首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Following a planktonic dispersal period of days to months, the larvae of benthic marine organisms must locate suitable seafloor habitat in which to settle and metamorphose. For animals that are sessile or sedentary as adults, settlement onto substrates that are adequate for survival and reproduction is particularly critical, yet represents a challenge since patchily distributed settlement sites may be difficult to find along a coast or within an estuary. Recent studies have demonstrated that the underwater soundscape, the distinct sounds that emanate from habitats and contain information about their biological and physical characteristics, may serve as broad-scale environmental cue for marine larvae to find satisfactory settlement sites. Here, we contrast the acoustic characteristics of oyster reef and off-reef soft bottoms, and investigate the effect of habitat-associated estuarine sound on the settlement patterns of an economically and ecologically important reef-building bivalve, the Eastern oyster (Crassostrea virginica). Subtidal oyster reefs in coastal North Carolina, USA show distinct acoustic signatures compared to adjacent off-reef soft bottom habitats, characterized by consistently higher levels of sound in the 1.5–20 kHz range. Manipulative laboratory playback experiments found increased settlement in larval oyster cultures exposed to oyster reef sound compared to unstructured soft bottom sound or no sound treatments. In field experiments, ambient reef sound produced higher levels of oyster settlement in larval cultures than did off-reef sound treatments. The results suggest that oyster larvae have the ability to respond to sounds indicative of optimal settlement sites, and this is the first evidence that habitat-related differences in estuarine sounds influence the settlement of a mollusk. Habitat-specific sound characteristics may represent an important settlement and habitat selection cue for estuarine invertebrates and could play a role in driving settlement and recruitment patterns in marine communities.  相似文献   

2.
ABSTRACT

Among teleosts, only representatives of several tropical catfish families have evolved two sonic organs: pectoral spines for stridulation and swimbladder drumming muscles. Pectoral mechanisms differ in relative size between pimelodids, mochokids and doradids, whereas swimbladder mechanisms exhibit differences in origin and insertion of extrinsic muscles. Differences in vocalization among families were investigated by comparing distress calls in air and underwater. High frequency broad-band pulsed sounds of similar duration were emitted during abduction of pectoral spines in all three families. Adduction sounds were similar to abduction signals in doradids, shorter and of lower sound pressure in mochokids, and totally lacking in pimelodids. Simultaneously or successively with pectoral sounds, low frequency harmonic drumming sounds were produced by representatives of two families. Drumming sounds were of similar intensity as stridulatory sounds in pimelodids, fainter in doradids, and not present in mochokids. Swimbladder sounds were frequency modulated and the fundamental frequency was similar in pimelodids and doradids. The ratio of stridulatory to drumming sound amplitude was higher in air than underwater in both doradids and one of the pimelodids. Also, overall duration of pectoral sounds, compared to swimbladder sounds, was longer in air than underwater in one doradid and pimelodid species. This first comparison of vocalization within one major teleost order demonstrates a wide variation in occurrence, duration, intensity and spectral content of sounds and indicates family- and species-specific as well as context- (receiver-) dependent patterns of vocalization.  相似文献   

3.
ABSTRACT

Whales living within seismically active regions are subject to intense disturbances from strong sounds produced by earthquakes that can kill or injure individuals. Nishimura & Clark (1993) relate the possible effects of underwater earthquake noise levels in marine mammals, adducing that T-phase source signal level (10- to 30- Hz range) can exceed 200 dB re: 1 μPa at 1 m, for a magnitude 4–5 earthquake, sounds audible to fin whales which produce low frequency sounds of 16–20/25–44 Hz over 0.5–1s, typically of 183 dB re: 1 μPa at 1 m. Here we present the response of a fin whale to a 5.5 Richter scale earthquake that took place on 22 February 2005, in the Gulf of California. The whale covered 13 km in 26 min (mean speed = 30.2 km/h). We deduce that the sound heard by this whale might have triggered the costly energy expenditure of high speed swimming as a seismic-escape response. These observations support the hypothesis of Richardson et al. (1995) that cetaceans may flee from loud sounds before they are injured, when exposed to noise in excess of 140 dB re: 1 μPa 1 m.  相似文献   

4.
Intense underwater sounds caused by military sonar, seismic surveys, and pile driving can harm acoustically sensitive marine mammals. Many jurisdictions require such activities to undergo marine mammal impact assessments to guide mitigation. However, the ability to assess impacts in a rigorous, quantitative way is hindered by large knowledge gaps concerning hearing ability, sensitivity, and behavioral responses to noise exposure. We describe a simulation‐based framework, called SAFESIMM (Statistical Algorithms For Estimating the Sonar Influence on Marine Megafauna), that can be used to calculate the numbers of agents (animals) likely to be affected by intense underwater sounds. We illustrate the simulation framework using two species that are likely to be affected by marine renewable energy developments in UK waters: gray seal (Halichoerus grypus) and harbor porpoise (Phocoena phocoena). We investigate three sources of uncertainty: How sound energy is perceived by agents with differing hearing abilities; how agents move in response to noise (i.e., the strength and directionality of their evasive movements); and the way in which these responses may interact with longer term constraints on agent movement. The estimate of received sound exposure level (SEL) is influenced most strongly by the weighting function used to account for the specie's presumed hearing ability. Strongly directional movement away from the sound source can cause modest reductions (~5 dB) in SEL over the short term (periods of less than 10 days). Beyond 10 days, the way in which agents respond to noise exposure has little or no effect on SEL, unless their movements are constrained by natural boundaries. Most experimental studies of noise impacts have been short‐term. However, data are needed on long‐term effects because uncertainty about predicted SELs accumulates over time. Synthesis and applications. Simulation frameworks offer a powerful way to explore, understand, and estimate effects of cumulative sound exposure on marine mammals and to quantify associated levels of uncertainty. However, they can often require subjective decisions that have important consequences for management recommendations, and the basis for these decisions must be clearly described.  相似文献   

5.
ABSTRACT

The method usually used to identify different sounds or divisions of sounds is to compare sonagrams visually. There have been some attempts to reduce the subjectivity and increase the repeatability of this approach, for example by tracing the sonagrams onto paper and examining the areas of overlap and mismatch, the use of multi-variate statistics and digitising tablets. Digital recording of sounds has allowed sounds to be input directly into computers which can be used to display sounds and facilitate measurement. To date there has been little attempt at their use for analysis. We outline a series of programs which have been developed to compare statistically any unit of a sound with a pre-recorded library of similar units. The creation of such a library allows the rapid and objective categorisation of large numbers of sounds. These programs have been used to analyse songs recorded from wrens Troglodytes troglodytes and house crickets Acheta domesticus. Potential applications of this software to the field of bioacoustic investigation are discussed.  相似文献   

6.
ABSTRACT

Exact locations of spawning areas used by marine fishes are needed to design marine reserves and estimate spawning stocks. The location of spawning areas of soniferous fishes such as weakfish Cynoscion regalis can be determined by means of passive hydroacoustic surveys. We conducted nocturnal hydrophone surveys at 12 locations in Pamlico Sound in May of 1996 and 1997. Digital audio tapes were made of weakfish “purring” sounds, the tapes were analyzed spectrographically and compared with ichthyoplankton surveys taken at the same stations and times. All weakfish “purring” sounds were recorded at stations near inlets. Maximum sound pressure levels recorded after sunset were 127 dB (re 1 (μPa) for individual weakfish, but reached a maximum of 147 dB when weakfish and other fish were producing sounds simultaneously. The maximum distance that an individual weakfish “purr” can be detected above the background sound, assuming a cylindrical spreading model, is approximately 50 m. There was a strong association (r = 0.78) between the log10— transformed abundance of early-stage sciaenid-type eggs and maximum sound pressure levels, with the greatest numbers occurring at the inlet stations. These results suggest that passive hydroacoustic surveys can be used to delimit spawning areas for conservation and management purposes.  相似文献   

7.
ABSTRACT.   Although offering many benefits over manual recording and survey techniques for avian field studies, automated sound recording systems produce large datasets that must be carefully examined to locate sounds of interest. We compared two methods for locating target sounds in continuous sound recordings: (1) a manual method using computer software to provide a visual representation of the recording as a sound spectrogram and (2) an automated method using sound analysis software preprogrammed to identify specific target sounds. For both methods, we examined the time required to process a 24-h recording, scanning accuracy, and scanning comprehensiveness using four different target sounds of Pileated Woodpeckers ( Dryocopus pileatus ), Pale-billed Woodpeckers ( Campephilus guatemalensis ), and putative Ivory-billed Woodpeckers ( Campehilus principalis ). We collected recordings from the bottomland forests of Florida and the Neotropical dry forests of Costa Rica, and compared manual versus automated cross-correlation scanning techniques. The automated scanning method required less time to process sound recordings, but made more false positive identifications and was less comprehensive than the manual method, identifying significantly fewer target sounds. Although the automated scanning method offers a fast and economic alternative to traditional manual efforts, our results indicate that manual scanning is best for studies requiring an accurate account of temporal patterns in call frequency and for those involving birds with low vocalization rates.  相似文献   

8.
The mechanism of sound reception and the hearing abilities of the prawn (Palaemon serratus) have been studied using a combination of anatomical, electron microscopic and electrophysiological approaches, revealing that P. serratus is responsive to sounds ranging in frequency from 100 to 3000 Hz. It is the first time that the Auditory Brainstem Response (ABR) recording technique has been used on invertebrates, and the acquisition of hearing ability data from the present study adds valuable information to the inclusion of an entire sub-phylum of animals when assessing the potential impact of anthropogenic underwater sounds on marine organisms. Auditory evoked potentials were acquired from P. serratus, using two subcutaneous electrodes positioned in the carapace close to the supraesophageal ganglion and the statocyst (a small gravistatic organ located below the eyestalk on the peduncle of the bilateral antennules). The morphology of the statocyst receptors and the otic nerve pathways to the brain have also been studied, and reveal that P. serratus possesses an array of sensory hairs projecting from the floor of the statocyst into a mass of sand granules embedded in a gelatinous substance. It is the purpose of this work to show that the statocyst is responsive to sounds propagated through water from an air mounted transducer. The fundamental measure of the hearing ability of any organism possessing the appropriate receptor mechanism is its audiogram, which presents the lowest level of sound that the species can hear as a function of frequency. The statocyst of P. serratus is shown here to be sensitive to the motion of water particles displaced by low-frequency sounds ranging from 100 Hz up to 3000 Hz, with a hearing acuity similar to that of a generalist fish. Also, recorded neural waveforms were found to be similar in both amplitude and shape to those acquired from fish and higher vertebrates, when stimulated with low-frequency sound, and complete ablation of the electrophysiological response was achieved by removal of the statocyst.  相似文献   

9.
P. HANSEN 《Bioacoustics.》2013,22(1):51-68
ABSTRACT

Some acoustic signals produced by small insects are very low in amplitude and attenuate rapidly with distance. To achieve high quality recordings with such signals, the use of specialised microphones or of sound insulation chambers is necessary. This paper presents a simple and efficient method for the recording of acoustic signals emitted by small sources. Its principle is based upon the use of two simultaneous digital recordings from two microphones: one records the ambient noise while the other records the ambient noise plus the signal to analyse. Both these recordings are converted into digital files and then a simple subtraction between the two isolates the signal with a good signal-to-noise ratio. With this method of background noise removal, the recording of low amplitude sounds in an uninsulated room with common microphones becomes possible. We have applied this method to the study of 12 complete courtships of Drosophila melanogaster and particularly to the analysis of pulse sounds produced by the male in presence of a female. The study focuses mainly on the rhythm of production of pulse trains over the course of the courtship.  相似文献   

10.
The habitat ambient noise may exert an important selective pressure on frequencies used in acoustic communication by animals. A previous study demonstrated the presence of a match between the low-frequency quiet region of the stream ambient noise (termed ‘quiet window’) and the main frequencies used for sound production and hearing by two stream gobies (Padogobius bonelli, Gobius nigricans). The present study examines the spectral features of ambient noise in very shallow freshwater, brackish and marine habitats and correlates them to the range of dominant frequencies of sounds used by nine species of Mediterranean gobies reproducing in these environments. Ambient noise spectra of these habitats featured a low-frequency quiet window centered at 100 Hz (stream, sandy/rocky sea shore), or at 200 Hz (spring, brackish lagoon). The analysis of the ambient noise/sound spectrum relationships showed the sound frequencies matched the frequency band of the quiet window in the ambient noise typical of their own habitat. Analogous ambient noise/sound frequency relationships were observed in other shallow-water teleosts living in similar underwater environments. Conclusions may be relevant to the understanding of evolution of fish acoustic communication and hearing.  相似文献   

11.
Fish vocalisation is often a major component of underwater soundscapes. Therefore, interpretation of these soundscapes requires an understanding of the vocalisation characteristics of common soniferous fish species. This study of captive female bluefin gurnard, Chelidonichthys kumu, aims to formally characterise their vocalisation sounds and daily pattern of sound production. Four types of sound were produced and characterised, twice as many as previously reported in this species. These sounds fit two aural categories; grunt and growl, the mean peak frequencies for which ranged between 129 to 215 Hz. This species vocalized throughout the 24 hour period at an average rate of (18.5 ± 2.0 sounds fish-1 h-1) with an increase in vocalization rate at dawn and dusk. Competitive feeding did not elevate vocalisation as has been found in other gurnard species. Bluefin gurnard are common in coastal waters of New Zealand, Australia and Japan and, given their vocalization rate, are likely to be significant contributors to ambient underwater soundscape in these areas.  相似文献   

12.
Agonistic behaviour in the river bullhead C. gobio consists of visual (raising gill covers and fins, lowering the head, darkening) and acoustic (single knock sounds and trains of knock sounds) threat displays, rarely followed by attacks and bites. This study investigates the relationship of vocalizations with size, dominance, territory dimensions and sex of the opponents. Four groups, each consisting of a big male, a small male and a female, were each investigated for three different days. The number of won contests of each individual, the numbers of each sound produced during these encounters and the tank part where encounters took place were determined. Subordinate fish emit fewer sounds but relatively far more trains of knock sounds than dominant ones. They produce relatively more sounds under shelters whereas dominants do this on uncovered areas. α-fish produce more calls during agonistic encounters with β-fish than Ω fish. In β-individuals no such difference was noted. Basically no sex related behaviour could be observed. In each area of the tank one individual won most contests (= territory). Dimensions of territories differed significantly between individuals in each tank (α-, β-, Ω-fish). In no case were all three individuals able to maintain territories. Relative sizes of fish correlate significantly with relative numbers of successful encounters and with territory dimensions. Furthermore, both parameters are positively correlated with the numbers of sounds emitted by an individual. Sound production in C. gobio functions as an acoustical threat display. Because of the high energy costs of sound emission underwater it might be a very effective method of assessing the fighting ability of an opponent.  相似文献   

13.
ABSTRACT

In this paper a detailed analysis of the physical structure of sounds produced by male Padogobius martensi is reported. Sound production occurs during courtship and inter-male agonistic encounters. Both aggressive and courtship calls are made up of rapidly repeated pulses, with a pulse repetition rate decreasing through the course of the emission. By means of computerized analysis, the pulse repetition rate, its modulation and sound duration were determined. The water temperature was found to exert a marked and significant effect on the above parameters. In particular, the temperature directly affects the pulse rate and its decrease through the course of the emission (i.e. frequency modulation) and inversely affects sound duration. By contrast, size of the calling animal does not significantly influence the sound parameters considered. Aggressive sounds last longer and have a lower pulse repetition rate than the courtship sounds. Moreover, aggressive sounds appear more variable than the courtship ones as far as pulse rate and duration are concerned.  相似文献   

14.
In communication animals use a full range of signals: acoustic, visual, chemical, electrical and tactile. The processes involved in how and why animals communicate have long held veritable fascination for scientists. A branch of science concerned with the production of sound and its effects on living organisms is bioacoustics.The main purpose of the present study is to raise and discuss some issues related to the relationship between animals, their sounds and ecology, including presentation of methods of analysis of sound recordings. A better understanding of the relationship between the studied animals will allow for development of a better framework for future research, as well as a better grasp of interactions between different organisms, including humans. The paper discusses the significance of acoustic research in animal ecology and its possible applications in the future. The author also summarizes previous research in the field of sound communication of various animal species.The paper proves that vocalizations of every acoustically communicating animal are threatened by climate change. For marine animals, the source of changes in vocalization abilities is ocean acidification and increased ambient noise, which can affect communication and foraging behavior. For terrestrial animals, changes in precipitation and temperature may result in modifications of the sounds emitted, as well as certain modifications to the auditory system. Together with changes in species distribution due to environmental parameters, cumulatively these factors can cause changes in the entire landscape of acoustics ecosystems. Thanks to acoustic biomonitoring, we can understand how the sounds of entire habitats and acoustic ecosystems will change in response to the changing climate and how it will affect bioacoustics on a global scale.  相似文献   

15.
Environmental assessments of underwater noise on marine species must be based on species-specific hearing abilities. This study was to assess the potential impact of underwater noise from the East China Sea Bridge wind farm on the acoustic communication of the marbled rockfish. Here, the 1/3 octave frequency band of underwater noise was 125 Hz with the level range of 78–96 dB re 1 μPa, recorded at distances between 15-20m from the foundation at wind speed of 3–5 m/s. Auditory evoked potential (AEP) and passive acoustic techniques were used to determine the hearing abilities and sound production of the fish. The resultes showed the lowest auditory threshold of Sebastiscus marmoratus was 70 dB at 150 Hz matching the disturbance sound ranging 140–180 Hz, which indicating the acoustic communication used in this species. However, the frequency and level of turbine underwater noise overlapped the auditory sensitivity and vocalization of Sebastiscus marmoratus. The wind turbine noise could be detected by fish and may have a masking effect on their acoustic communication. This result can be applied for further to the assessent of fish species released into offshore wind farm marine ranch.  相似文献   

16.
  1. Applications in bioacoustics and its sister discipline ecoacoustics have increased exponentially over the last decade. However, despite knowledge about aquatic bioacoustics dating back to the times of Aristotle and a vast amount of background literature to draw upon, freshwater applications of ecoacoustics have been lagging to date.
  2. In this special issue, we present nine studies that deal with underwater acoustics, plus three acoustic studies on water-dependent birds and frogs. Topics include automatic detection of freshwater organisms by their calls, quantifying habitat change by analysing entire soundscapes, and detecting change in behaviour when organisms are exposed to noise.
  3. We identify six major challenges and review progress through this special issue. Challenges include characterisation of sounds, accessibility of archived sounds as well as improving automated analysis methods. Study design considerations include characterisation analysis challenges of spatial and temporal variation. The final key challenge is the so far largely understudied link between ecological condition and underwater sound.
  4. We hope that this special issue will raise awareness about underwater soundscapes as a survey tool. With a diverse array of field and analysis tools, this issue can act as a manual for future monitoring applications that will hopefully foster further advances in the field.
  相似文献   

17.
ABSTRACT

Spectrographic analysis showed that dholes produce sounds with two fundamental frequencies (components): the high-frequency and the low-frequency, which may occur simultaneously or separately. The fundamental frequency of the low-frequency component varied from 0.52 to 1.44 kHz, and that of the high-frequency component from 5.51 to 10.77 kHz. In calls where both the frequencies occurred simultaneously, they were not integer multiples of each other. They also had different frequency modulations and had additional combinative frequency bands. These are features of biphonation. Our data showed biphonation occurs in a lot of dhole calls (20 to 92% of the calls, depending on the individual (n=14); average occurrence 44.3%, n=1317 sounds). The occurrence of biphonation did not differ between sexes and ages; however, occurrence of the high component only was significantly higher in subadult animals, whereas the occurrence of the low component only was significantly higher in adults. Based on the sound structures, we discuss probable mechanisms of sound production for both the components in the dhole. For the low component, the normal vocal folds oscillation mechanism is suggested. For the high component, four possible mechanisms of sound production are discussed. We conclude that the vortex-shedding mechanism is the most probable.  相似文献   

18.
《IRBM》2022,43(6):694-704
BackgroundRespiratory sounds are associated with the flow rate, nasal flow pressure, and physical characteristics of airways. In this study, we aimed to develop the flow rate and nasal flow pressure estimation models for the clinical application, and find out the optimal feature set for estimation to achieve the optimal model performance.MethodsRespiratory sounds and flow rate were acquired from nine healthy volunteers. Respiratory sounds and nasal flow pressure were acquired from twenty-three healthy volunteers. Four types of respiratory sound features were extracted for flow rate and nasal flow pressure estimation using different estimation models. Effects of estimations using these features were evaluated using Bland-Altman analysis, estimation error, and respiratory sound feature calculation time. Besides, expiratory and inspiratory phases divided estimation errors were compared with united estimation errors.ResultsThe personalized logarithm model was selected as the optimal flow rate estimation model. Respiratory nasal flow pressure estimation based on this model was also performed. For the four different respiratory sound features, there is no statistically significant difference in flow rate and pressure estimation errors. LogEnvelope was, therefore, chosen as the optimal feature because of the lowest computational cost. In addition, for any type of respiratory sound feature, no statistically significant difference was observed between divided and united estimation errors (flow rate and pressure).ConclusionRespiratory flow rate and nasal flow pressure can be estimated accurately using respiratory sound features. Expiratory and inspiratory phases united estimation using respiratory sounds is a more reasonable estimation method than divided estimation. LogEnvelope can be used for this united respiratory flow rate and nasal flow pressure estimation with minimum computational cost and acceptable estimation error.  相似文献   

19.
Soundscapes are multidimensional spaces that carry meaningful information for many species about the location and quality of nearby and distant resources. Because soundscapes are the sum of the acoustic signals produced by individual organisms and their interactions, they can be used as a proxy for the condition of whole ecosystems and their occupants. Ocean acidification resulting from anthropogenic CO2 emissions is known to have profound effects on marine life. However, despite the increasingly recognized ecological importance of soundscapes, there is no empirical test of whether ocean acidification can affect biological sound production. Using field recordings obtained from three geographically separated natural CO2 vents, we show that forecasted end-of-century ocean acidification conditions can profoundly reduce the biological sound level and frequency of snapping shrimp snaps. Snapping shrimp were among the noisiest marine organisms and the suppression of their sound production at vents was responsible for the vast majority of the soundscape alteration observed. To assess mechanisms that could account for these observations, we tested whether long-term exposure (two to three months) to elevated CO2 induced a similar reduction in the snapping behaviour (loudness and frequency) of snapping shrimp. The results indicated that the soniferous behaviour of these animals was substantially reduced in both frequency (snaps per minute) and sound level of snaps produced. As coastal marine soundscapes are dominated by biological sounds produced by snapping shrimp, the observed suppression of this component of soundscapes could have important and possibly pervasive ecological consequences for organisms that use soundscapes as a source of information. This trend towards silence could be of particular importance for those species whose larval stages use sound for orientation towards settlement habitats.  相似文献   

20.
The methods described here allow recording of sympathetic nerve discharge in awake, freely moving animals, and follow a historical perspective of the different techniques developed over the years to record sympathetic discharge. The length of time each system is viable for recording varies from days to weeks. Also included are special hints for the surgical implantation of recording electrodes, types of recording electrodes and cables, as well as the minimum equipment necessary for recording sympathetic discharge. Lastly, a section on troubleshooting includes how to remove movement artifacts and extraneous noise, and minimize the destruction of leads common in recording in awake, freely moving animals. This article is written for the beginner or novice with an emphasis on what is needed when embarking on recording sympathetic nerve discharge in awake, freely moving animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号