首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
MODELING AGE-SPECIFIC MORTALITY FOR MARINE MAMMAL POPULATIONS   总被引:1,自引:0,他引:1  
A method is presented for estimating age-specific mortality based on minimal information: a model life table and an estimate of longevity. This approach uses expected patterns of mammalian survivorship to define a general model of age-specific mortality rates. One such model life table is based on data for northern fur seals (Callorhinus ursinus) using Siler's (1979) 5-parameter competing risk model. Alternative model life tables are based on historical data for human females and on a published model for Old World monkeys. Survival rates for a marine mammal species are then calculated by scaling these models by the longevity of that species. By using a realistic model (instead of assuming constant mortality), one can see more easily the real biological limits to population growth. The mortality estimation procedure is illustrated with examples of spotted dolphins (Stenella attenuata) and harbor porpoise (Phocoena phocoena).  相似文献   

4.
5.
Compared to the anterior surface of the normal human cornea, all Tursiops showed pronounced random, local curvature changes typical of old keratitis and scarring. Comparable but less severe findings apply to Zalophus. These irregularities were superimposed on the mild regular astigmatism of the spoon-shaped Tursiops cornea (mean central power is 26.8 D, SD = 3.8, N = 82). All Zalophus corneas showed no reliable regular astigmatism (overall mean power is 21.7 D, SD = 4.4, N = 53) but exhibited a flat, circular region about 6.5 mm in diameter along the nasal aspect of the horizontal meridian. Refraction through this cornea1 region showed aerial emmetropia, which accounts for equivalent marine and aerial visual resolution in this species.  相似文献   

6.
7.
8.
Organochlorine pollutants are potentially useful for identifying discrete populations of marine mammals that overlap in geographic distribution. However, many factors unrelated to geographical distribution may affect the chemical burden of individual animals or of entire population components even within a homogeneously distributed population. These factors include. among others, nutritional state, sex, age, trophic level, distance of habitat from mainland and pollution source, excretion. metabolism, and tissue composition. Sample storage and analytical methodology may also be an important source of variation. These, and any other factors, must be identified and their effect ascertained before attempting any comparison between populations. This paper critically examines the nature and magnitude of the effects of these factors on organochlorine tissue loads in marine mammals. Pollutant concentrations can be strongly biased if carefully designed sampling regimes are not followed, but they are affected only moderately by sample treatment after collection. Conversely, ratios between concentrations of compounds, such as the DDE/tDDT or the tDDT/PCB ratios, seem less dependent on sampling regime but more affected by storage. analytical procedures and ecological variations such as distance from pollutant source or trophic level. Taking these effects into account, advice is provided about sampling and strategies for selection of variables that will improve the reliability of the comparisons between populations.  相似文献   

9.
Abstract: In 1986, we recorded the MV Arctic , CCGS des Groseilliers and MV Lady Franklin during routine icebreaking operations and travel to and from the mine at Nanisivik, Baffin Island, Northwest Territories, Canada. We found that the Arctic generated more high frequency noise than did the other vessels we recorded. Monitoring of vessel noise levels indicated that belugas and, probably, narwhals should be able to detect the high frequency components of Arctic noise at least as far as 25 to 30 km from the source. The ability of whales to detect the MV Arctic at long distances may explain why belugas and narwhals in Lancaster Sound seem to react to ships at longer distances than do other stocks of arctic whales.  相似文献   

10.
11.
12.
A controlled experiment was carried out in 1996–1997 to determine whether acoustic deterrent devices (pingers) reduce marine mammal bycatch in the California drift gill net fishery for swordfish and sharks. Using Fisher's exact test, bycatch rates with pingers were significantly less for all cetacean species combined ( P < 0.001) and for all pinniped species combined ( P = 0.003). For species tested separately with this test, bycatch reduction was statistically significant for short-beaked common dolphins ( P = 0.001) and California sea lions ( P = 0.02). Bycatch reduction is not statistically significant for the other species tested separately, but sample sizes and statistical power were low, and bycatch rates were lower in pingered nets for six of the eight other cetacean and pinniped species. A log-linear model relating the mean rate of entanglement to the number of pingers deployed was fit to the data for three groups: short-beaked common dolphins, other cetaceans, and pinnipeds. For a net with 40 pingers, the models predict approximately a 12-fold decrease in entanglement for short-beaked common dolphins, a 4-fold decrease for other cetaceans, and a 3-fold decrease for pinnipeds. No other variables were found that could explain this effect. The pinger experiment ended when regulations were enacted to make pingers mandatory in this fishery.  相似文献   

13.
本文对海水亚硝酸氧化细菌初始富集过程中硝酸盐的定性检测方法及其适用范围进行了研究。结果表明, 在NaNO2起始浓度为100mg/L的亚硝酸氧化细菌初始富集培养系统中,1mL培养液中残余的NaNO2,可先用 1.0mol/L盐酸溶液20μL和50g/L氨基磺酸铵溶液10-20μL将其去除,然后再用二苯胺试剂对培养液中经亚硝酸 氯化细菌转化来的NaNO3进行定性检测,可检测出的NaNO3浓度下限在20mg/L左右。在NaNO2起始浓度不同的 富集培养系统中,去除NaNO2所需盐酸溶液、氨基磺酸铵溶液的量可根据其起始浓度按比例相应增减,但NaNO2的 起始浓度不宜超过200mg/L。该方法亦适用于淡水亚硝酸氧化细菌初始富集培养过程中硝酸盐的定性检测。    相似文献   

14.
15.
16.
Springer et al . (2003) contend that sequential declines occurred in North Pacific populations of harbor and fur seals, Steller sea lions, and sea otters. They hypothesize that these were due to increased predation by killer whales, when industrial whaling's removal of large whales as a supposed primary food source precipitated a prey switch. Using a regional approach, we reexamined whale catch data, killer whale predation observations, and the current biomass and trends of potential prey, and found little support for the prey-switching hypothesis. Large whale biomass in the Bering Sea did not decline as much as suggested by Springer et al ., and much of the reduction occurred 50–100 yr ago, well before the declines of pinnipeds and sea otters began; thus, the need to switch prey starting in the 1970s is doubtful. With the sole exception that the sea otter decline followed the decline of pinnipeds, the reported declines were not in fact sequential. Given this, it is unlikely that a sequential megafaunal collapse from whales to sea otters occurred. The spatial and temporal patterns of pinniped and sea otter population trends are more complex than Springer et al . suggest, and are often inconsistent with their hypothesis. Populations remained stable or increased in many areas, despite extensive historical whaling and high killer whale abundance. Furthermore, observed killer whale predation has largely involved pinnipeds and small cetaceans; there is little evidence that large whales were ever a major prey item in high latitudes. Small cetaceans (ignored by Springer et al .) were likely abundant throughout the period. Overall, we suggest that the Springer et al . hypothesis represents a misleading and simplistic view of events and trophic relationships within this complex marine ecosystem.  相似文献   

17.
18.
19.
20.
Recent studies have led to a rapid increase in knowledge of auxospore formation in diatoms. However, these studies have been limited to centric and raphid pennate diatoms, and there is still very little information for the araphid pennate diatoms. Using LM and SEM, we studied the development of the auxospore and the initial cell of the marine epiphytic diatom Gephyria media Arnott. Auxospores were bipolar and curved in side view, as in many other pennate diatoms. SEM revealed many transverse perizonial bands, all of which were incomplete rings. There was an elongate, sprawling, silicified structure beneath the ventral suture of the transverse perizonial bands. This structure is presumably equivalent to the longitudinal perizonial band in other pennate diatoms, although we could not determine the homologous relationship between the two features. Scales were found both in the inner wall of the perizonium and around the primary perizonial bands. The presence or absence of scales may be of phylogenetic significance in diatoms, only during the final stages of auxospore formation because scales are found in early spherical stages. The distinctive finger‐like structures observed throughout all stage of G. media have not been observed before in the other diatom taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号