility that neither the high- nor the low-affinity GABA binding sites are coupled to this receptor component.  相似文献   

7.
Abstract: Kinetic studies of [3H]γ-aminobutyric acid ([3H]GABA) after an intravenous injection were performed in normal rats and in rats with severe degree of hepatic encephalopathy due to fulminant hepatic failure induced by galactosamine. Moreover, plasma and brain GABA levels, and GABA and glutamic acid decarboxylase activity were studied in some brain areas. After intravenous injection, [3H]GABA disappeared very rapidly in the blood of normal rats, with a prompt increase of 3H metabolites. In comatose rats, a delayed disappearance of [3H]GABA.as parallelled by a lower amount of metabolites, indirectly indicating a peripheral decrease of GABA-transaminase activity. The amount of [3H]GABA in brain was lightly but constantly lower in comatose rats than in controls, indicating that the change in permeability of the blood-brain barrier in hepatic encephalopathy does not affect the [3H]GABA uptake of the brain. Furthermore, the assay of endogenous GABA in blood, whole brain, and brain areas did not show any significant difference in any of the two groups. The finding that glutamic acid decarboxylase activity in brain was reduced, together with the indirect evidence of a reduction in GABA-transaminase, may account for the steady state of GABA in hepatic encephalopathy. However, the reduction in glutamic acid decarboxylase activity is in favor of a functional derangement at the GABA-ergic nerve terminals in this pathological condition.  相似文献   

8.
Radiation inactivation was used to estimate the molecular weight of the benzodiazepine (BZ), gamma-aminobutyric acid (GABA), and associated chloride ionophore (picrotoxinin/barbiturate) binding sites in frozen membranes prepared from rat forebrain. The target size of the BZ recognition site (as defined by the binding of the agonists [3H]diazepam and [3H]flunitrazepam, the antagonists [3H]Ro 15-1788 and [3H]CGS 8216, and the inverse agonist [3H]ethyl-beta-carboline-3-carboxylate) averaged 51,000 +/- 2,000 daltons. The presence or absence of GABA during irradiation had no effect on the target size of the BZ recognition site. The apparent molecular weight of the GABA binding site labelled with [3H]muscimol was identical to the BZ receptor when determined under identical assay conditions. However the target size of the picrotoxinin/barbiturate binding site labelled with the cage convulsant [35S]t-butylbicyclophosphorothionate was about threefold larger (138,000 daltons). The effects of lyophilization on BZ receptor binding activity and target size analysis were also determined. A decrease in the number of BZ binding sites (Bmax) was observed in the nonirradiated, lyophilized membranes compared with frozen membranes. Lyophilization of membranes prior to irradiation at -135 degrees C or 30 degrees C resulted in a 53 and 151% increase, respectively, in the molecular weight (target size) estimates of the BZ recognition site when compared with frozen membrane preparations. Two enzymes were also added to the membrane preparations for subsequent target size analysis. In lyophilized preparations irradiated at 30 degrees C, the target size for beta-galactosidase was also increased 71% when compared with frozen membrane preparations. In contrast, the target size for glucose-6-phosphate dehydrogenase was not altered by lyophilization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The properties of muscimol, beta-carboline (BC), and benzodiazepine (BZD) binding to crude synaptic membranes were studied in the spinal cord and cerebellum of rats. In cerebellar membranes, the density of high-affinity [3H]muscimol and [3H]6,7-dimethoxy-4-ethyl-beta-carboline ([3H]BCCM) binding sites is almost identical to that of [3H]flunitrazepam ([3H]FLU) or [3H]flumazenil (Ro 15-1788; ethyl-8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a] [1-4]benzodiazepine-3-carboxylate). In contrast to the cerebellum, the number of muscimol and BC binding sites in rat spinal cord is approximately 20-25% of the number of FLU or flumazenil binding sites. Moreover, in spinal cord membranes, BC recognition site ligands displace [3H]-flumazenil bound to those sites, with low affinity and a Hill slope significantly less than 1; the potency of the different BCs in displacing [3H]flumazenil is 20-50-fold lower in the spinal cord than in the cerebellum. [3H]Flumazenil is not displaced from spinal cord membranes by the peripheral BZD ligand Ro 5-4864 (4'-chlorodiazepam), whereas it is displaced with low affinity and a Hill slope of less than 1 (nH = 0.4) by CL 218,872 (3-methyl-6-(3-trifluoromethylphenyl)-1,2,4-triazolol[4,3-b] pyridazine). These data suggest that a large number of BZD binding sites in spinal cord (approximately 80%) are of the central-type, BZD2 subclass, whereas the BZD binding sites in cerebellum are predominantly of the central-type, BZD1 subclass.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
In rats rendered hyperthyroid by chronic treatment with L-triiodothyronine (T3) hormone there was a 21 and 27% decrease, respectively, in the number of binding sites for [3H]flunitrazepam ([3H]FNZ) and [3H]ethyl-beta-carboline-3-carboxylate ([3H]beta-CCE) without changes in affinity for the two ligands. Two weeks after thyroidectomy there was a 44% increase in [3H]FNZ sites and a 17% increase in [3H]beta-CCE binding sites. In vitro we found that T3 produces a decrease in Bmax and an increase in KD, both changes being characteristic of a mixed type of inhibition. Thyroid status dramatically affected the Ki of T3 in displacing [3H]FNZ from sites on isolated membranes of the cerebral cortex: in hypothyroid rats the Ki value was 0.9 microM, whereas in hyperthyroid rats, it was 83 microM, a 92-fold difference. In control rats, the Ki was 11 microM. These findings are discussed in relation to a possible modulation of benzodiazepine receptors by thyroid hormones.  相似文献   

11.
Crude synaptic membranes treated with Triton X-100 (TX) bound gamma-aminobutyric acid (GABA) to two classes of receptor site in Na+-free 10 mM-Tris-sulfate buffer (pH 7.4), but to only a single class of receptor site in 10 mM Tris-sulfate buffer (pH 7.4), containing 150 mM-NaCl. The high-affinity receptor site in TX membranes was specifically masked in the presence of Na+. However, TX membranes incubated in Krebs-Ringer bicarbonate solution (pH 7.4) bound GABA to two classes of receptor site despite the presence of Na+. It was found that addition of bicarbonate ions to the Na+-containing 10 mM-Tris-sulfate buffer (pH 7.4) could restore that high-affinity class of GABA receptors, rendering both classes detectable. This finding suggests that both Na+ and HCO-3 may have a regulatory function on GABA binding to the receptor.  相似文献   

12.
Abstract: [3H] γ -Aminobutyric acid ([3H]GABA) binding to purified lipids was examined in an organic solvent-aqueous partition system. In addition, the [3H]GABA binding capacity in the partition system was compared with the capacity of lipids to alter sodium-dependent [3H]GABA uptake into synaptosomes isolated from rat whole brains. [3H]GABA was found to bind to all of the lipids studied in the organic solvent-aqueous partition system [phosphatidic acid (PA), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), gangliosides, and sulfatide], although PS exhibited the greatest binding capacity. [3H]GABA uptake into synaptosomes was enhanced by PS (48.0%) but was not altered by any other lipid. PS enhancement of [3H]GABA uptake required the presence of sodium and was blocked by nipecotic acid (10 μ m ). These results suggest that PS may play a role in the sodium-dependent GABA reuptake process in the presynaptic nerve end.  相似文献   

13.
The anthelminthic natural product avermectin B1a (AVM) modulates the binding of gamma-aminobutyric acid (GABA) and benzodiazepine (BZ) receptor ligands to membrane homogenates of mammalian brain. The potent (EC50 = 40 nM) enhancement by AVM of [3H]diazepam binding to rat or bovine brain membranes resembled that of barbiturates and pyrazolopyridines in being inhibited (partially) by the convulsants picrotoxin, bicuculline, and strychnine, and by the anticonvulsants phenobarbital and chlormethiazole. The maximal effect of AVM was not increased by pentobarbital or etazolate. However, AVM affected BZ receptor subpopulations or conformational states in a manner different from pentobarbital. Further, unlike pentobarbital and etazolate, AVM did not inhibit allosterically the binding of the BZ receptor inverse agonist [3H]beta-carboline-3-carboxylate methyl ester, nor did it inhibit, but rather enhanced, the binding of the cage convulsant [35S]t-butyl bicyclophosphorothionate to picrotoxin receptor sites. AVM at submicromolar concentrations had the opposite effect of pentobarbital and etazolate on GABA receptor binding, decreasing by half the high-affinity binding of [3H]GABA and related agonist ligands, and increasing by over twofold the binding of the antagonist [3H]bicuculline methochloride, an effect that was potentiated by picrotoxin. AVM also reversed the enhancement of GABA agonists and inhibition of GABA antagonist binding by barbiturates and pyrazolopyridines. These overall effects of AVM are unique and require the presence of another separate drug receptor site on the GABA/BZ receptor complex.  相似文献   

14.
The effects of muscimol and/or incubation temperature on the inhibition of [3H]flunitrazepam receptor binding by benzodiazepine receptor ligands were investigated. At 0 degree C muscimol decreased the Ki values for some ligands as displacers of [3H]flunitrazepam binding to brain-specific sites while increasing or having no effect on the Ki values for other ligands. The Ki values for some ligands are higher at 37 degrees C than at 0 degree C but are reduced by muscimol at both 0 degrees and 37 degrees C. In contrast, the ligands whose Ki values are increased by muscimol either decreased or did not alter the Ki values at 37 degrees C as compared to those at 0 degree C. Incubation of membranes at 37 degrees C for 30 min accelerated gamma-aminobutyric acid (GABA) release by 221% over that at 0 degree C. These results indicate that changes in incubation temperature alter benzodiazepine receptor affinity for ligands via GABA.  相似文献   

15.
Abstract: The binding of [3H] γ-aminobutyric acid ([3H]GABA) and [3H]muscimol has been studied in purified synaptic plasma membrane (SPM) preparations from rat brain. Scatchard analysis of specific binding (defined as that displaced by 100 μMγ-aminobutyrate) indicated that the binding of both radiolabelled ligands was best described by a two component Langmuir adsorption isotherm. The apparent KD and Bmax values for [3H]GABA at 4°C were KD1, 20 nM; KD2,165 nM; Bmax1, 0.48 pmol;Bmax2, 6.0 pmol. mg?1; for [3H]muscimol at 4°C they were: KD1, 1.75 nM; KD2, 17.5 nM; Bmaxl, 0.84 pmol. mg?1; Bmax2, 4.8 pmol.mg?1; and for [3H]muscimol at 37°C they were: KD1, 7.0 nM; Km, 60 nM; Bmax], 0.5 pmol-mg?1; Bmax2, 7.2 pmol-mg1. Under the experimental conditions used, the similar Bmilx values for [3H]GABA and [3H]muscimol binding to the SPM preparations suggests that the high- and low-affinity components for the two radiolabeled ligands are identical. The effects of the GAB A antagonist bicuculline on the binding of [3H]muscimol at 4CC and 37°C were studied. At 4°C, antagonism of muscimol binding appeared to be competitive at the high-affinity site but noncompetitive at the low-affinity site. At 37°C, antagonism was again competitive at the high-affinity site but was of a mixed competitive/noncompetitive nature at the low-affinity site. Assuming that binding to the high-affinity site is associated with the pharmacological actions of bicuculline, the apparent KD values obtained suggest a pA2 value of 5.3 against [3H]muscimol at 4°C and 37°C. This figure is in good agreement with several estimates of the potency of bicuculline based on pharmacological measurements. Results from displacement studies using [3H]GABA and [3H]muscimol suggest that [3H]GABA might be a more satisfactory ligand than [3H]muscimol in GABA radioreceptor assays.  相似文献   

16.
The postnatal development of the gamma-aminobutyric acidA/benzodiazepine receptor (GABAR/BZDR) complex of the rat brain has been investigated using the monoclonal antibody 62-3G1 and the polyclonal rabbit antiserum A, specific for the 57,000 and 51,000 Mr receptor subunits, respectively. Both GABAR and BZDR binding activities co-precipitated during all postnatal ages. Adult rats showed a main 51,000 Mr[3H]flunitrazepam photoaffinity-labeled peptide, whereas newborn rats showed several photolabeled peptides of higher Mr. All the photolabeled peptides could be immunoprecipitated with each antibody regardless of the age of the rats. These results suggest that the physical coupling between the GABAR and the BZDR is already present in newborn animals and it is maintained afterwards during development. Glycosidase and peptidase treatments of the immunoprecipitated GABAR/BZDR complex indicated that all the [3H]flunitrazepam-photolabeled subunits are different peptides, although they seem to conserve a high degree of homology. In addition to the age-dependent heterogeneity, the results also suggest that for each age, there is heterogeneity in the subunit composition of the GABAR/BZDR complex.  相似文献   

17.
The N-methyl-D-aspartate (NMDA) receptor complex as defined by the binding of [3H]MK-801 has been solubilized from membranes prepared from both rat and porcine brain using the anionic detergent deoxycholate (DOC). Of the detergents tested DOC extracted the most receptors (21% for rat, 34% for pig), and the soluble complex, stabilized by the presence of MK-801, could be stored for up to 1 week at 4 degrees C with less than 25% loss in activity. Receptor preparations from both species exhibited [3H]MK-801 binding properties in solution very similar to those observed in membranes (Bmax = 485 +/- 67 fmol/mg of protein, KD = 11.5 +/- 2.9 nM in rat; Bmax = 728 +/- 108 fmol/mg of protein, KD = 7.1 +/- 1.6 nM in pig, n = 3). The pharmacological profile of the solubilized [3H]MK-801 binding site was virtually identical to that observed in membranes. The rank order of potency of: MK-801 greater than (-)-MK-801 = thienylcyclohexylpiperidine greater than dexoxadrol greater than SKF 10,047 greater than ketamine, for inhibition of [3H]MK-801 binding, was observed in all preparations. The receptor complex in solution exhibited many of the characteristic modulations observed in membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The bovine gamma-aminobutyric acidA/benzodiazepine receptor complex has been purified by a novel immunoaffinity chromatography method on immobilized monoclonal antibody 62-3G1. Immunopurification of the complex was achieved in a single step with an improved yield over affinity chromatography on the benzodiazepine Ro 7-1986/1. High-resolution sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the immunoaffinity-purified receptor revealed three major peptide bands of 51,000, 55,000, and 57,000 Mr which were also present in the Ro 7-1986/1 affinity-purified receptor. Peptide mapping, immunoblotting with subunit specific antibodies, and photoaffinity labeling with [3H]flunitrazepam and [3H]muscimol have been used for the identification of receptor subunits, including several which comigrated in a single band in SDS-PAGE.  相似文献   

19.
Sodium-dependent (+Na) and sodium-independent (-Na) receptive sites for gamma-aminobutyric acid (GABA) residing in or on frozen synaptic plasma membranes (SPM) of bovine cerebral cortex were characterized as to binding constants, pharmacologic specificities, and sodium dependence. The SPM fraction was then treated with various concentrations of Triton X-100 resulting in the loss of pharmacologic specificity, binding characteristics, and sodium dependence associated with +Na GABA receptive sites in SPM. The resulting junctional complex preparation (JC), i.e., a fraction enriched in junctional complexes, possessed only the pharmacologic specificity and binding constants associated with -Na receptive sites whether assayed in the presence or absence of 100 mM-NaCl. This is probably due to the detergent dispersal or solubilization of the +Na GABA receptive site. The binding constants, KD and Bmax, for -Na GABA binding in SPM were 170 nM and 4.4 pmol/mg protein, while in JC they were 186 nM and 3.7 pmol/mg protein. Under repeated washing the KD was reduced to 60 +/- 6.9 nM and the Bmax was reduced to 2.5 +/- 0.5 pmol/mg protein in JC, probably owing to the removal of endogenous ligand or inhibitor, and not to inhibition by residual Triton X-100. Multiple extraction with 0.1% or 0.5% Triton X-100 did not alter the KD or Bmax values for the binding of [3H]GABA to JC. Sodium-independent GABA binding was lost from JC membranes with the use of sodium deoxycholate, probably through solubilization.  相似文献   

20.
This study evaluated the ability of gamma-aminobutyric acid (GABA), baclofen, monovalent anions, divalent cations, and various combinations thereof to protect solubilized benzodiazepine (BZ) receptors of types 1 and 2, when contained together on the complex, against heat inactivation. Neither anions, cations, nor GABA alone provided significant protection of solubilized BZ receptors against heat, but inclusion of monovalent anions or divalent cations together with 500 microM GABA did afford protection. Monovalent anions combined with GABA (500 microM) provided 50% to full protection. Divalent cations, such as CaCl2 (2.5 mM) or MgCl2 (2.5 mM) in the presence of GABA (500 microM) yielded 45% and 24% protection, respectively. Other divalent cations tested (Zn2+, Hg2+, Co2+, and Ni2+) were poor protectors, even when combined with GABA. Monovalent anions (200 mM NaCl) and divalent cations (5 mM CaCl2) when tested together provided no protection. Similarly, baclofen (the GABA-B agonist) provided no protection, either alone or together with anions or divalent cations. These results indicate that the independent but interacting recognition sites of GABA, BZ, anions, and divalent cations, previously detected in the membrane-bound state, are retained in the solubilized state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号