首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alkaline phosphatase activities of the diazotrophic marine cyanobacterium Trichodesmium were studied among natural populations in the northern Red Sea and in laboratory cultures of Trichodesmium sp. strain WH9601. Open-water tuft-shaped colonies of Trichodesmium showed high alkaline phosphatase activities with 2.4–11.7 μmol p-nitrophenylphosphate (PNPP) hydrolyzed·μg chl a 1·h 1, irrespective of date or origin of the sample. Coastal populations of the Trichodesmium tuft colonies had low alkaline phosphatase activities with 0.2–0.5 μmol PNPP·μg chl a 1·h 1. An exception was the Trichodesmium fall maximum, when both tuft colonies and the plankton community (<100 μm) had alkaline phosphatase activities of 0.6–7.4 μmol PNPP·μg chl a 1·h 1. Likewise, the more rare puff and bow-tie colonies of Trichodesmium spp. in coastal waters had elevated alkaline phosphatase activities (0.8–1.6 μmol PNPP·μg chl a 1·h 1) as compared with tuft colonies coinhabiting the same waters. Intact filaments of tuft-forming Trichodesmium sp. strain WH9601 from phosphate-replete cultures had a base alkaline phosphatase activity of 0.5 μmol PNPP·μg chl a 1·h 1. This activity underwent a 10-fold increase in phosphate-deplete cultures and in cultures supplied with glycerophosphate as the sole P source. The elevated level of alkaline phosphatase activity was sustained in P-deplete cultures, but it declined in cultures with glycerophosphate. The decline is suggested to result from feedback repression of alkaline phosphatase synthesis by the phosphate generated in the glycerophosphate hydrolysis. The enhanced alkaline phosphatase activities of Trichodesmium spp. populations provide evidence that P stress is an important factor in the ecology of Trichodesmium in the northern Red Sea.  相似文献   

2.
D. C. Seel 《Ibis》1970,112(1):1-14
Nestling survival and nestling weights in P. domesticus and P. montanus were studied in 1961 and 1963–64 at Oxford. This paper concludes a study of factors influencing the reproductive rate. Taking all losses into account, P. domesticus reared an average of 1.6 nestlings per brood (45%) and P. montanus 2.7 nestlings per brood (59%). About a third of all broods of both species failed completely to survive the nestling period. In P. domesticus these failures were most numerous in the middle part of the breeding season and are attributed to nutritional deficiencies derived from unsuitable food provided as a consequence of a seasonal food shortage, but in P. montanus complete brood failures occurred mostly in the second half of the nestling period and are attributed to predation. 43 broods of P. domesticus and one brood of P. montanus were weighed daily. Those of P. domesticus were classified as (1) successful broods—in these some nestlings died in the larger brood-sizes, apparently through starvation; (2) long-lived unsuccessful broods—in these the nestlings died at intervals and failure was attributed to nutritional deficiencies; and (3) short-lived unsuccessful broods. A slight decrease in the weights of nestlings in successful broods at the end of the nestling period is attributed to the utilization of insulating fat facilitated by the completion of the feather covering. Nestlings of both species left the nest at 88–89% of the adult weight. Taking all “successful” broods together, the percentage survival rates on nestling day 131/2 (day of hatching = day 1/2) in P. domesticus were 81–82% in b/2–3, 70% in b/4 and 56% in b/5 (a situation paralleled in this respect by P. hispaniolensis), but in P. montanus they were c. 82% in all brood-sizes. Hence, in P. domesticus b/4 probably gave rise to the largest number of nestlings reared per brood, while in P. montanus most nestlings were produced by the largest brood-size. Weighings of many broods on day 131/2 showed two trends in the weight of the nestlings: (1) in both species the weight of the nestling decreased as the number of survivors from each initial brood-size decreased; (2) between successive initial brood-sizes the weight of the nestling of P. domesticus decreased with increasing brood-size but in P. montanus there was no change. The losses in the larger broods of P. domesticus occurred mostly in the first half of the nestling period—apparently in association with the asynchronous hatching of the eggs and as a consequence of the limitation on the feeding frequency of the adults. Nestling survival was lowest in the larger broods in the middle of the breeding season and contrasted with the mid-season increase in mean clutch-size. It is suggested that in the study area there was a (possibly unnatural) shortage of food suitable for nestlings in the middle of the season. It is suggested that in P. domesticus the unexpectedly low feeding frequencies of the adults with large broods, apparently causing their low survival rates, may be an adaptation evolved to obtain the maximum amount of food in the presence of other adults which would be attracted to a food source by higher rates of activity. The breeding success calculated from data derived from the whole of this study was 35% for P. domesticus and 49% for P. montanus (2.9 and 3.9 nestlings per breeding pair per year respectively). It is suggested that the population of P. domesticus was much closer to a critical limiting factor, e.g. food supply, than that of P. montanus. This may account for the striking differences between the two species in their nestling survival rates and their nestling weights in relation to brood-size; in particular, the success of the larger broods of P. montanus may have been a temporary phenomenon.  相似文献   

3.
Cellular nutrient concentrations and nutrient uptake rates of Cladophora glomerata (L.) Kuetzing were determined during summer and fall in 1989–1990 at a site on the upper Clark Fork of the Columbia River, Montana. Both physiological tests indicated that Cladophora growth is likely to be limited by nitrogen during late summer-early fall. Maximum uptake rates of ammonia-N and nitrate-N were 5935–6991 and 507–984 μg · g DW?1· h?1, respectively, during July–October when dissolved inorganic nitrogen (DIN) concentrations in the river were less than 10 μg · L?1. During November-December, when DIN was 72–376 μg · L?1, maximum ammonia-N uptake was 1137–1633 μg · g DW?1· h?1 and maximum nitrate-N uptake was 0–196 μg · g DW?1· h?1. Cellular nitrogen during summer–early fall was 0.78–1.80% of Cladophora dry weight, frequently at or below 1.1%, a level suggested as a critical minimum N concentration for maximum growth. In contrast, cellular P was 0.18–0.36% of dry weight, 3–6 times the suggested critical P concentration of 0.06%. Molar ratios of cellular N:P (< 16:1) and DIN: SRP (< 4:1) during late summer-early fall also indicated potential N limitation. Cellular N and P from Cladophora collected from a second site influenced by a municipal wastewater discharge in 1990 displayed similar seasonal trends. At both sites, seasonal fluctuations in DIN were closely tracked by changes in cellular N, Cellular P, however, increased through the growing season despite declining levels of SRP in the river.  相似文献   

4.
Given their rapid growth and nutrient assimilation rates, Porphyra spp. are good candidates for bioremediation. The production potential of two northeast U.S. Porphyra species currently in culture (P. purpurea and P. umbilicalis) was evaluated by measuring rates of photosynthesis (as O2 evolution) of samples grown at 20° C. Gametophytes of P. umbilicalis photosynthesized at rates that were 80% higher than those of P. purpurea over 5–20° C at both sub‐saturating and saturating irradiances (37 and 289 μmol photons m?2 s?1). Porphyra umbilicalis was both more efficient at low irradiances (higher alpha) and had a higher Pmax than did P. purpurea (23.0 vs. 15.6 μmol O2 g?1 DW min?1), suggesting that P. umbilicalis is a better choice for mass culture where self‐shading may be severe. The photosynthesis‐irradiance relationship for the Conchocelis stage of P. purpurea was also examined. Tufts of filaments, grown at 10, 15, and 20° C, were assayed at growth temperatures at irradiances ranging from 0–315 μmol photons m?2 s?1. Tufts were slightly more productive at 15° than at 10° C, but only ca. 4–6% as productive as gametophytes. Maximum rates of net photosynthesis were reduced by 66–74% in tufts grown at 20° C (only about 2% of gametophytes). The Conchocelis stage, however, need not limit mariculture operations; once Conchocelis cultures are established, they can be maintained over the long‐term as ready sources of spores for net seeding.  相似文献   

5.
We have examined aspects of the bioluminescence of 5 clones of Dissodinium, 1 clone of Pyrocystis acuta, 4 clones of Pyrocystis fusiformis, and 5 clones of Pyrocystis noctiluca. All clones produced the same color bioluminescence with an intensity peak near 474 nm. The in vivo emission spectra of these clones agreed with those previously determined, for 4 other species of marine dinoflagellates. The amount of light emitted by the dinoflagellates in scotophase when mechanically stimulated to exhaustion was determined for most of the clones. The largest species, P. noctiluca and P. fusiformis, emitted 37–89 × 109 photons cell?1 and 23–62 × 109 photons cell?1, respectively, about a thousand, times as much light as Gonyaulax species. Pyrocystis acuta emitted 3–6 × 109 photons cell?1. Three of the 5 clones of Dissodinium were bioluminescent. The range for 3 clones was 5–13 × 109 photons cell?1. All 5 clones of Dissodinium are morphologically distinct. Both the clones of Dissodinium and Pyrocystis produced much higher numbers of photons per cell nitrogen (ca. 7–50 times) than Gonyaulax polyedra or Pyrodinium bahamense. The data suggested that enzyme turnover occurred in the reactions producing light during mechanical stimulation of Dissodinium and Pyrocystis species.  相似文献   

6.
C F Wu  S H Chen 《Biopolymers》1988,27(7):1065-1083
Small angle neutron scattering (SANS) and small angle x-ray scattering (SAXS) techniques were used to study two series of concentrated protein solutions containing horse heart cytochrome C (a spherical protein molecule with hydrated diameter σH = 32.6 Å and pI = 10.2) at pD = 2.9 and 11.9, respectively. The concentration of the protein ranges from 1.2 to 24 g/dL. A titration experiment was made to determine the protein charge (Zt) for each sample. Since the form factor of the protein was already determined from a previous experiment [C. F. Wu and S. H. Chen (1987) J. Chem. Phys. 87 , 6199–6205] at pD = 6.8, the present series of experiments was used to test the effect of protein charge on the interparticle structure factor. It is demonstrated that the absolute values of both SANS and SAXS cross sections can be calculated with a theory (called the generalized one-component macroion theory) of the interparticle structure factor, which contains a single unknown parameter, the effective protein charge Zp. Comparison of Zt and Zp thus obtained shows that when the bare surface charge density of the protein calculated by using Zt exceeds about 3 μC/cm2, Zp becomes much smaller than Zt. This is interpreted as a charge renormalization phenomenon similar to that known to occur for highly charged polystyrene latex particles in aqueous solution [S. Alexander, P. M. Chaikin, P. Grant, G. J. Morales, and P. Pincus (1984) J. Chem. Phys. 80 , 5776–5781].  相似文献   

7.
Abstract: In NG 108–15 clonal cells, extracellular application of micromolar concentrations of serotonin [5-hydroxy-tryptamine (5-HT)] and substance P induces the opening of a cation permeability monitored by the influx of [14C]-guanidinium. The serotoninergic component of this cation permeability Is linked to 5-HT3 receptor activation, whereas the substance P component probably involves an “N-terminal-dependent substance P receptor.” In this study, [14C]guanidinium influx triggered by 1 μM 5-HT plus 10 μM substance P was shown to be insensitive to tetrodotoxin, verapamil, diltiazem, nimodipine, and ω-conotoxin, as expected from a process independent of voltage-sensitive sodium and calcium channels. In contrast, [14C]guanidinium influx was inhibited by millimolar concentrations of extracellular calcium and by the chelation of intracellular calcium by bis-O-aminophenoxyethanetetraacetic acid. The inhibition by extracellular calcium apparently involved a competition between the divalent cation and [14C]guanidinium for the same channel. When NG 108–15 cells were exposed to X537A, an ionophore that specifically induces release of calcium from intracellular stores, [14C]guanidinium uptake was markedly increased even in the absence of 5-HT and/or substance P. Conversely, [14C]guanidinium influx due to the latter substances could be reversibly and dose-dependently blocked by various drugs that possess calmodulin-antagonizing properties. These results strongly suggest that the cation permeability opened by 5-HT and substance P in NG 108–15 cells involves a calcium/calmodulin-dependent process. However, as the phosphodiesterase inhibitor isobutylmethylxanthine, the nitric oxide synthase inhibitor A/monomethylarginine, the protein kinase C inhibitor staurosporine, and the protein kinase C activator 12-O-tetradeca-noylphorbol 13-acetate did not alter [14C]guanidinium influx in NG 108–15 cells exposed to 5-HT and substance P., this process probably does not involve the calcium-dependent nitric oxide pathway and protein kinase C activation.  相似文献   

8.
Seedlings of barley (Hordeum vulgare L. cvs Salka and Zita), buckwheat (Fagopyrum esculentum Moench) and rape (Brassica napus L. ssp. napus cv. Line) were raised at 8 or 10 different extenral P concentrations in the range 0–2000 μM. Apart from P, the nutrient solutions were complete. Phosphate influx in roots of different P status was determined by use of a nutrient solution containing 0.1 mM32P-labelled phosphate. A double labelling technique was used for simultaneous determination of influx (33P) and efflux (32P) of phosphorus by roots of barley and rape with three selected P levels. Flux determinations were also done in presence of a metabolic uncoupler (2,4-dinitrophenol) and a protein synthesis inhibitor (cycloheximide). Influx of phosphate was maximal at a certin optimal P level of the roots and decreased at both lower and higher P levels. Maximum phosphate influex [μmol (g root)-?1 h?1] were: rape 4,4, buckwheat 2.2, barley cv. Salka 1.6, barley cv. Zita 1.5. Both Hill plots and plots of the untransformed decreasing phosphate influx vs root P concentrations above the optimal were linear and had high correlation coefficients. The Hill coefficient varied between -3.1 and -4.2. The decrease of phosphate influx from the maximum to the lowest value at the highest P concentration of the root was 60–70%. Hence, phosphate influex appeared to be regulated through negative feedback by the internal level of phosphorous in the roots. The regulation mechanism seems bascially similar for the three species and may be of an allosteric type. P efflux from roots of low and optimal (with regard to P influx) P status was 15–20% of the simultaneous P influx. Contary to P influx, P efflux increased at high P status and almost eliminated (barley) or halved (rape) net P uptake. 2,4-Dinitrophenol reduced both P influx and P efflux by low P roots and gave linearly increasing P efflux with increasing root P status. This indicates that P efflux partly occurred by counter transport and ion exchange at the uptake sites, partly by passive P efflux along an electrochemical potential gradient. Phosphate influx was not affected by inhibition of barley root growth with cycloheximide, but P efflux increased considerably.  相似文献   

9.
The work presents the findings of the laboratory and in situ studies of ctenophore Pleurobrachia pileus O.F. Müller, 1776 which have shown that this species has bioluminescent properties. These organisms were considered non-luminous before. P. pileus bioluminescence was studied on board RV Professor Vodyanitsky during its 116th voyage. Sampling live organisms was preceded by probing with the Salpa MA+ probe to register the daily maximum glow in redoxcline, which in this zone was recorded, as a rule, in the depth range of 60–70 m, where dense clusters of P. pileus were formed at that time. The samples of ctenophores were taken by a Bogorov–Rass plankton net. After the net was closed, it was lifted to the surface at a speed of 0.4–0.5 m s−1. It was shown that only at a temperature not exceeding 14°C, the P. pileus remained alive for 2–3 days. The data provided indicate that the temperature above 14°C is close to the maximum permissible for P. pileus; therefore, chemical and mechanical stimulation experiments were carried out at this temperature (14°C) to agitate ctenophores luminescence. Though, the nature of their signal was significantly different. The total percentage of luminous organisms from the entire catch was 32.43%, which unequivocally proves that P. pileus glows and makes a significant contribution to the intensity of the glow at great depths in redoxcline.  相似文献   

10.
The cell wall of the red microalgae Porphyridium sp. (UTEX 637) comprises a complex amorphous polysaccharide (6–7 × 106 Da). The polysaccharide is made up of xylose, glucose, and galactose as the main sugars, as well as some minor sugars, protein, sulfate, and glucuronic acid, the latter two conferring a negative charge on the polysaccharide. In this study, we used synchronized cultures as one of the ways of unraveling the mechanism of biosynthesis of this complex polysaccharide by following cell-wall formation during the cell cycle. Synchronization of Porphyridium sp. was achieved with an alternating light:dark regime of 12:12 h LD and dilution of the culture at the end of the cycle. Under these conditions, cell duplication occurred between the 12th and 14th hours of the cycle. The following order of building toward formation of the final polysaccharide appeared to take place: Intermediate polysaccharides with molecular masses ranging from 0.5 × 106 to 2 × 106 Da appeared in succession during hours 2–6 of the cycle, and the full-sized polysaccharide was detected by the 8th hour. At the beginning of the cycle, xylose was the predominant sugar. Sulfur peaked at hours 2–4; glucose, galactose, and glucuronic acid at hours 8–12; and the minor sugars at hours 12–14. Upon incubation of low molecular mass polymer (0.5 × 106 Da) collected from the 4th hour with cellular crude extract from cells of the 6th hour of the cycle, two intermediates were formed (0.8 × 106 Da and 2 × 106 Da). We suggest that the 0.5 × 106 Da polymer intermediate, which is composed mainly of xylose, is the first polymer secreted into the medium, where it is further polymerized enzymatically to produce the 2 × 106 Da polymer via an intermediate 0.8 × 106 Da polymer. Later, the full-size polysaccharide is produced.  相似文献   

11.
Plasma membranes (1–2 mg protein) prepared from the livers of adult male rats and human organ donors were incubated with 0.6 μM [α-32P] guanosine triphosphate (GTP) in an adenosine triphosphate (ATP)-regenerating buffer at 37°C for 1 h; during this incubation, the [32P]GTP is hydrolyzed and the nucleotide that is predominantly bound to the membranes is [32P] guanosine diphosphate (GDP). [32P]GDP release from the liver membranes was proportional to the protein concentration and increased as a function of time. At 5 mM, Ca2+, Mg2+, Mn2+, and Zn2+ maximally inhibited GDP release by 80–90%, whereas, 5 mM Cu2+ maximally stimulated the reaction by 100%. Therefore, cations were not included in the buffer used in the GDP release step. One μM Gpp(NH)p (5′-guanylylimidodiphosphate), a nonhydrolyzable analog of GTP, maximally stimulated [32P]GDP release in the liver membranes by up to 30%. Although 10 nM Gpp(NH)p had no effect on GDP release, it appeared to stabilize the hormonal effect by blocking further GDP/GTP exchange. In the rat membranes, 1–100 nM glucagon (used as a positive control) stimulated [32P]GDP release by about 17% (P < .05); similarly, 0.1–100 nM insulin stimulated [32P]GDP release by 10–13% (P < .05). In the human membranes, 10 pM to 100 nM insulin stimulated [32P]GDP release by 7–10%. In the rat membranes, 10 nM insulin stimulated [32P]GDP release by 17 and 24% at 2 and 4 min, respectively (P < .05); in the human membranes, 10 nM insulin stimulated [32P]GDP release by about 9% at 2 and 4 min. Normal rabbit IgG (used as a control for insulin receptor antibody) by itself stimulated the GDP release by rat and human membranes. However, the stimulation of the GDP release by insulin receptor antibody was consistently higher than that observed with normal rabbit IgG. Four to 15 μg of insulin receptor antibody stimulated [32P]GDP release by 12–22% (P < .05) and 7–14% in rat and human membranes, respectively. These results indicate that ligand binding to the insulin receptor results in a functional interaction of the receptor with a guanine nucleotide-binding transducer protein (G protein) and activation of GTP/GDP exchange.  相似文献   

12.
The concentration of soluble sulfide (H2S, HS?, S=)2 in hot springs of New Zealand and Iceland has a “species-determining” effect which appears to override the effect of all other chemical factors excepting hydrogen ion concentration. The cosmopolitan high-temperature form (HTF) of Mastigocladus laminosus (Ag.) Cohn appears to be sensitive to concentrations of S= over 0.15 mg·l?1 in New Zealand and 0.25 mg·l?1 in Iceland. It was absent in thermal streams where S= level was high enough to exceed this concentration at a point below its optimal temperature range (i.e., below ca. 50 C). In low or non-S= springs in these regions this alga formed mats to an upper temperature limit of 63–64 C. In contrast, one bluegreen alga (Oscillatoria amphigranulata van Goor) occurred abundantly only in moderate to high S= springs of New Zealand; this was a species with an upper temperature limit of about 57 C. Field 14C-HCO3? incorporation experiments with various levels of added S= confirmed the sensitivity of HTF Mastigocladus and the great tolerance of O. amphigranulata. In the latter, the photosynthetic incorporation of 14C-HCO3? was sustained or enhanced by the additions of S= in the presence of 5 × 10?5m DCMU, an inhibitor of photoelectron transport on the reducing side of photosystem II. It is possible, but not proven, that S= may act as a photoreductant in this species.  相似文献   

13.
The epipelic algae found in 9 rivers of southern Baffin Island were investigated during the 1972 growing season. The overall assemblage consisted of 240 taxa, of which 200 belonged to the Bacillariophyta and, only 17 to the Chlorophyta. Members of the Bacillariophyta accounted for S7–100% by numbers and 44–100% by volume of the algae at most localities. The dominant taxa were Achnanthes kriegeri Krasske, A. marginulata Grun., and Tabellaria flocculosa (Roth.) Kütz. The Chlorophyta comprised. 0–7% by numbers and 0–30% by volume of the algae, with Cosmarium tinctum Ralfs, Cylindrocystis spp., and Mougeotia sp. being most common. The standing crop in the different rivers commonly exceeded 8 × 106 cells/cm2 (8 × 109μ3/cm2), and a maximum growth rate of 3.2 × 105 cells/cm2/day (3.2 × 108μ/cm2/day) was observed. Temperature and light are considered important, factors in the regulation of algal numbers, while nutrient supply in the overlying water, grazing by herbivores, wave action, and flooding appeared to have little effect.  相似文献   

14.
In the unicellular algae Pyrocystis lunula Schütt and Gonyaulax polyedra Stein, bioluminescence and its circadian regulation are similar in several respects, but there are also several important differences. As in G. polyedra, P. lunula emits light both as bright flashes and as a low intensity glow. At 20° C, the individual flashes are considerably brighter than in G. polyedra, and their durations are typically less than 500 ms. Both species show a circadian rhythm in the frequency of spontaneous flashes, which peaks in the night-phase under light–dark cycles and continues in both continuous light and dark. However, compared to G. polyedra, the circadian system in P. lunula is more sensitive to light: 10 min exposures (500 μmol · m–2· s–1 white light) can shift the phase of the rhythm by more than 8 h, and rhythmicity is completely suppressed at an irradiance above 20 μmol · m–2· s–1, where the G. polyedra rhythym persists for weeks. Like G. polyedra, period length increases with increasing irradiance of continuous red light but decreases with increasing intensity of continuous blue light. The glow in P. lunula differs markedly from that in G. polyedra in that it occurs at about the same intensity at all times during the circadian cycle; thus, it is not under circadian control but may fluctuate 5–10-fold in intensity within a time frame of seconds. This suggests that the glow may differ in its physiological basis in the two organisms. The results also indicate that the circadian regulation of luciferase activity differs in the two species. In G. polyedra, the organelle responsible for bioluminescence and luciferase is lost and then reformed on a daily basis; in P. lunula, the luciferase is conserved and localized elsewhere during the nonbioluminescent phase of the cycle.  相似文献   

15.
The turnover of chlorophyll a (chl a) was investigated in the diatom Thalassiosira weissflogii (Grunow) Fryxell and Hasle using a new method based on the incorporation of 14C into chl a. The alga was maintained in its exponential growth phase under continuous light; 14C was supplied as bicarbonate. The time course of label accumulation into the tetrapyrrole ring and the phytol side chain was determined for time periods equivalent to 1–2 cell doublings. The labeling kinetics of the tetrapyrrole ring and the phytol side chain were described satisfactorily by a simple precursor-pigment model with two free parameters, the precursor turnover rate and the pigment turnover rate, both having dimensions of time?1. The model was fit to the experimental data to determine the values of these two free parameters. The turnover rates of the tetrapyrrole ring and the phytol side chain were not significantly different, ranging from 0.01 to 0.1 per day. These rates are equivalent to turnover times ranging from days to weeks. Growth rate-normalized turnover rates did not vary with irradiance (7.5–825 μE · m?2· s?1). The precursor turnover rates of the tetrapyrrole ring and the phytol side chain differed by an order of magnitude. These results indicate that chl a is not degraded significantly in cultures of T. weissflogii grown under continuous light. Neither irradiance nor growth rate affected growth rate-normalized chlorophyll turnover rates. Our results are inconsistent with the hypothesis that steady-state cellular concentrations of chl a are maintained by a dynamic equilibrium between rates of synthesis and degradation.  相似文献   

16.
SUMMARY.
  • 1 The effect of nutrient availability on the growth of natural samples of Lough Neagh plankton (Aphanizomenon flos-aquae, initial innoculum 0.98 mm3 l-1, Oscillatoria redekei, 2.52 mm3 l-1 and Oscillatoria agardhii, 4.96 mm3 l-1) was studied, using ecologically realistic conditions of temperature (15°C), nitrate-N (<0.35g m-3) and orthophosphate-P (<0.55g m-3), in which the combinations –N–P, –N+P, +N–P, and +N+P were used.
  • 2 After 8 days A. flos-aquae had become dominant in treatments lacking N. After 12 days with N available the mean yields of O. redekei (37.7 mm3 l-1) and O. agardhii (10.82 mm3 l-1) were significantly greater (P=5%) than their respective yields (3.6 and 2.6 mm3 l-1) in the absence of N. Somewhat surprisingly the mean yield of A. flos-aquae when N was present (0.15 mm3 l-1), was significantly less (P=5%) than in the absence of N (13.26 mm3l-1).
  • 3 The relative rates and duration of growth, the availability of P and N, and heterocyst frequency as an index of nitrogen fixation are considered in relation to the seasonal succession and dominance of these three principal cyanophyte members of the Lough Neagh phytoplankton.
  相似文献   

17.
Water quality, microbial contamination, prior fish health, and variable results have been major impediments to identifying the cause and mechanism of fish mortality in standard aquarium‐format Pfiesteria bioassays. Therefore, we developed a sensitive 96‐h larval fish bioassay for assessing Pfiesteria spp. pathogenicity using six‐well tissue culture plates and 7‐day‐old larval cyprinodontid fish. We used the assay to test pathogenicity of several clonal lines of Pfiesteria piscicida Steidinger and Burkholder and P. shumwayae Glasgow and Burkholder that had been cultured with algal prey for 2 to 36 months. The P. shumwayae cultures exhibited 80%–100% cumulative mortality in less than 96 h at initial zoospore densities of approximately 1000 cells·mL?1. No fish mortalities occurred with P. piscicida at identical densities or in controls. In a dose‐response assay, we demonstrated a strong positive correlation between dinospore density and fish mortality in a highly pathogenic culture of P. shumwayae, generating a 96‐h LD50 of 108 zoospores·mL?1. Additionally, we applied the assay to evaluate a 38‐L P. shumwayae bioassay that was actively killing fish and compared results with those from exposures of juvenile tilapia (Oreochromis niloticus) in a 500‐mL assay system. Water from the fish‐killing 38‐L assay was filtered and centrifuged to produce fractions dominated by dinoflagellates, bacteria, or presumed ichthyotoxin (cell‐free fraction). After 96 h, the larval fish assay exhibited 50%–100% cumulative mortality only in fractions containing dinoflagellates, with no mortalities occurring in the other fractions. The 500‐mL bioassay with tilapia produced inconsistent results and demonstrated no clear correlation between mortality and treatment. The new larval fish bioassay was demonstrated as a highly effective method to verify and evaluate dinoflagellate pathogenicity.  相似文献   

18.
The cell of Pyrocystis spp. is covered by an outer layer of material resistant to strong acids and bases. Internal to this layer much of the cell wall is composed of cellulose fibrils. The presence of cellulose fibrils was established by staining raw and ultra-violet–peroxide-cleaned cell walls and by combining X-ray diffraction spectroscopy with electron microscope observation. Carbon replicas of freeze-etched preparations and thin sections of P. lunula walls show outer layers, inside them ca. 24 layers of crossed parallel cellulose fibrils (4–5 nm thick, ca. 12 nm wide), then a region of smaller (ca. 6–12 nm diameter) fibrils in a disperse texture, and then the plasma membrane. Cellulose fibrils in the parallel texture are constructed of 3–5 elementary fibrils ca. 3 nm in diameter. Walls of P. fusiformis and P. pseudonctiluca also have cellulose fibrils in a crossed parallel texture similar to those of P. lunula. The Gymnodinium-type swarmer from lunate P. lunula appears to have a cell wall ultrastructure typical of other “naked” dinoflagellates.  相似文献   

19.
The effect of oryzalexin D, which has been isolated as a group of novel phytoalexins of rice plant, on DNA, RNA, protein, lipid and chitin biosyntheses, respiration and cell membrane permeability was investigated in Pyricularia oryzae. The concentration for 50% inhibition (ED50) by oryzalexin D of the mycelial growth of P. oryzae was 230 ppm. At this concentration, oryzalexin D inhibited equally the incorporation of [2–14C]thymidine, [2–14C]uridine, l-[U-14C]amino acid mixture, l-[methyl-14C]methionine and d-[l-14C]glucosamine into DNA, RNA, protein, lipid and chitin in intact cells, but did not inhibit these systems in a homogenate of the mycelia of P. oryzae. Oryzalexin D scarcely inhibited the respiration of the homogenate and mitochondria at ED50. On the other hand, oryzalexin D at ED50 caused leakage of potassium and inhibited the uptake of glutamate by mycelial cells of P. oryzae. These results suggest that interference with the cell membrane function is responsible for the primary mode of action.of oryzalexin D against P. oryzae.  相似文献   

20.
The ratio of two biosynthetic pathways was estimated, the C5 and Shemin pathways, to δ‐aminolevulinic acid (ALA, a biosynthetic intermediate of tetrapyrrole) from the 13C‐enrichment ratios (13C‐ER) at the carbon atoms of chl a (after conversion to methyl pheophorbide a) biosynthesized by Euglena gracilis G. A. Klebs when l ‐[3‐13C]alanine was used as a carbon source. On the basis of these estimations, we confirmed that ALA was efficiently biosynthesized via both the C5 and Shemin pathways in the plastids of E. gracilis, and we determined that the ratio of ALA biosynthesis via the Shemin pathway was increased in the ratio of 14%–67%, compared with that in our previous d ‐[1‐13C]glucose feeding experiment ( Iida et al. 2002 ). This carbon source dependence of the contributions of the two biosynthetic pathways might be related to activation of gluconeogenesis by the amino acid substrate. The methoxy carbon of the methoxycarbonyl group at C‐132 of chl a was labeled with the 13C‐carbon of l ‐[methyl13C]methionine derived from l ‐[3‐13C]alanine via [2‐13C]acetyl coenzyme A (CoA), through the atypical tricarboxylic acid (TCA) cycle, gluconeogenesis, and l‐ [3‐13C]serine. The phytyl moiety of chl a was also labeled on C‐P2, C‐P31, C‐P4, C‐P6, C‐P71, C‐P8, C‐P10, C‐P111, C‐P12, C‐P14, C‐P151, and C‐P16 from 13C‐isoprene (2‐[1,2‐methyl,3‐13C3]methyl‐1,3‐butadiene) generated from l ‐[3‐13C]alanine via [2‐13C]acetyl CoA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号