首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
不同农业景观结构对麦蚜种群动态的影响   总被引:4,自引:0,他引:4  
赵紫华  石云  贺达汉  杭佳  赵映书  王颖 《生态学报》2010,30(23):6380-6388
研究表明农业景观结构的复杂性与害虫种群发生强度关系密切,然而在不同农业景观结构下研究麦蚜的发生、种群及寄生蜂的变化还不多。设计了不同的麦田景观结构,调查研究了不同麦田景观结构对麦蚜种群的影响。在简单与复杂两种农业景观结构下,分析了不同种类麦蚜的入田时间、入田量、种群增长率、种群密度及寄生性天敌的多样性与寄生率。结果表明:景观结构对不同种类麦蚜影响不同,但复杂农业景观下麦蚜迁飞入田时间都要晚于简单农业景观(连片种植)下的入田时间,复杂农业景观下有翅蚜的迁入量显著低于简单景观下有翅蚜的迁入量,并且复杂农业景观下麦蚜种群增长速率高于简单农业景观下的增长速率。不同种类麦蚜对景观结构的不同反应可能与形态学与生活史特征有关,两种不同农业景观结构下寄生性天敌的多样性与寄生率无显著差异。复杂景观结构下的麦蚜有翅蚜低的迁入量、高的增长速率可能与生境高度破碎化有关,其中与温室大棚塑料白色反光有的很大的影响。生境破碎化影响了麦蚜对寄主植物寻找以及天敌对猎物的寻找效应。  相似文献   

2.
Hawaii as a Model System for Human Ecodynamics   总被引:2,自引:0,他引:2  
The human ecodynamics approach in archaeology privileges landscape as a core concept, asserting that there can be no environment or ecosystem detached from humans and their behavior. Drawing on recent research of a multidisciplinary biocomplexity project, I explore in this article the Hawaiian archipelago as a model system for studying human ecodynamics. Natural patterns of biogeochemical and climate gradients constrained the development of intensive agroecosystems over 1,000 years. An early phase of exponential population growth was linked with agricultural intensification of terraced irrigation systems, primarily on the older islands. After C.E. 1400, expansion of population onto the leeward slopes of the young islands of Maui and Hawai'i was accompanied by intensification of dryland agricultural field systems. These changes were in turn linked to significant transformations of social and political formations, including restructuring of the system of land tenure and descent group organization, and the imposition of a system of surplus extraction organized around a ritual hierarchy of temples.  相似文献   

3.
Worldwide, human appropriation of ecosystems is disrupting plant–pollinator communities and pollination function through habitat conversion and landscape homogenisation. Conversion to agriculture is destroying and degrading semi‐natural ecosystems while conventional land‐use intensification (e.g. industrial management of large‐scale monocultures with high chemical inputs) homogenises landscape structure and quality. Together, these anthropogenic processes reduce the connectivity of populations and erode floral and nesting resources to undermine pollinator abundance and diversity, and ultimately pollination services. Ecological intensification of agriculture represents a strategic alternative to ameliorate these drivers of pollinator decline while supporting sustainable food production, by promoting biodiversity beneficial to agricultural production through management practices such as intercropping, crop rotations, farm‐level diversification and reduced agrochemical use. We critically evaluate its potential to address and reverse the land use and management trends currently degrading pollinator communities and potentially causing widespread pollination deficits. We find that many of the practices that constitute ecological intensification can contribute to mitigating the drivers of pollinator decline. Our findings support ecological intensification as a solution to pollinator declines, and we discuss ways to promote it in agricultural policy and practice.  相似文献   

4.
Although habitat fragmentation and agricultural intensification are known as threads to pollinator diversity, little is known about consequences for population size and genetic diversity. Here, we combined detailed field observations, molecular approaches and GIS-based quantification of landscape structure (measured by proportions of seminatural habitats and proportions of mass flowering crops) to get new insights into driving forces of population dynamics of the bumblebee species Bombus pascuorum. Comparing 13 agriculturally dominated landscape sectors, we found the proportion of mass flowering crops to positively influence bumblebee abundance whereas the proportion of seminatural habitats was of minor importance. We used microsatellites to quantify landscape-related colony densities, inbreeding and population substructure. Detected colony densities did not correlate with landscape parameters or with local worker abundance, measured by field observations. These results indicate that increased worker abundances within landscapes are rather due to greater colony sizes than due to an increased number of nests. We found significant population substructure, measured by F(ST) and seven landscape sectors to bear significantly increased inbreeding values (F(IS)). F(IS) was strongly varying between sectors but did not correlate with landscape structure. Moreover, F(IS) had a significantly negative effect on colony size, demonstrating the importance of genetic diversity on population fitness at a landscape scale. We suggest that inbreeding levels might be related to the temporal variation of food resources and population sizes in agricultural landscapes.  相似文献   

5.
黄宝荣  张慧智  王学志 《生态学报》2014,34(22):6756-6766
城乡结合部自然和农业生态系统是确保城市生态安全的重要基础。研究快速城市化背景下城乡结合部自然和农业景观的时空演变规律和驱动因素,能够为相关规划的编制和保护政策的制定提供科学支撑。以北京市三个典型的城乡结合部乡镇为例,通过对1999、2004和2010年三期SPOT遥感影像的解译,获取三镇三个时期土地利用/覆盖(Land Use/Land Cover,LULC)数据。在此基础上,借助Arc GIS空间叠加功能和土地利用转移矩阵,分析1999—2010年三镇LULC的时空变化特征;并通过空间自相性和景观连通性分析,研究近十年来三镇建设用地的空间聚集特征以及自然和农业景观空间连通性的变化,分析城市扩张对三镇自然和农业景观格局和稳定性的影响。最后,采用定量和定性相结合的方法,分析三镇自然和农业景观变化的驱动力。结果表明,1999—2010年三镇经历了剧烈的LUCC过程,建设用地、林地和草地面积大幅增加,伴随的是农业用地和水域面积的急剧减少。各种土地利用类型之间都存在着相互转移,特别是农业用地向建设用地、林地和草地,以及林地向建设用地转移明显。新增建设用地大多通过侵占原有建设用地周边的农业用地和林地,而实现"成片蔓延式"扩张;并造成了三镇自然和农业景观连通性的急剧下降,危及到该区域生态系统结构的完整性和功能的持续性。社会经济发展、土地利用规划、公共政策等共同决定着三镇LUCC的结构、规模和空间分布,是三镇自然和农业景观格局演变的主要驱动力。  相似文献   

6.
Agricultural expansion is a leading driver of biodiversity loss across the world, but little is known on how future land‐use change may encroach on remaining natural vegetation. This uncertainty is, in part, due to unknown levels of future agricultural intensification and international trade. Using an economic land‐use model, we assessed potential future losses of natural vegetation with a focus on how these may threaten biodiversity hotspots and intact forest landscapes. We analysed agricultural expansion under proactive and reactive biodiversity protection scenarios, and for different rates of pasture intensification. We found growing food demand to lead to a significant expansion of cropland at the expense of pastures and natural vegetation. In our reference scenario, global cropland area increased by more than 400 Mha between 2015 and 2050, mostly in Africa and Latin America. Grazing intensification was a main determinant of future land‐use change. In Africa, higher rates of pasture intensification resulted in smaller losses of natural vegetation, and reduced pressure on biodiversity hotspots and intact forest landscapes. Investments into raising pasture productivity in conjunction with proactive land‐use planning appear essential in Africa to reduce further losses of areas with high conservation value. In Latin America, in contrast, higher pasture productivity resulted in increased livestock exports, highlighting that unchecked trade can reduce the land savings of pasture intensification. Reactive protection of sensitive areas significantly reduced the conversion of natural ecosystems in Latin America. We conclude that protection strategies need to adapt to region‐specific trade positions. In regions with a high involvement in international trade, area‐based conservation measures should be preferred over strategies aimed at increasing pasture productivity, which by themselves might not be sufficient to protect biodiversity effectively.  相似文献   

7.
Agricultural intensification has resulted in a simplification of agricultural landscapes by the expansion of agricultural land, enlargement of field size and removal of non-crop habitat. These changes are considered to be an important cause of the rapid decline in farmland biodiversity, with the remaining biodiversity concentrated in field edges and non-crop habitats. The simplification of landscape composition and the decline of biodiversity may affect the functioning of natural pest control because non-crop habitats provide requisites for a broad spectrum of natural enemies, and the exchange of natural enemies between crop and non-crop habitats is likely to be diminished in landscapes dominated by arable cropland. In this review, we test the hypothesis that natural pest control is enhanced in complex patchy landscapes with a high proportion of non-crop habitats as compared to simple large-scale landscapes with little associated non-crop habitat. In 74% and 45% of the studies reviewed, respectively, natural enemy populations were higher and pest pressure lower in complex landscapes versus simple landscapes. Landscape-driven pest suppression may result in lower crop injury, although this has rarely been documented. Enhanced natural enemy activity was associated with herbaceous habitats in 80% of the cases (e.g. fallows, field margins), and somewhat less often with wooded habitats (71%) and landscape patchiness (70%). The similar contributions of these landscape factors suggest that all are equally important in enhancing natural enemy populations. We conclude that diversified landscapes hold most potential for the conservation of biodiversity and sustaining the pest control function.  相似文献   

8.
Terrestrial landscapes, including those with embedded agroecosystems, are a mosaic of cover types varying in size. Creating or maintaining habitats that support natural enemy populations to combat agricultural pests is the primary method of conservation biological control. Non-crop habitats can be managed in an attempt to maximize the exchange of natural enemies with adjacent agroecosystems with the expectation that they will suppress damaging pest outbreaks. Despite this goal, current habitat management relying on natural enemy spillover into crops has been unreliably effective at reducing pest abundance or increasing crop yield. Furthermore, the expansion and intensification of agriculture and changes in global climate patterns threaten the foundations of conservation biological control in future agroecosystems. However, the aquatic–terrestrial interface offers a natural boundary similar to the one between agroecosystems and their neighboring non-crop habitats that can provide useful insights to the challenges facing growers. Research of the exchanges between water and land suggests general biological and physical processes that govern the movement of organisms between disparate habitats. We propose that like aquatic insects moving from water to land, natural enemy dispersal from non-crop donor habitats into recipient crop patches on the landscape is a function of (1) the production of natural enemies in the source habitat which establishes the abundance of organisms that can disperse, (2) how and why mobile natural enemies disperse themselves into neighboring recipient habitats, and (3) the configuration of donor and recipient habitats on the landscape. We suggest that conservation biological control practitioners can focus on these main components of natural enemy production and dispersal to predict the effectiveness of conservation biological control measures and guide their adaptation to future global change.  相似文献   

9.
Birds of agricultural systems are one of the most threatened groups of birds in Europe mainly due to their sharp population decline in recent decades. Habitat intensification resulting from more productive agricultural practices has been proposed as a major cause for these declines. However, especially in some regions such as Eastern European and Mediterranean countries, little is known about the ultimate factors linked to habitat intensification that drive population declines for different species. The Lesser Grey Shrike is a good study species for a better understanding of such processes since it is closely related to agricultural habitats in Europe and has suffered a strong decline in range and population size across the western half of the continent. In this study, we explored variations in breeding parameters of this shrike related to habitat composition and food supply at the territory level. We found that fledgling success of early breeders was related to the presence of natural (shrub lands) and semi-natural (fallows) habitats in the predominantly agricultural matrix that dominated breeding territories. Their influence on fledgling success appeared to be mediated by a higher arthropod availability on these habitats. Indeed, Lesser Grey Shrike showed a strong preference for these habitats as hunting locations. Our results highlight the importance of natural habitats in intensified agricultural land mosaics for the conservation of bird species. We suggest that management plans should pay special attention to the availability of habitats which serve as high quality food reservoirs and can potentially contribute to enhance the species population viability in an area. Finally, we discuss the possible link between agricultural intensification and Lesser Grey Shrike population declines in Western Europe.  相似文献   

10.
农业景观生物多样性与害虫生态控制   总被引:12,自引:1,他引:11  
郑云开  尤民生 《生态学报》2009,29(3):1508-1518
现代农业的一个重要特征就是人类对农田生态系统的干扰强度及频率不断增加,严重影响农业景观的结构及其生物多样性.农业景观结构的变化及其生物多样性的丧失,必然引起生态系统服务功能的弱化,不利于实施以保护自然天敌为主的害虫生态控制.农业的集约化经营导致自然生境破碎化,减少了农业景观的复杂性,使得作物和非作物变成一种相对离散化的生境类型和镶嵌的景观格局;破碎化的生境不仅会减少某些物种的丰度,还会影响物种之间的相互关系及生物群落的多样性和稳定性.非作物生境类型如林地、灌木篱墙、田块边缘区、休耕地和草地等,是一种比较稳定的异质化环境.非作物生境较少受到干扰,可以为寄生性和捕食性节肢动物提供适宜的越冬或避难场所以及替代猎物、花粉和花蜜等资源,因此,非作物生境有利于自然天敌的栖息和繁衍,也有利于它们迁入邻近的作物生境中对害虫起到调节和控制作用.景观的格局-过程-尺度影响农田生物群落物种丰富度、多度、多样性以及害虫与天敌之间的相互作用.从区域农业景观系统的角度出发,运用景观生态学的理论和方法来研究作物、害虫、天敌等组分在不同斑块之间的转移过程和变化规律,揭示害虫在较大尺度和具有异质性的空间范围内的灾变机理,可为利用农业景观生物多样性来保护农田自然天敌,实施害虫的区域性生态控制提供新的研究思路和手段.  相似文献   

11.
邱彩琳  邱宁  张天洁 《应用生态学报》2022,33(11):3065-3074
文化景观是自然和人文因素复合作用下产生并随人类行为而不断变化的产物,探索建设用地扩张对文化景观造成的影响是理解人类活动干预文化景观形式内涵、价值特征的关键。本研究对韩江三角洲文化景观进行分类,并运用景观指数定量描述1980—2018年该地区文化景观时空演变特征,最后,通过空间面板计量模型分析建设用地扩张对文化景观的空间效应。结果表明: 在区域层面共识别出7种文化景观类型。1980—2000年,研究区文化景观格局变化较大,破碎度上升、不规则程度加深、多样性增强。区域建设用地面积占比由14.8%提升至29.9%,建设用地扩张速度以2000年为分界点,这与文化景观变化时序吻合。建设用地扩张与文化景观变化之间存在空间依赖性。随着建设用地扩张,沿海区沙堤沼泽处的蔓延集聚型城镇景观成为优势类型,洪泛低地、潟湖低地处的历史村镇与湿地水田面临消亡。建设用地不仅影响本地景观格局,对邻近地区也具有空间溢出效应。建设用地扩张使同一类型景观的斑块融合程度提高,景观集聚效应加强;使不同类型景观斑块间的蔓延度降低,不规则性增加,趋于破碎化。研究结果可为韩江三角洲区域的人文历史传承、生态格局优化提供参考。  相似文献   

12.
车前进  曹有挥  于露  宋正娜  董雅文 《生态学报》2011,31(23):7261-7270
空间异质性是揭示地理现象空间分异规律的重要标志.基于高分辨率卫星遥感影像数据,利用景观生态指数和统计学方法,构建景观空间异质性综合模型,定量测度了江苏省沿江地区景观空间异质性特征及城市化关联,并基于二者的相关性将研究区域划分为6个异质性梯度区,提出了应对城市化干扰的景观空间协调对策.结果表明:景观空间异质性综合模型是对景观斑块结构、形态、数量3个组分特征的反映,是揭示景观连通性、稳定性和破碎化的重要依据;景观空间异质性与3个城市化参数之间存在显著的正相关,城镇空间扩张模式和城镇人口的集聚强度对景观空间异质性影响较大;景观空间异质性梯度分异与区域开发强度、开发时序存在显著的耦合关系;同时,面对城市化的干扰,应该实施保护生态景观空间、减少建设空间与其它景观的接触概率和实施差别化的城市化战略等政策协调城市化发展与景观生态保护之间的矛盾.  相似文献   

13.
The recent trend of agricultural intensification in tropical landscapes poses a new threat to biodiversity conservation. Conversion of previously heterogeneous agricultural landscapes to intensive plantation agriculture simplifies and homogenizes the landscape, reducing availability, and connectivity of natural habitat for native species. To assess the impact of agricultural intensification on bats, we characterized the bat assemblage in the Sarapiquí region of Costa Rica, where heterogeneous land uses are being converted to intensive, large‐scale pineapple plantations. In 2012 and 2013, we sampled bats in 20 remnant forest patches surrounded by varying proportions of pasture, mature forest, and pineapple and captured 1821 individual bats representing 39 species. We used ordination analyses to evaluate changes in species composition, where pineapple is the main component of the agricultural matrix. We identified landscape metrics specifically correlated with pineapple and used multiple linear regression to test their effects on bat species richness, diversity, and guild‐specific relative abundance. Results suggest pineapple expansion is driving changes in assemblage composition in remnant forest patches, resulting in new assemblages with higher proportions of frugivorous bats and lower proportions of insectivorous bats than in continuous mature forests. In addition, while pineapple does not diminish total bat species richness and diversity, the reduced forest cover and increased distance between forest patches in pineapple plantations has a significant negative impact on the relative abundance of insectivores. We also identify a potential threshold effect whereby patches surrounded by more than 50 percent forest can retain assemblage composition similar to that found in continuous mature forest.  相似文献   

14.
Historically, conservation‐oriented research and policy in Brazil have focused on Amazon deforestation, but a majority of Brazil's deforestation and agricultural expansion has occurred in the neighboring Cerrado biome, a biodiversity hotspot comprised of dry forests, woodland savannas, and grasslands. Resilience of rainfed agriculture in both biomes likely depends on water recycling in undisturbed Cerrado vegetation; yet little is known about how changes in land‐use and land‐cover affect regional climate feedbacks in the Cerrado. We used remote sensing techniques to map land‐use change across the Cerrado from 2003 to 2013. During this period, cropland agriculture more than doubled in area from 1.2 to 2.5 million ha, with 74% of new croplands sourced from previously intact Cerrado vegetation. We find that these changes have decreased the amount of water recycled to the atmosphere via evapotranspiration (ET) each year. In 2013 alone, cropland areas recycled 14 km3 less (?3%) water than if the land cover had been native Cerrado vegetation. ET from single‐cropping systems (e.g., soybeans) is less than from natural vegetation in all years, except in the months of January and February, the height of the growing season. In double‐cropping systems (e.g., soybeans followed by corn), ET is similar to or greater than natural vegetation throughout a majority of the wet season (December–May). As intensification and extensification of agricultural production continue in the region, the impacts on the water cycle and opportunities for mitigation warrant consideration. For example, if an environmental goal is to minimize impacts on the water cycle, double cropping (intensification) might be emphasized over extensification to maintain a landscape that behaves more akin to the natural system.  相似文献   

15.
Recent agricultural intensification threatens global biodiversity with amphibians being one of the most impacted groups. Because of their biphasic life cycle, amphibians are particularly vulnerable to habitat loss and fragmentation that often result in small, isolated populations and loss of genetic diversity. Here, we studied how landscape heterogeneity affects genetic diversity, gene flow and demographic parameters in the marbled newt, Triturus marmoratus, over a hedgerow network landscape in Western France. While the northern part of the study area consists of preserved hedged farmland, the southern part was more profoundly converted for intensive arable crops production after WWII. Based on 67 sampled ponds and 10 microsatellite loci, we characterized regional population genetic structure and evaluated the correlation between landscape variables and (i) local genetic diversity using mixed models and (ii) genetic distance using multiple regression methods and commonality analysis. We identified a single genetic population characterized by a spatially heterogeneous isolation-by-distance pattern. Pond density in the surrounding landscape positively affected local genetic diversity while arable crop land cover negatively affected gene flow and connectivity. We used demographic inferences to quantitatively assess differences in effective population density and dispersal between the contrasted landscapes characterizing the northern and southern parts of the study area. Altogether, results suggest recent land conversion affected T. marmoratus through reduction in both effective population density and dispersal due to habitat loss and reduced connectivity.  相似文献   

16.
农作物景观生态研究:概念框架与研究方向   总被引:1,自引:0,他引:1  
刘珍环  陆晓君 《生态学报》2021,41(24):9953-9962
针对当前农业系统中农作物景观变化迅速、人地关系趋于复杂、粮食安全保障需求迫切,提出景观生态学和农业科学交叉产生的农作物景观生态研究这一新兴研究方向。通过构建农作物景观生态研究的概念框架,辨明农业生产中复杂的景观等级结构,为农业可持续发展提供理论依据。综述从农业景观到农作物景观的研究变化,指出农作物景观具有高动态性、尺度性和格局复杂特征。针对由种植者、消费者、耕地及其周边自然环境组成的农业景观,需要遵循相应的生态和农业经济发展规律,研究农作物种植格局变化、农作物的社会-生态效应和农作物种植可持续性的景观生态途径。重点开展以下四个研究方面的内容,农作物景观时空动态及其形成机理、农作物种植的多功能评价与权衡、景观农艺管理措施及情景模拟、可持续的农作物景观生态评价。从而构建"格局-过程-服务-管理-可持续性"的农作物景观生态研究范式,为农业可持续发展提供综合的空间分析与管理途径,为实现农业农村现代化与城乡人类福祉提升提供科学支撑。  相似文献   

17.
European farmland biodiversity is declining due to land use changes towards agricultural intensification or abandonment. Some Eastern European farming systems have sustained traditional forms of use, resulting in high levels of biodiversity. However, global markets and international policies now imply rapid and major changes to these systems. To effectively protect farmland biodiversity, understanding landscape features which underpin species diversity is crucial. Focusing on butterflies, we addressed this question for a cultural-historic landscape in Southern Transylvania, Romania. Following a natural experiment, we randomly selected 120 survey sites in farmland, 60 each in grassland and arable land. We surveyed butterfly species richness and abundance by walking transects with four repeats in summer 2012. We analysed species composition using Detrended Correspondence Analysis. We modelled species richness, richness of functional groups, and abundance of selected species in response to topography, woody vegetation cover and heterogeneity at three spatial scales, using generalised linear mixed effects models. Species composition widely overlapped in grassland and arable land. Composition changed along gradients of heterogeneity at local and context scales, and of woody vegetation cover at context and landscape scales. The effect of local heterogeneity on species richness was positive in arable land, but negative in grassland. Plant species richness, and structural and topographic conditions at multiple scales explained species richness, richness of functional groups and species abundances. Our study revealed high conservation value of both grassland and arable land in low-intensity Eastern European farmland. Besides grassland, also heterogeneous arable land provides important habitat for butterflies. While butterfly diversity in arable land benefits from heterogeneity by small-scale structures, grasslands should be protected from fragmentation to provide sufficiently large areas for butterflies. These findings have important implications for EU agricultural and conservation policy. Most importantly, conservation management needs to consider entire landscapes, and implement appropriate measures at multiple spatial scales.  相似文献   

18.
While agricultural intensification and expansion are major factors driving loss and degradation of natural habitat and species decline, some wildlife species also benefit from agriculturally managed habitats. This may lead to high population densities with impacts on both human livelihoods and wildlife conservation. Cranes are a group of 15 species worldwide, affected both negatively and positively by agricultural practices. While eleven species face critical population declines, numbers of common cranes (Grus grus) and sandhill cranes (Grus canadensis) have increased drastically in the last 40 years. Their increase is associated with higher incidences of crane foraging on agricultural crops, causing financial losses to farmers. Our aim was to synthesize scientific knowledge on the bilateral effects of land use change and crane populations. We conducted a systematic literature review of peer‐reviewed publications on agriculture‐crane interactions (n = 135) and on the importance of agricultural crops in the diet of cranes (n = 81). Agricultural crops constitute a considerable part of the diet of all crane species (average of 37%, most frequently maize (Zea mays L.) and wheat (Triticum aestivum L.)). Crop damage was identified in only 10% of all agriculture‐crane interactions, although one‐third of interactions included cranes foraging on cropland. Using a conceptual framework analysis, we identified two major pathways in agriculture‐crane interactions: (1) habitat loss with negative effects on crane species dependent on specific habitats, and (2) expanding agricultural habitats with superabundant food availability beneficial for opportunistic crane species. The degree to which crane species can adapt to agricultural land use changes may be an important factor explaining their population response. We conclude that multi‐objective management needs to combine land sparing and land sharing strategies at landscape scale. To support viable crane populations while guaranteeing sustainable agricultural production, it is necessary to include the perspectives of diverse stakeholders and streamline conservation initiatives and agricultural policy accordingly.  相似文献   

19.
Abstract. Plants associated with traditional agricultural landscapes in northern Europe and Scandinavia are subjected to drastic habitat fragmentation. In this paper we discuss species response to fragmentation, against a background of vegetation and land‐use history. Recent evidence suggests that grassland‐forest mosaics have been prevalent long before the onset of human agriculture. We suggest that the creation of infield meadows and outland grazing (during the Iron Age) increased the amount and spatial predictability of grasslands, resulting in plant communities with exceptionally high species densities. Thus, distribution of plant species in the present‐day landscape reflects historical land‐use. This holds also when traditional management has ceased, due to a slow response by many species to abandonment and fragmentation. The distribution patterns are thus not in equilibrium with the present habitat distribution. Fragmentation influences remaining semi‐natural grasslands such that species density is likely to decline as a result of local extinctions and invasion by habitat generalists. However, species that for a long time have been subjected to changing mosaic landscapes may be more resistant to fragmentation than is usually believed. Conservation should focus not only on ‘hot‐spots’ with high species richness, but also consider species dynamics in a landscape context.  相似文献   

20.
There is an urgent need to quantitatively monitor the spatiotemporal pattern–process interactions of coupled human–environment systems in rapidly urbanizing areas. In this study, we mainly referred to structural(not functional) aspects of land-use pattern, and especially, we targeted at landscape composition and landscape fragmentation. We applied an integrated monitoring approach, to a case study of a new and fast-growing city in the east coast of China. This approach included gradient, spatial overlay and square blocks sampling analysis. The results showed that (1) over the past seven years, the urbanization intensified with its percentage of construction land from 8.19% in 2004 through 17.15% in 2008 to 25.79% in at the cost of more fragmentized agricultural land system and loss of wetland ecosystems; (2) Lianyungang is experiencing rapid urban expansions over the 2004–2008 and 2008–2011 periods in a dispersed and leapfrogged but not compact form; (3) the hypothesis of urban expansion following a process of diffusion and coalescence proposed by Dietzel et al. (2005) were confirmed again by this study; (4) the relationship between patch density of construction land and the degree of urbanization was characterized as an inverted Ushape pattern. Moreover, this study revealed the threshold of the changes of landscape fragmentation while the degree of urbanization is increasing until about 20–40% for Lianyungang city, which should be carefully applied to other places; (5) mean patch size follows an exponential growth or a quadratic growth in the process of urbanization in this study, which is new finding that has not been revealed by other relative case studies reviewed and stand the tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号