首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chicken erythrocytes parasitized by Plasmodium lophurae were cultured in vitro in the presence of glycine-2-14C, glycine-U-14C, and 14C-Na-formate for 10–16 hr. Purines isolated from the acid-soluble fraction (ASF), RNA and DNA of parasitized blood exposed to 14C-glycine contained specific activities equivalent to those of uninfected erythrocyte purines. However, parasitized blood samples incorporated 14C-Na-formate into ASF, RNA and DNA purines to a much greater extent than uninfected blood; the ratio of incorporated formate vs glycine by infected blood samples indicated the absence of a complete de novo purine pathway, but failed to rule out the existence of a partial de novo purine pathway in the host-parasite complex.Adenine-8-14C and 14C-orotic acid served as purine and pyrimidine nucleotide precursors, respectively, in the P. lophurae-chicken erythrocyte complex; 14C-uracil did not serve as an effective pyrimidine nucleotide precursor under in vitro conditions.Autoradiographic studies failed to demonstrate either the in vivo or in vitro incorporation of 3H-thymidine or 3H-uridine into the nucleic acids of intraerythrocytic stages of P. lophurae.  相似文献   

2.
We have studied purine metabolism in the culture forms of Leishmania donovani and Leishmania braziliensis. These organisms are incapable of synthesizing purines de novo from glycine, serine, or formate and require an exogenous purine for growth. This requirement is better satisfied by adenosine or hypoxanthine than by guanosine. Bothe adenine and inosine are converted to a common intermediate, hypoxanthine, before transformation to nucleotides. This is due to the activity of an adenine aminohydrolase (EC 3.5.4.2), a rather unusual finding in a eukaryotic cell. There is a preferential synthesis of adenine nucleotides, even when guanine or xanthine are used as precursors.The pathways of purine nucleotide interconversions in these Leishmania resemble those found in mammalian cells except for the absence of de novo purine biosynthesis and the presence of an adenine-deaminating activity.  相似文献   

3.
Purine-requiring mutants of Salmonella typhimurium LT2 containing additional mutations in either adenosine deaminase or purine nucleoside phosphorylase have been constructed. From studies of the ability of these mutants to utilize different purine compounds as the sole source of purines, the following conclusions may be drawn. (i) S. typhimurium does not contain physiologically significant amounts of adenine deaminase and adenosine kinase activities. (ii) The presence of inosine and guanosine kinase activities in vivo was established, although the former activity appears to be of minor significance for inosine metabolism. (iii) The utilization of exogenous purine deoxyribonucleosides is entirely dependent on a functional purine nucleoside phosphorylase. (iv) The pathway by which exogenous adenine is converted to guanine nucleotides in the presence of histidine requires a functional purine nucleoside phosphorylase. Evidence is presented that this pathway involves the conversion of adenine to adenosine, followed by deamination to inosine and subsequent phosphorolysis to hypoxanthine. Hypoxanthine is then converted to inosine monophosphate by inosine monophosphate pyrophosphorylase. The rate-limiting step in this pathway is the synthesis of adenosine from adenine due to lack of endogenous ribose-l-phosphate.  相似文献   

4.
SYNOPSIS. Purine and pyrimidine biosynthesis in the avian malaria parasite Plasmodium lophurae and its host cell, the duck erythrocyte, were investigated in vitro. Pyrimidine synthesis, as measured by the incorporation of C14-NaHCO3 into cytosine, uracil and thymine was slight in uninfected duck erythrocytes, whereas infected erythrocytes and erythrocyte-free parasites had high rates of incorporation of NaHCO3 into these bases. In addition, orotidine-5′-monophosphate pyrophosphorylase and thymidylate synthetase, 2 enzymes of the pyrimidine biosynthetic pathway, were found in cell-free extracts of the plasmodia. Purine synthesis was measured by determining the extent of incorporation of C14-Na-formate into adenine and guanine. Uninfected and infected erythrocytes had similar rates of Na-formate incroporation into adenine. whereas free parasites incorporated little of this compound into adenine, or guanine. On the other hand, the incorporation of Na-formate into guanine was 54% higher in infected erythrocytes than in uninfected erythrocytes. It is suggested that P. lophurae synthesizes purines to a limited extent, and derives most of its purines from the host erythrocyte. The greater incorporation of Na-formate into guanine by infected cells, and its low incorporation into free parasites may be accounted for by parasite conversion of host cell adenine (in the form of ATP) into guanine. Pyrimidine biosynthesis in infected cells can be accounted for by de novo synthesis by the parasite itself.  相似文献   

5.
1. Pentatrichomonas hominis was found incapable of de novo synthesis of purines. 2. Pentatrichomonas hominis can salvage adenine, guanine, hypoxanthine, adenosine, guanosine and inosine, but not xanthine for the synthesis of nucleotides. 3. HPLC tracing of radiolabelled purines or purine nucleosides revealed that adenine, adenosine and hypoxanthine are incorporated into adenine nucleotides and IMP through a similar channel while guanine and guanosine are salvaged into guanine nucleotides via another route. There appears to be no direct interconversion between adenine and guanine nucleotides. Interconversion between AMP and IMP was observed. 4. Assays of purine salvage enzymes revealed that P. hominis possess adenosine kinase; adenosine, guanosine and inosine phosphotransferases; adenosine, guanosine and inosine phosphorylases and AMP deaminase.  相似文献   

6.
The role of adenosine as a possible physiological modulator was explored by measuring its concentration in different tissues during a 24-hour period. Initially the circadian variations of adenosine and other purine compounds such as inosine, hypoxanthine, uric acid and adenine nucleotides were studied in the rat blood. A daily cyclic response was observed, with low levels of adenosine from 08.00 - 20.00 h, followed by an increase from this time on. Inosine and hypoxanthine levels were elevated during the day and low at night. The uric acid changes observed indicate that the decrease in purine catabolism coincides with a decrease in inosine and hypoxanthine levels and an increase in adenosine. The blood adenine nucleotides, energy charge and phosphorylation potential remained constant during the day and showed oscillatory changes during the night. Similar studies were made in the liver, a primary source of circulating purines. Liver adenosine was high during the night while inosine and hypoxanthine remained low along the 24 hours. The results suggest that liver purine metabolism might participate in the maintenance and renewal of the blood purine pool and in the energy state of erythrocytes in vivo.  相似文献   

7.
Plasmodium falciparum is responsible for the majority of life-threatening cases of malaria. Plasmodia species cannot synthesize purines de novo, whereas mammalian cells obtain purines from de novo synthesis or by purine salvage. Hypoxanthine is proposed to be the major source of purines for P. falciparum growth. It is produced from inosine phosphorolysis by purine nucleoside phosphorylase (PNP). Immucillins are powerful transition state analogue inhibitors of mammalian PNP and also inhibit P. falciparum PNP as illustrated in the accompanying article (Kicska, G. A., Tyler, P. C., Evans, G. B., Furneaux, R. H., Kim, K., and Schramm, V. L. (2002) J. Biol. Chem. 277, 3219-3225). This work tests the hypothesis that erythrocyte and P. falciparum PNP are essential elements for growth and survival of the parasite in culture. Immucillin-H reduces the incorporation of inosine but not hypoxanthine into nucleic acids of P. falciparum and kills P. falciparum cultured in human erythrocytes with an IC(50) of 35 nm. Growth inhibition by Imm-H is reversed by the addition of hypoxanthine but not inosine, demonstrating the metabolic block at PNP. The concentration of Imm-H required for inhibition of parasite growth varies as a function of culture hematocrit, reflecting stoichiometric titration of human erythrocyte PNP by the inhibitor. Human and P. falciparum PNPs demonstrate different specificity for inhibition by immucillins, with the 2'-deoxy analogues showing marked preference for the human enzyme. The IC(50) values for immucillin analogue toxicity to P. falciparum cultures indicate that inhibition of PNP in both the erythrocytes and the parasite is necessary to induce a purine-less death.  相似文献   

8.
Abstract: Propentofylline is a novel neuroprotective agent that has been shown to act as an adenosine transport inhibitor as well as an adenosine receptor antagonist. In the present series of experiments we have compared the effects of propentofylline with those of known adenosine transport inhibitors and receptor antagonists on the formation of adenosine in rat hippocampal slices. The ATP stores were labeled by incubating the slices with [3H]-adenine. The total 3H overflow and the overflow of endogenous and 3H-labeled adenosine, inosine, and hypoxanthine were measured. Adenosine release, secondary to ATP breakdown, was induced both by hypoxia/hypoglycemia and by electrical field stimulation. Propentofylline (20–500 µM) increased the release of endogenous and radiolabeled adenosine, without increasing the total release of purines. Thus, the drug altered the pattern of released purines, i.e., increasing adenosine and decreasing inosine and hypoxanthine. This pattern, which was observed when purine release was induced both by electrical field stimulation and by hypoxia/hypoglycemia, was shared by the nucleoside transport inhibitor dipyridamole (1 µM) and by mioflazine (1 µM) and nitrobenzylthioinosine (1 µM). By contrast, other xanthines, including theophylline (100 µM) and 8-cyclopentyltheophylline (10 µM), enprofylline (100 µM), or torbafylline (300 µM), if anything, increased the total release of purines without alterations of the pattern of release. These results indicate that nucleoside transport inhibitors can decrease the release of purines from cells and at the same time increase the concentration of extracellular adenosine, possibly by preventing its uptake and subsequent metabolism. This change in purine metabolism may be beneficial with regard to cell damage after ischemia. The results also indicate that propentofylline behaves in such a potentially beneficial manner.  相似文献   

9.
Plasmodium falciparum is a purine auxotroph, salvaging purines from erythrocytes for synthesis of RNA and DNA. Hypoxanthine is the key precursor for purine metabolism in Plasmodium. Inhibition of hypoxanthine-forming reactions in both erythrocytes and parasites is lethal to cultured P. falciparum. We observed that high concentrations of adenosine can rescue cultured parasites from purine nucleoside phosphorylase and adenosine deaminase blockade but not when erythrocyte adenosine kinase is also inhibited. P. falciparum lacks adenosine kinase but can salvage AMP synthesized in the erythrocyte cytoplasm to provide purines when both human and Plasmodium purine nucleoside phosphorylases and adenosine deaminases are inhibited. Transport studies in Xenopus laevis oocytes expressing the P. falciparum nucleoside transporter PfNT1 established that this transporter does not transport AMP. These metabolic patterns establish the existence of a novel nucleoside monophosphate transport pathway in P. falciparum.  相似文献   

10.
Toxoplasma gondii, growing exponentially in heavily infected mutant Chinese hamster ovary cells that had a defined defect in purine biosynthesis, did not incorporate [U-14C]glucose or [14C]formate into the guanine or adenine of nucleic acids. Intracellular parasites therefore must be incapable of synthesizing purines and depend on their host cells for them. Extracellular parasites, which are capable of limited DNA and RNA synthesis, efficiently incorporated adenosine nucleotides, adenosine, inosine, and hypoxanthine into their nucleic acids; adenosine 5′-monophosphate was the best utilized precursor. Extracellular parasites incubated with ATP labeled with 3H in the purine base and 32P in the α-phosphate incorporated the purine ring 50-fold more efficiently than they did the α-phosphate. Thus, ATP is largely degraded to adenosine before it can be used by T. gondii for nucleic acid synthesis. Two pathways for the conversion of adenosine to nucleotides appear to exist, one involving adenosine kinase, the other hypoxanthine—guanine phosphoribosyl transferase. In adenosine kinase-less mutant parasites, the efficiency of incorporation of ATP or adenosine was reduced by 75%, which indicates the adenosine kinase pathway was predominant. Extracellular parasites incorporated ATP into both the adenine and the guanine of their nucleic acids, so ATP from the host cell could supply the entire purine requirement of T. gondii. However, ATP generated by oxidative phosphorylation in the host cell is not essential for parasites because they grew normally in a cell mutant that was deficient in aerobic respiration and almost completely dependent upon glycolysis.  相似文献   

11.
The intraerythrocytic human malaria parasite, Plasmodium falciparum, requires a source of hypoxanthine for nucleic acid synthesis and energy metabolism. Adenosine has been implicated as a major source for intraerythrocytic hypoxanthine production via deamination and phosphorolysis, utilizing adenosine deaminase and purine nucleoside phosphorylase, respectively. To study the expression and characteristics of human malaria purine nucleoside phosphorylase, P. falciparum was successfully cultured in purine nucleoside phosphorylase-deficient human erythrocytes to an 8% parasitemia level. Purine nucleoside phosphorylase activity was undetectable in the uninfected enzyme-deficient host red cells but after parasite infection rose to 1.5% of normal erythrocyte levels. The parasite purine nucleoside phosphorylase was not cross-reactive with antibody against human enzyme, exhibited a calculated native molecular weight of 147,000, and showed a single major electrophoretic form of pI 5.4 and substrate specificity for inosine, guanosine and deoxyguanosine but not xanthosine or adenosine. The Km values for substrates, inosine and guanosine, were 4-fold lower than that for the human erythrocyte enzyme. In these studies we have identified two novel potent inhibitors of both human erythrocyte and parasite purine nucleoside phosphorylase, 8-amino-5'-deoxy-5'-chloroguanosine and 8-amino-9-benzylguanine. These enzyme inhibitors may have some antimalarial potential by limiting hypoxanthine production in the parasite-infected erythrocyte.  相似文献   

12.
We have previously described an action-potential and Ca2+-dependent form of adenosine release in the molecular layer of cerebellar slices. The most likely source of the adenosine is the parallel fibres, the axons of granule cells. Using microelectrode biosensors, we have therefore investigated whether cultured granule cells (from postnatal day 7–8 rats) can release adenosine. Although no purine release could be detected in response to focal electrical stimulation, purine (adenosine, inosine or hypoxanthine) release occurred in response to an increase in extracellular K+ concentration from 3 to 25 mM coupled with addition of 1 mM glutamate. The mechanism of purine release was transport from the cytoplasm via an ENT transporter. This process did not require action-potential firing but was Ca2+dependent. The major purine released was not adenosine, but was either inosine or hypoxanthine. In order for inosine/hypoxanthine release to occur, cultures had to contain both granule cells and glial cells; neither cellular component was sufficient alone. Using the same stimulus in cerebellar slices (postnatal day 7–25), it was possible to release purines. The release however was not blocked by ENT blockers and there was a shift in the Ca2+ dependence during development. This data from cultures and slices further illustrates the complexities of purine release, which is dependent on cellular composition and developmental stage.  相似文献   

13.
The uptake and utilization of purine nucleosides and purines in microplasmodia of Physarum polycephalum were investigated. The results revealed a unique pattern, namely that exogenous purine nucleosides are readily taken up and metabolised, while free purine bases are hardly taken up. The pathways of incorporation have been elucidated in studies with whole cells and with cell-free extracts. The ribonucleosides (adenosine, inosine and guanosine) can be converted into ribonucleotides in two ways; either directly catalysed by a kinase or by a phosphorolytic cleavage to the free base (adenine, hypoxanthine and guanine respectively) which can then be activated by a purine phosphoribosyltransferase. Apparently the purine phosphoribosyltransferases do not react with exogenous purine bases. The deoxyribonucleosides (deoxyadenosine, deoxyinosine and deoxyguanosine) are also phosphorolysed by purine nucleoside phosphorylase to adenine, hypoxanthine and guanine respectively. A portion of deoxyadenosine is directly phosphorylated to dAMP. It appears that only a minor part of the soluble nucleotide pool can be synthesised from exogenous supplied nucleosides and that none of the deoxyribonucleosides specifically label DNA. There is no catabolism of the purine moiety. In agreement with the above findings, we have found that analoguees of purine nucleosides are more toxic than their corresponding purine base analogues.  相似文献   

14.
Miller EF  Vaish S  Maier RJ 《PloS one》2012,7(6):e38727
The ability to synthesize and salvage purines is crucial for colonization by a variety of human bacterial pathogens. Helicobacter pylori colonizes the gastric epithelium of humans, yet its specific purine requirements are poorly understood, and the transport mechanisms underlying purine uptake remain unknown. Using a fully defined synthetic growth medium, we determined that H. pylori 26695 possesses a complete salvage pathway that allows for growth on any biological purine nucleobase or nucleoside with the exception of xanthosine. Doubling times in this medium varied between 7 and 14 hours depending on the purine source, with hypoxanthine, inosine and adenosine representing the purines utilized most efficiently for growth. The ability to grow on adenine or adenosine was studied using enzyme assays, revealing deamination of adenosine but not adenine by H. pylori 26695 cell lysates. Using mutant analysis we show that a strain lacking the gene encoding a NupC homolog (HP1180) was growth-retarded in a defined medium supplemented with certain purines. This strain was attenuated for uptake of radiolabeled adenosine, guanosine, and inosine, showing a role for this transporter in uptake of purine nucleosides. Deletion of the GMP biosynthesis gene guaA had no discernible effect on mouse stomach colonization, in contrast to findings in numerous bacterial pathogens. In this study we define a more comprehensive model for purine acquisition and salvage in H. pylori that includes purine uptake by a NupC homolog and catabolism of adenosine via adenosine deaminase.  相似文献   

15.
To evaluate the regulation of adenine nucleotide metabolism in relation to purine enzyme activities in rat liver, human erythrocytes and cultured human skin fibroblasts, rapid and sensitive assays for the purine enzymes, adenosine deaminase (EC 2.5.4.4), adenosine kinase (EC 2.7.1.20), hypoxanthine phosphoribosyltransferase (EC 2.4.28), adenine phosphoribosyltransferase (EC 2.4.2.7) and 5′-nucleotidase (EC 3.1.3.5) were standardized for these tissues. Adenosine deaminase was assayed by measuring the formation of product, inosine (plus traces of hypoxanthine), isolated chromatographically with 95% recovery of inosine. The other enzymes were assayed by isolating the labelled product or substrate nucleotides as lanthanum salts. Fibroblast enzymes were assayed using thin-layer chromatographic procedures because the high levels of 5′-nucleotidase present in this tissue interferred with the formation of LaCl3 salts. The lanthanum and the thin-layer chromatographic methods agreed with-in 10%.Liver cell sap had the highest activities of all purine enzymes except for 5′-nucleotidase and adenosine deaminase which were highest in fibroblasts. Erythrocytes had lowest activities of all except for hypoxanthine phosphoribosyltransferase which was intermediate between the liver and fibroblasts. Erythrocytes were devoid of 5′-nucleotidase activity. Hepatic adenosine kinase activity was thought to control the rate of loss of adenine nucleotides in the tissue.Erythrocytes had excellent purine salvage capacity, but due to the relatively low activity of adenosine deaminase, deamination might be rate limiting in the formation of guanine nucleotides. Fibroblasts, with high levels of 5′-nucleotidase, have the potential to catabolize adenine nucleotides beyond the control of adenosine kinase. The purine salvage capacity in the three tissues was erythrocyte > liver > fibroblasts. Based on purine enzyme activities, erythrocytes offer a unique system to study adenine salvage; fibroblasts to study adenine degradation; and liver to study both salvage and degradation.  相似文献   

16.
The requirements for purine nucleotide synthesis, the effects of purine analogues, and the metabolism of adenine in the bacterium Helicobacter pylori were investigated employing cell culture techniques and one-dimensional NMR spectroscopy. Bacterial cells grew and proliferated in media lacking preformed purines, indicating that H. pylori can synthesize purine nucleotides de novo to meet its requirements. Blocking of this pathway in the absence of sufficient preformed purines for salvage nucleotide synthesis led to cell death. Analogues of purine nucleobases and nucleosides taken up by the cells were cytotoxic, suggesting that salvage routes could be exploited for therapy. Adenine or hypoxanthine were able to substitute for catalase in supporting cell growth and proliferation, suggesting a role for these bases in maintaining the microaerophilic conditions essentially required by the bacterium. Received: 23 May 1997 / Accepted: 17 July 1997  相似文献   

17.
Extracellular (EC) adenosine, hypoxanthine, xanthine, and inosine concentrations were monitored in vivo in the striatum during steady state, 15 min of complete brain ischemia, and 4 h of reflow and compared with purine and nucleotide levels in the tissue. Ischemia was induced by three-vessel occlusion combined with hypotension (50 mm Hg) in male Sprague-Dawley rats. EC purines were sampled by microdialysis, and tissue adenine nucleotides and purine catabolites were extracted from the in situ frozen brain at the end of the experiment. ATP, ADP, and AMP were analyzed with enzymatic fluorometric techniques, and adenosine, hypoxanthine, xanthine, and inosine with a modified HPLC system. Ischemia depleted tissue ATP, whereas AMP, adenosine, hypoxanthine, and inosine accumulated. In parallel, adenosine, hypoxanthine, and inosine levels increased in the EC compartment. Adenosine reached an EC concentration of 40 microM after 15 min of ischemia. Levels of tissue nucleotides and purines normalized on reflow. However, xanthine levels increased transiently (sevenfold). In the EC compartment, adenosine, inosine, and hypoxanthine contents normalized slowly on reflow, whereas the xanthine content increased. The high EC levels of adenosine during ischemia may turn off spontaneous neuronal firing, counteract excitotoxicity, and inhibit ischemic calcium uptake, thereby exerting neuroprotective effects.  相似文献   

18.
Cape buffalo serum contains xanthine oxidase which generates trypanocidal H2O2 during the catabolism of hypoxanthine and xanthine. The present studies show that xanthine oxidase-dependent trypanocidal activity in Cape buffalo serum was also elicited by purine nucleotides, nucleosides, and bases even though xanthine oxidase did not catabolize those purines. The paradox was explained in part, by the presence in serum of purine nucleoside phosphorylase and adenosine deaminase, that, together with xanthine oxidase, catabolized adenosine, inosine, hypoxanthine, and xanthine to uric acid yielding trypanocidal H2O2. In addition, purine catabolism by trypanosomes provided substrates for serum xanthine oxidase and was implicated in the triggering of xanthine oxidase-dependent trypanocidal activity by purines that were not directly catabolized to uric acid in Cape buffalo serum, namely guanosine, guanine, adenine monophosphate, guanosine diphosphate, adenosine 3′:5-cyclic monophosphate, and 1-methylinosine. The concentrations of guanosine and guanine that elicited xanthine oxidase-dependent trypanocidal activity were 30–270-fold lower than those of other purines requiring trypanosome-processing which suggests differential processing by the parasites.  相似文献   

19.
Katahira R  Ashihara H 《Planta》2006,225(1):115-126
To find general metabolic profiles of purine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, we looked at the in situ metabolic fate of various 14C-labelled precursors in disks from growing potato tubers. The activities of key enzymes in potato tuber extracts were also studied. Of the precursors for the intermediates in de novo purine biosynthesis, [14C]formate, [2-14C]glycine and [2-14C]5-aminoimidazole-4-carboxyamide ribonucleoside were metabolised to purine nucleotides and were incorporated into nucleic acids. The rates of uptake of purine ribo- and deoxyribonucleosides by the disks were in the following order: deoxyadenosine > adenosine > adenine > guanine > guanosine > deoxyguanosine > inosine > hypoxanthine > xanthine > xanthosine. The purine ribonucleosides, adenosine and guanosine, were salvaged exclusively to nucleotides, by adenosine kinase (EC 2.7.1.20) and inosine/guanosine kinase (EC 2.7.1.73) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Inosine was also salvaged by inosine/guanosine kinase, but to a lesser extent. In contrast, no xanthosine was salvaged. Deoxyadenosine and deoxyguanosine, was efficiently salvaged by deoxyadenosine kinase (EC 2.7.1.76) and deoxyguanosine kinase (EC 2.7.1.113) and/or non-specific nucleoside phosphotransferase (EC 2.7.1.77). Of the purine bases, adenine, guanine and hypoxanthine but not xanthine were salvaged for nucleotide synthesis. Since purine nucleoside phosphorylase (EC 2.4.2.1) activity was not detected, adenine phosphoribosyltransferase (EC 2.4.2.7) and hypoxanthine/guanine phosphoribosyltransferase (EC 2.4.2.8) seem to play the major role in salvage of adenine, guanine and hypoxanthine. Xanthine was catabolised by the oxidative purine degradation pathway via allantoin. Activity of the purine-metabolising enzymes observed in other organisms, such as purine nucleoside phosphorylase (EC 2.4.2.1), xanthine phosphoribosyltransferase (EC 2.4.2.22), adenine deaminase (EC 3.5.4.2), adenosine deaminase (EC 3.5.4.4) and guanine deaminase (EC 3.5.4.3), were not detected in potato tuber extracts. These results suggest that the major catabolic pathways of adenine and guanine nucleotides are AMP → IMP → inosine → hypoxanthine → xanthine and GMP → guanosine → xanthosine → xanthine pathways, respectively. Catabolites before xanthosine and xanthine can be utilised in salvage pathways for nucleotide biosynthesis.  相似文献   

20.
A robust analytical method, using reversed-phase high-performance liquid chromatography with gradient elution and photodiode-array detection, was used to measure six purines and β-NAD+ in acid-soluble extracts of samples taken from six different regions of human term placenta. Resolution of the analyte peaks in chromatographic profiles of the extracts, and the use of optimized integration, allowed simultaneous quantitation of all seven analytes from a single chromatogram. Peak purity was confirmed via on-line analysis of peak spectra, utilizing the purity parameter treatment of spectral data. Major placental purines were adenosine, inosine, hypoxanthine and adenine. Except for adenine, concentrations of the purines varied by two-fold or more between different regions of each placenta, but concentration ratios, i.e., adenosine/inosine and inosine/hypoxanthine, were similar. The findings indicate that the pathway of ATP breakdown to hypoxanthine in ischemic human term placenta is via adenosine, and that regional differences in placental concentrations of adenosine and its metabolites may result from regional differences in degree of ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号