首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sound production during reproductive behaviour, dyadic encounters and distress situations was investigated in the callichthyid catfish Corydoras paleatus. Sounds were broad-band, pulsed, acoustic signals produced during abduction of the pectoral spines. Only males emitted trains of sounds during courting and trains of sounds of shorter duration during dyadic encounters. Several males, which are usually smaller than females, courted one gravid female without obvious cooperation or competition between them. During mating, one previously vocalizing male clasped the female's barbels with one pectoral spine and inseminated the eggs. The number of successful spawnings, days until spawning, and number of eggs laid was not related to the number of males (one, two or three) combined with one female. Males did not behave aggressively towards each other during courting or in dyadic encounters. In distress situations, when fish were hand held, both sexes and juveniles produced single sounds. The dominant frequency was negatively correlated with body size and the sound duration was positively correlated with relative length of pectoral spines (standardized to body length). This acoustical behaviour in C. paleatus differs considerably from Hoplosternum thoracatum, a representative of the callichthyine subfamily, in which vocalization was observed during territorial behaviour in males and aggressive behaviour in both sexes. This is the first report of a major difference in vocalizing behaviour within one teleost family.  相似文献   

2.
Synopsis Males of two freshwater Italian gobies, the common goby, Padogobius martensii and the panzarolo goby, Knipowitschia punctatissima, emit trains of low-frequency pulses, i.e. drumming sounds, in the presence of a ripe female in the nest. In P, martensii the drumming sound is usually followed by a tonal sound (complex sound). Examination of the pulse structure suggests that these sounds are produced by muscles acting on the swimbladder. Both species exhibited high emission rates of spawning sounds, especially before the beginning of oviposition. Moreover, spawning sound production ceased only after the female abandoned the nest, which always occurred at the end of oviposition. This is the first study reporting the production among fishes of distinct sounds during protracted spawning. Unlike sounds produced just before mating by fishes with planktonic or demersal zygotes, the spawning sound production of these gobies does not function to coordinate mating events in the nest. The presence of a two-part vocalization by male P. martensii even suggests a functional dichotomy of spawning sounds in this species.  相似文献   

3.
Papes S  Ladich F 《PloS one》2011,6(10):e26479

Background

Sound production and hearing sensitivity of ectothermic animals are affected by the ambient temperature. This is the first study investigating the influence of temperature on both sound production and on hearing abilities in a fish species, namely the neotropical Striped Raphael catfish Platydoras armatulus.

Methodology/Principal Findings

Doradid catfishes produce stridulation sounds by rubbing the pectoral spines in the shoulder girdle and drumming sounds by an elastic spring mechanism which vibrates the swimbladder. Eight fish were acclimated for at least three weeks to 22°, then to 30° and again to 22°C. Sounds were recorded in distress situations when fish were hand-held. The stridulation sounds became shorter at the higher temperature, whereas pulse number, maximum pulse period and sound pressure level did not change with temperature. The dominant frequency increased when the temperature was raised to 30°C and the minimum pulse period became longer when the temperature decreased again. The fundamental frequency of drumming sounds increased at the higher temperature. Using the auditory evoked potential (AEP) recording technique, the hearing thresholds were tested at six different frequencies from 0.1 to 4 kHz. The temporal resolution was determined by analyzing the minimum resolvable click period (0.3–5 ms). The hearing sensitivity was higher at the higher temperature and differences were more pronounced at higher frequencies. In general, latencies of AEPs in response to single clicks became shorter at the higher temperature, whereas temporal resolution in response to double-clicks did not change.

Conclusions/Significance

These data indicate that sound characteristics as well as hearing abilities are affected by temperatures in fishes. Constraints imposed on hearing sensitivity at different temperatures cannot be compensated even by longer acclimation periods. These changes in sound production and detection suggest that acoustic orientation and communication are affected by temperature changes in the neotropical catfish P. armatulus.  相似文献   

4.
Most soniferous fishes producing sounds with their swimbladder utilize relatively simple mechanisms: contraction and relaxation of a unique pair of sonic muscles cause rapid movements of the swimbladder resulting in sound production. Here we describe the sonic mechanism for Ophidion barbatum, which includes three pairs of sonic muscles, highly transformed vertebral centra and ribs, a neural arch that pivots and a swimbladder whose anterior end is modified into a bony structure, the rocker bone. The ventral and intermediate muscles cause the rocker bone to swivel inward, compressing the swimbladder, and this action is antagonized by the dorsal muscle. Unlike other sonic systems in which the muscle contraction rate determines sound fundamental frequency, we hypothesize that slow contraction of these antagonistic muscles produces a series of cycles of swimbladder vibration.  相似文献   

5.
Female and juvenile haddock make sounds, as well as males. Examination of the sounds from different sexes indicates that the sound waveform is a function of fish maturity and it is gender-specific. Immature fish sounds were found to be made up of two pulses with similar frequencies and opposite polarities. Females produced two pulses with the same polarity, the first pulse having a higher frequency than the second. The acoustic characteristics of juvenile, female and male haddock sounds are compared. Sexual dimorphism in the mass of the drumming muscle mass has also been investigated. Female haddock possess less well-developed drumming muscles than males throughout the whole year. A significant difference in drumming muscle mass was observed not only in males but also in females at different seasons. A positive relation between drumming muscle mass and fish size has been highlighted in both male and female fish. The physical parameters of the sound units emitted by juveniles, females and males, which are likely affected by physiological condition and maturity stage, are discussed in relation to the sound-producing mechanism.  相似文献   

6.
Recent reports of high frequency sound production by cusk-eels cannot be explained adequately by known mechanisms, i.e., a forced response driven by fast sonic muscles on the swimbladder. Time to complete a contraction-relaxation cycle places a ceiling on frequency and is unlikely to explain sounds with dominant frequencies above 1 kHz. We investigated sonic morphology in the fawn cusk-eel Lepophidium profundorum to determine morphology potentially associated with high frequency sound production and quantified development and sexual dimorphism of sonic structures. Unlike other sonic systems in fishes in which muscle relaxation is caused by internal pressure or swimbladder elasticity, this system utilizes antagonistic pairs of muscles: ventral and intermediate muscles pull the winglike process and swimbladder forward and pivot the neural arch (neural rocker) above the first vertebra backward. This action stretches a fenestra in the swimbladder wall and imparts strain energy to epineural ribs, tendons and ligaments connected to the anterior swimbladder. Relatively short antagonistic dorsal and dorsomedial muscles pull on the neural rocker, releasing strain energy, and use a lever advantage to restore the winglike process and swimbladder to their resting position. Sonic components grow isometrically and are typically larger in males although the tiny intermediate muscles are larger in females. Although external morphology is relatively conservative in ophidiids, sonic morphology is extremely variable within the family.  相似文献   

7.
Juveniles, females, and males of Ophidion rochei share similar external morphology, probably because they are mainly active in the dark, which reduces the role of visual cues. Their internal sonic apparatuses, however, are complex: three pairs of sonic muscles, and highly modified vertebrae and ribs are involved in sound production. The sonic apparatus of males differs from juveniles and females in having larger swimbladder plates (modified ribs associate with the swimbladder wall) and sonic muscles, a modified swimbladder shape and a mineralized structure called the “rocker bone” in front of the swimbladder. All of these male traits appear at the onset of sexual maturation. This article investigates the relationship between morphology and sounds in male O. rochei of different sizes. Despite their small size range total length (133–170 mm TL), the five specimens showed pronounced differences in sound‐production apparatus morphology, especially in terms of swimbladder shape and rocker bone development. This observation was reinforced by the positive allometry measured for the rocker bone and the internal tube of the swimbladder. The differences in morphology were related to marked differences in sound characteristics (especially frequency and pulse duration). These results suggest that male calls carry information about the degree of maturity. Deprived of most visual cues, ophidiids probably have invested in other mechanisms to recognize and distinguish among individual conspecifics and between ophidiid species. As a result, their phenotypes are externally similar but internally very different. In these taxa, the great variability of the sound production apparatus means this complex system is a main target of environmental constraints. J. Morphol. 275:650–660, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
Stridulation in solifuges has not been investigated yet. We performed a comparative analysis of the stridulatory organs and sounds produced by juveniles of various developmental stages and adults (both sexes) of Galeodes caspius subfuscus Birula. The stridulatory organ is of similar morphology in all developmental stages. The sound that they produced was a broad frequency hissing, composed of one or two chirps with maximum at 2.4 kHz. The intensity of the sound was found to increase with body size. Otherwise, no differences were observed between stridulation in juvenile, male and female individuals. Therefore, we suggest that the stridulation in solifuges has primarily a defensive role. As solifuges are neither venomous nor unpalatable, they might imitate an accoustically aposematic organism that shares the same habitat and has similar circadian activity, e.g. vipers. It may also have an intraspecific function in reduction of cannibalistic tendencies.  相似文献   

9.

Background

Data on sex-specific differences in sound production, acoustic behaviour and hearing abilities in fishes are rare. Representatives of numerous catfish families are known to produce sounds in agonistic contexts (intraspecific aggression and interspecific disturbance situations) using their pectoral fins. The present study investigates differences in agonistic behaviour, sound production and hearing abilities in males and females of a callichthyid catfish.

Methodology/Principal Findings

Eight males and nine females of the armoured catfish Megalechis thoracata were investigated. Agonistic behaviour displayed during male-male and female-female dyadic contests and sounds emitted were recorded, sound characteristics analysed and hearing thresholds measured using the auditory evoked potential (AEP) recording technique. Male pectoral spines were on average 1.7-fold longer than those of same-sized females. Visual and acoustic threat displays differed between sexes. Males produced low-frequency harmonic barks at longer distances and thumps at close distances, whereas females emitted broad-band pulsed crackles when close to each other. Female aggressive sounds were significantly shorter than those of males (167 ms versus 219 to 240 ms) and of higher dominant frequency (562 Hz versus 132 to 403 Hz). Sound duration and sound level were positively correlated with body and pectoral spine length, but dominant frequency was inversely correlated only to spine length. Both sexes showed a similar U-shaped hearing curve with lowest thresholds between 0.2 and 1 kHz and a drop in sensitivity above 1 kHz. The main energies of sounds were located at the most sensitive frequencies.

Conclusions/Significance

Current data demonstrate that both male and female M. thoracata produce aggressive sounds, but the behavioural contexts and sound characteristics differ between sexes. Sexes do not differ in hearing, but it remains to be clarified if this is a general pattern among fish. This is the first study to describe sex-specific differences in agonistic behaviour in fishes.  相似文献   

10.
The characteristics of sounds produced by fishes are influenced by several factors such as size. The current study analyses factors affecting structural properties of acoustic signals produced by female croaking gouramis Trichopsis vittata during agonistic interactions. Female sounds (although seldom analysed separately from male sounds) can equally be used to investigate factors affecting the sound characteristics in fish. Sound structure, dominant frequency and sound pressure levels (SPL) were determined and correlated to body size and the order in which sounds were emitted. Croaking sounds consisted of series of single-pulsed or double-pulsed bursts, each burst produced by one pectoral fin. Main energies were concentrated between 1.3 and 1.5 kHz. The dominant frequency decreased with size, as did the percentage of single-pulsed bursts within croaking sounds. The SPL and the number of bursts within a sound were independent of size but decreased significantly with the order of their production. Thus, acoustic signals produced at the beginning of agonistic interactions were louder and consisted of more bursts than subsequent ones. Our data indicate that body size affects the dominant frequency and structure of sounds. The increase in the percentage of double-pulsed bursts with size may be due to stronger pectoral muscles in larger fish. In contrast, ongoing fights apparently result in muscle fatigue and subsequently in a decline in the number of bursts and SPL. The factor ‘order of sound production’ points to an intra-individual variability of sounds and should be considered in future studies.  相似文献   

11.
Fish vocalisation is often a major component of underwater soundscapes. Therefore, interpretation of these soundscapes requires an understanding of the vocalisation characteristics of common soniferous fish species. This study of captive female bluefin gurnard, Chelidonichthys kumu, aims to formally characterise their vocalisation sounds and daily pattern of sound production. Four types of sound were produced and characterised, twice as many as previously reported in this species. These sounds fit two aural categories; grunt and growl, the mean peak frequencies for which ranged between 129 to 215 Hz. This species vocalized throughout the 24 hour period at an average rate of (18.5 ± 2.0 sounds fish-1 h-1) with an increase in vocalization rate at dawn and dusk. Competitive feeding did not elevate vocalisation as has been found in other gurnard species. Bluefin gurnard are common in coastal waters of New Zealand, Australia and Japan and, given their vocalization rate, are likely to be significant contributors to ambient underwater soundscape in these areas.  相似文献   

12.
13.
Susan C.  Silver 《Journal of Zoology》1980,191(3):323-331
The stridulatory apparatus of eight species of 5th instar caddis larvae of the family Hydropsychidae were compared using the scanning electron microscope. This revealed the presence of secondary structures associated with each main ridge of the file in some species. Slight differences occur in the number of ridges which form the plectra. The sounds produced by two coexisting species of hydropsychid larvae were recorded and temporal and frequency analysis carried out. These sounds are found to extend far into the ultrasonic range and appear to show only minor interspecific differences. The occurrence of stridulatory behaviour during territorial defence and its significance in relation to the ecology of the larvae is discussed. Some physical parameters affecting sound reception in the near- and far-field are presented and this leads to speculation on the existence of a possible hearing mechanism.  相似文献   

14.
Trichopsis vittatus emits high amplitude sounds during agonistic encounters with conspecifics. The sound producing organ is derived from the structural components of the pectoral fins. The study involved muting a sample of subjects by removing two pectoral fin tendons without any further restriction in movements and behaviour. Mute and unaltered males were then placed together in pairs and the following agonistic behavioural elements were determined: attacks, lateral displays, sound production and frontal displays. Soniferous males had a higher probability of winning contests when size differences were small. In pairs with big size ratios, the larger males were more often successful. Besides visual and acoustical signals, lateral line stimuli seem to play no role in threatening displays. These results demonstrate that vocalization during agonistic encounters is important for becoming dominant in specific circumstances. Because of correlation between main frequencies and size, sound emission might be a very effective method of assessing the physical strength of an opponent.  相似文献   

15.
Summary In order to determine whether correlations exist between hearing and the known soundproduction abilities in piranhas (Serrasalmus nattereri), behavioral auditory thresholds were obtained with continuous tones and tone pulses. A new avoidance conditioning method was developed, where fin movements of caged animals were taken as response to a tone. The mean values of the far-field audiogram ranged from –26 dB re. 0.1 Pa at 80 Hz to a low point of about –43 dB between 220–350 Hz and rose to –14 dB at 1500 Hz. The frequency spectrum of typical drumming sounds (barks) covers the range of best hearing (100–600 Hz).Piranhas are able to integrate temporally acoustic signals: in threshold investigations with repeated tone pulses, the thresholds rose approximately exponentially with decreasing pulse duration and repetition rate; thresholds of single pulses were higher with shorter pulses. The temporal patterning of the calls and the temporal integration ability are well correlated in piranhas, optimizing intraspecific detectability and total length of sound production with respect to the fatigue characteristics of drumming muscles and habituation of the neural pacemaker.The lagenae of the piranhas were found to face laterofrontally; this is thought to be a morphological adaptation to sound production, saving the lagenae from excessive strain during activation of the drumming muscles.Abbreviations Cl acoustic condition 1, where a board with the air loudspeaker rested on the experimental tank upon a layer of felt - C2 acoustic condition 2, where the loudspeaker was freely mounted 20 cm above the water surface - d p pulse duration - f p pulse repetition rate - D duty cycle  相似文献   

16.
Male Saitis michaelseni Simon (Araneae: Salticidae) produce sounds during courtship which can be heard several metres away. Courting males stridulate on dead leaves and are positioned on the opposite side of the leaf from the female. The courtship display contains both visual and acoustic elements. Courtship consists of three phases. In the first two phases, the male stridulates, and in the third phase, in which he makes tactile contact with the female, he alternates bursts of stridulatory sound with bouts of percussive sound in which the first pair of legs strikes the substratum. Stridulation apparently results from the thickened bases of short hairs on the anterior part of the abdomen moving over two files on the posterior part of the carapace. This stridulatory mechanism has not been previously reported for salticid spiders. The frequency spectra and amplitude modulation patterns of sounds produced by stridulation and percussion are presented.  相似文献   

17.
The pectoral spine of catfishes is an antipredator adaptation that can be bound, locked, and rubbed against the cleithrum to produce stridulation sounds. We describe muscle morphology of the pectoral spines and rays in six species in four genera of North American ictalurid catfishes. Since homologies of catfish pectoral muscles have not been universally accepted, we designate them functionally as the spine abductor and adductor and the arrector dorsalis and ventralis. The four muscles of the remaining pectoral rays are the superficial and deep (profundal) abductors and adductors. The large spine abductor and spine adductor are responsible for large amplitude movements, and the smaller arrector dorsalis and arrector ventralis have more specialized functions, that is, spine elevation and depression, respectively, although they also contribute to spine abduction. Three of the four spine muscles were pennate (the abductor and two arrectors), the spine adductor can be pennate or parallel, and ray muscles have parallel fibers. Insertions of pectoral muscles are similar across species, but there is a shift of origins in some muscles, particularly of the superficial abductor of the pectoral rays, which assumes a midline position in Ictalurus and increasingly more lateral placement in Ameiurus (one quarter way out from the midline), and Pylodictis and Noturus (half way out). Coincident with this lateral shift, the attachments of the hypaxial muscle to the ventral girdle become more robust. Comparison with its sister group supports the midline position as basal and lateral migration as derived. The muscles of the pectoral spine are heavier than muscles of the remaining rays in all species but the flathead, supporting the importance of specialized spine functions above typical movement. Further, spine muscles were larger than ray muscles in all species but the flathead catfish, which lives in water with the fastest currents. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.

Background  

Surveys of ontogenetic development of hearing and sound production in fish are scarce, and the ontogenetic development of acoustic communication has been investigated in only two fish species so far. Studies on the labyrinth fish Trichopsis vittata and the toadfish Halobatrachus didactylus show that the ability to detect conspecific sounds develops during growth. In otophysine fish, which are characterized by Weberian ossicles and improved hearing sensitivities, the ontogenetic development of sound communication has never been investigated. We analysed the ontogeny of the auditory sensitivity and vocalizations in the mochokid catfish Synodontis schoutedeni. Mochokid catfishes of the genus Synodontis are commonly called squeakers because they produce broadband stridulation sounds during abduction and adduction of pectoral fin spines. Fish from six different size groups - from 22 mm standard length to 126 mm - were studied. Hearing thresholds were measured between 50 Hz and 6 kHz using the auditory evoked potentials recording technique; stridulation sounds were recorded and their sound pressure levels determined. Finally, absolute sound power spectra were compared to auditory sensitivity curves within each size group.  相似文献   

19.
The production of structured and repetitive sounds by striking objects is a behavior found not only in humans, but also in a variety of animal species, including chimpanzees (Pan troglodytes). In this study we examined individual and social factors that may influence the frequency with which individuals engage in drumming behavior when producing long distance pant hoot vocalizations, and analyzed the temporal structure of those drumming bouts. Male chimpanzees from Budongo Forest, Uganda, drummed significantly more frequently during travel than feeding or resting and older individuals were significantly more likely to produce drumming bouts than younger ones. In contrast, we found no evidence that the presence of estrus females, high ranking males and preferred social partners in the caller's vicinty had an effect on the frequency with which an individual accompanied their pant hoot vocalization with drumming. Through acoustic analyses, we demonstrated that drumming sequences produced with pant hoots may have contained information on individual identity and that qualitatively, there was individual variation in the complexity of the temporal patterns produced. We conclude that drumming patterns may act as individually distinctive long‐distance signals that, together with pant hoot vocalizations, function to coordinate the movement and spacing of dispersed individuals within a community, rather than as signals to group members in the immediate audience. Am J Phys Anthropol 156:125–134, 2015 © 2014 Wiley Periodicals, Inc.  相似文献   

20.
Acoustic signals of Cottus gobio consist of knocking sounds produced as single pulses (48 ms) or as trains of 4–6 pulses (230 ms). Frequencies extend up to 3 kHz, but most sound energy is concentrated between 50 and 500 Hz in both sound types. Cottus gobio is solitary, maintains territories, and defends them by threat display, seldom by biting and fighting. Threatening consists of spreading gill covers and fins, darkening, and sound production. Calling is accompanied by a nodding movement of the head, during which the pectoral girdle and the skull are moved rapidly against each other. No difference in ability of sound production was observed between sexes, but males emitted significantly more sounds than females. In the laboratory an increase in vocalization activity was observed between night and day. An increase in the number of encounters and calls was noted when temperatures were raised from 8°C to 13°C. Sound production was registered throughout the year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号