首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have investigated Drosophila salivary gland determination by examining the effects of mutations in pattern forming genes on the salivary gland primordium. We find that the anterior-posterior extent of the primordium, a placode of columnar epithelial cells derived from parasegment 2, is established by the positive action of the homeotic gene Sex combs reduced (Scr). Embryos mutant for Scr lack a detectable placode, while ectopic Scr expression leads to the formation of ectopic salivary glands. In contrast, the dorsal-ventral extent of the placode is regulated negatively. Functions dependent on the decapentaplegic product place a dorsal limit on the placode, while dorsal-dependent genes act to limit the placode ventrally. We propose a model in which these pattern forming genes act early to determine the salivary gland anlage by regulating the expression of salivary gland determining genes, which in turn control genes that are involved in salivary gland morphogenesis.  相似文献   

3.
The Drosophila adult cuticle displays a stereotyped pattern of sensory organs (SOs). Its deployment requires the expression of the achaete (ac) and scute (sc) genes. Their products confer to cells of epidermal primordia (imaginal discs and histoblasts) the ability to become SO precursors (SOPs). In imaginal discs, ac and sc expression is spatially restricted to cell clusters within which one or a few cells become SOP(s). With the help of ubiquitous sc expression provided at different developmental times by a heat shock-sc (HSSC) chimeric gene, we have analyzed the response of epidermal primordia to the proneural action of the sc product, and have tested whether the patterned distribution of ac/sc products is necessary to position SOs correctly within the epidermis. Each primordium responds to HSSC expression by developing SOs only during a characteristic developmental period. In the absence of the endogenous ac and sc genes, most SOs induced by HSSC are of the correct type and are located in wild type positions. These results indicate that the capacity of primordia to respond to sc is temporally and spatially regulated, that specification of the type of SO does not depend on ac/sc, and that SO positioning utilizes topological information independent of the spatially restricted distribution of ac/sc products.  相似文献   

4.
For successful transmission to the vertebrate host, malaria sporozoites must migrate from the mosquito midgut to the salivary glands. Here, using purified sporozoites inoculated into the mosquito haemocoel, we show that salivary gland invasion is inefficient and that sporozoites have a narrow window of opportunity for salivary gland invasion. Only 19% of sporozoites invade the salivary glands, all invasion occurs within 8h at a rate of approximately 200 sporozoites per hour, and sporozoites that fail to invade within this time rapidly die and are degraded. Then, using natural release of sporozoites from oocysts, we show that haemolymph flow through the dorsal vessel facilitates proper invasion. Most mosquitoes had low steady-state numbers of circulating sporozoites, which is remarkable given the thousands of sporozoites released per oocyst, and suggests that sporozoite degradation is a rapid immune process most efficient in regions of high haemolymph flow. Only 2% of Anopheles gambiae haemocytes phagocytized Plasmodium berghei sporozoites, a rate insufficient to explain the extent of sporozoite clearance. Greater than 95% of haemocytes phagocytized Escherichia coli or latex particles, indicating that their failure to sequester large numbers of sporozoites is not due to an inability to engage in phagocytosis. These results reveal the operation of an efficient sporozoite-killing and degradation machinery within the mosquito haemocoel, which drastically limits the numbers of infective sporozoites in the mosquito salivary glands.  相似文献   

5.
6.
7.
S Sigrist  H Jacobs  R Stratmann    C F Lehner 《The EMBO journal》1995,14(19):4827-4838
While entry into mitosis is triggered by activation of cdc2 kinase, exit from mitosis requires inactivation of this kinase. Inactivation results from proteolytic degradation of the regulatory cyclin subunits during mitosis. At least three different cyclin types, cyclins A, B and B3, associate with cdc2 kinase in higher eukaryotes and are sequentially degraded in mitosis. We show here that mutations in the Drosophila gene fizzy (fzy) block the mitotic degradation of these cyclins. Moreover, expression of mutant cyclins (delta cyclins) lacking the destruction box motif required for mitotic degradation affects mitotic progression at distinct stages. Deltacyclin A results in a delay in metaphase, deltacyclin B in an early anaphase arrest and deltacyclin B3 in a late anaphase arrest, suggesting that mitotic progression beyond metaphase is ordered by the sequential degradation of these different cyclins. Coexpression of deltacyclins A, B and B3 allows a delayed separation of sister chromosomes, but interferes wit chromosome segregation to the poles. Mutations in fzy block both sister chromosome separation and segregation, indicating that fzy plays a crucial role in the metaphase/anaphase transition.  相似文献   

8.
Experimental puffs in salivary gland chromosomes of Drosophila hydei   总被引:5,自引:0,他引:5  
Summary In Drosophila hydei abnormal puffing activities could be induced by temperature shocks and treatments with 1.2% and 1.4% KCl solutions. After temperature shocks in vivo and in vitro, a number of puffs showed a similar change in activity.Other puffs were found to show a change in activity only after a distinct treatment.Some of the puffs, specific for temperature shocks, showed a change in activity only at a distinct stage of development.In discussing the results, particular attention is paid to puffs observed in common after all treatments.Dedicated to Prof. H. Bauer on the occasion of his sixtieth birthday.  相似文献   

9.
A portion of the X chromosome was examined for puffing activity shortly before puparium formation in several species of Hawaiian Drosophila. A large puff was induced by incubating excised salivary glands with ecdysone. In two of the seven species studied, the region in question has been moved by inversion to a new position relative to the banding sequence in the other species, but the reaction to ecdysone remained unchanged. Another puff, not affected by short term incubations with ecdysone, displayed different degrees of activity in some homosequential species, affording a cytological means for distinguishing these species.  相似文献   

10.
11.
The salivary gland chromosomes of Drosophila hydei Sturtevant   总被引:1,自引:0,他引:1  
H. D. Berendes 《Chromosoma》1963,14(2):195-206
  相似文献   

12.
13.
Salivary gland X chromosome puffing patterns are described for the Oregon stock of Drosophila melanogaster and for the Berkeley stock of D. simulans. In D. melanogaster regular phase specific puffing was recorded at 21 loci in the third larval instar and subsequent prepupal stage. A comparison of the X chromosome puffing patterns of male and female larvae failed to show any qualitative differences although in the males a group of puffs were active for a longer time during development than in females. The X chromosome puffing patterns of D. simulans are similar to those described for D. melanogaster although two puffs (4F 1–4 and 7B 1–3) were active in D. simulans but not in D. melanogaster. The sex differences in puffing observed in D. melanogaster were also observed in D. simulans.  相似文献   

14.
A technique for the short term organ culture of larval salivary glands of D. melanogaster is described. Cultured Puff Stage 1 glands respond to 20-OH ecdysone by initiating the cycle of puffing activity characteristic of late larval development and puparium formation. This puffing cycle involves the sequential activation of at least 125 puffs. Their response to ecdysone allows these puffs to be divided into 3 main classes: a) PS1 puffs that regress (e.g. 25AC); b) puffs activated very rapidly (within 5 min) (e.g. 23E, 74EF, 75B) and c) puffs activated only after longer periods (>4 h) (e.g. 62E, 78D, 22C, 63E and 82F). The detailed behaviour of representatives of each class is described. These data support Clever's distinction of ‘early’ and ‘late’ ecdysone responsive sites.  相似文献   

15.
Patterns of puffing activity during the third larval instar and the prepupal period of two different strains of D. melanogaster (Oregon and vg6) are compared. The variation in puffing activity observed is both quantitative (involving the mean size or timing of activity of individual puffs) and qualitative. The pattern of activity of 64% of the puffs is the same in the two strains, 12% show strain differences in puff size and 19% in the time of their activity. One puff (64C) is active only in one of the strains (vg6). In genetic experiments this puff segregates normally and the puff locus has been mapped genetically to a site coincident with, or at least very close to, the cytogenetic position of the puff. In heterozygotes the puff is homozygous only when the maternal and paternal homologues are synapsed. When the homologues are asynapsed only the homologue from the vg6 parent is puffed at 64C. With the exeption of some strains closely related to vg6 no other strain of D. melanogaster has been found to possess puffing activity at 64C. In vg6/In(3LR)C165 heterozygotes 64C forms a heterozygous puff even when the homologues are synapsed. In the discussion consideration is given to the various factors that control puff size.  相似文献   

16.
Salivary gland formation in the Drosophila embryo is dependent on the homeotic gene Sex combs reduced (Scr). When Scr function is missing, salivary glands do not form, and when SCR is expressed everywhere in the embryo, salivary glands form in new places. Scr is normally expressed in all the cells that form the salivary gland. However, as the salivary gland invaginates, Scr mRNA and protein disappear. Homeotic genes, such as Scr, specify tissue identity by regulating the expression of downstream target genes. For many homeotic proteins, target gene specificity is achieved by cooperatively binding DNA with cofactors. Therefore, it is likely that SCR also requires a cofactor(s) to specifically bind to DNA and regulate salivary gland target gene expression. Here, we show that two homeodomain-containing proteins encoded by the extradenticle (exd) and homothorax (hth) genes are also required for salivary gland formation. exd and hth function at two levels: (1) exd and hth are required to maintain the expression of Scr in the salivary gland primordia prior to invagination and (2) exd and hth are required in parallel with Scr to regulate the expression of downstream salivary gland genes. We also show that Scr regulates the nuclear localization of EXD in the salivary gland primordia through repression of homothorax (hth) expression, linking the regulation of Scr activity to the disappearance of Scr expression in invaginating salivary glands.  相似文献   

17.
The patterns of puffing activity in the proximal region of 2L of D. melanogaster have been reinvestigated and revised. Possible relationships between three puffs and the structural genes for alcohol dehydrogenase, dopa decarboxylase and the histones are discussed.  相似文献   

18.
The autosomal salivary gland chromosome puffing patterns of Drosophila simulans are described and compared with the puffing patterns of the sibling species D. melanogaster. During the late third larval instar and the prepupal period the patterns of puffing activity of these two species are similar — approximately 50% of the puffs common to both species showing identical activities. The remaining puffs differ in their timing of activity, or in their mean sizes, or in both of these parameters. A number of puffs (14) found in D. simulans have not been regularly observed in the Oregon stock of D. melanogaster but are active in other D. melanogaster strains. One puff (46 A) of D. melanogaster was absent from D. simulans and forms a heterozygous puff in hybrids, when the homologous chromosomes are synapsed. When the homologues are asynapsed a puff at 46 A is restricted to the melanogaster homologue. The puff at 63E on chromosome arm 3L is considerably smaller in D. simulans than in D. melanogaster and this size difference is autonomous in hybrids. Other puffs not common to both species behave non-autonomously in the species hybrid, even when the homologous chromosomes are asynapsed.  相似文献   

19.
Puffing patterns of chromosome arm 3 L of D. yakuba are compared with those of other members of the melanogaster species subgroup D. melanogaster and D. simulans. Several paracentric inversions on 3L have resulted in a considerable rearrangement of gene order in D. yakuba. However the basic sequence of changes in puffing activity which occurs during late larval and prepupal development is very similar to that of D. melanogaster and D. simulans. A fourth member of this species subgroup (D. teissieri) also has similar puffing patterns to those of D. melanogaster despite considerable chromosome evolution.  相似文献   

20.
Rickettsiae-like structures were found in the salivary gland cells of Drosophila auraria during different larval and prepupal developmental stages, from the early 3rd instar up to 14 hr after spiracle inversion. These microorganisms are surrounded by a membrane, are constantly intracellular, and occur singly or in groups. Their widespread occurrence in various tissues of other Drosophila species indicates that they can be considered as symbionts, but their actual functional significance (if any) is unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号